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Abstract: This paper proposes a personalized head-related transfer function (HRTF) estimation
method based on deep neural networks by using anthropometric measurements and ear images.
The proposed method consists of three sub-networks for representing personalized features and
estimating the HRTF. As input features for neural networks, the anthropometric measurements
regarding the head and torso are used for a feedforward deep neural network (DNN), and the ear
images are used for a convolutional neural network (CNN). After that, the outputs of these two
sub-networks are merged into another DNN for estimation of the personalized HRTF. To evaluate the
performance of the proposed method, objective and subjective evaluations are conducted. For the
objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between
the reference HRTF and the estimated one are measured. Consequently, the proposed method
provides the RMSE of −18.40 dB and LSD of 4.47 dB, which are lower by 0.02 dB and higher by
0.85 dB than the DNN-based method using anthropometric data without pinna measurements,
respectively. Next, a sound localization test is performed for the subjective evaluation. As a result,
it is shown that the proposed method can localize sound sources with higher accuracy of around
11% and 6% than the average HRTF method and DNN-based method, respectively. In addition,
the reductions of the front/back confusion rate by 12.5% and 2.5% are achieved by the proposed
method, compared to the average HRTF method and DNN-based method, respectively.

Keywords: head-related transfer function; audio rendering; personalization; deep neural network;
convolutional neural network; anthropometric measurement; ear image; sound localization

1. Introduction

The research and development of virtual reality (VR) and augmented reality (AR) have made
significant progress over the last several decades. For the successful realization of VR/AR systems,
it has been known that spatial sound or three-dimensional (3D) sound is an important component for
enhancing the immersive quality of the systems when combined with video [1].

To generate such spatial sound, spatial cues from the human auditory system have been studied.
The principle of spatial hearing is based on binaural and monaural cues [2]. Binaural cues imply the
differences between two ears, including the time difference of arrival and the intensity difference
between two ears, which are respectively referred to as the interaural time difference (ITD) and
the interaural level difference (ILD). These binaural cues are related to the perceiving horizontal
direction of a sound source. However, monaural cues contain the effects of the head, body, and pinna.
They modify the magnitude spectrum of a sound source and are strongly related to perceiving the
vertical direction of sound sources [3]. Another monaural cue is the reverberant factor, which is defined
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as the amount of reflection and reverberation relative to the direct sound and is primarily related to
perceiving the distance of a sound source [4].

To date, audio rendering, which is a spatial audio processing technique, has been used to localize
a sound source to an arbitrary position in 3D space. Thus, a listener perceives a sound produced from
a localized position virtually. The audio rendering can be conducted in either the binaural or transaural
configuration [1]. In a binaural configuration through headphones, research on spatial sound has
focused primarily on finding the relationship between the position of a given sound source and the
listener’s ears. The relationship between such a sound source and the listener is typically called the
head-related transfer function (HRTF), through which spatial sound is produced. The HRTF can be
measured using a dummy head that mimics the human eardrum [5]. This measurement represents
the effects of the head, body, and pinna and the pathway from a given source position to a dummy
head. Therefore, HRTFs differ from person to person because sound propagation varies due to the
head, torso, and eardrums of each person [6]. Applying measured HRTFs from a dummy head or
other people to a specific person can degrade the performance of immersive sound effects due to the
variance in personal characteristics. Therefore, HRTFs should be individually designed or measured to
obtain localization performance. Figure 1 shows a possible application of the personalized HRTF when
playing sound in a binaural configuration. As shown in Figure 1a, a traditional approach to generating
binaural sound from monaural sound is using a pre-defined HRTF, but the proposed method shown
in Figure 1b enables us to provide better sound quality to a listener with HRTF that is personalized to
the listener.

Figure 1. Example of an application for the reproduction of binaural sound from monaural sound
using (a) a pre-defined head-related transfer function (HRTF) for all listeners, and (b) personalized
HRTF based on the proposed method.

As HRTFs vary according to anthropometric measurements, HRTFs have been designed using
statistical methods to create standard human head models [5]. However, since HRTFs are sensitive to
individual characteristics, the spatial sound generated by an average HRTF model cannot be expected
to produce faultless effects [6]. Therefore, it is necessary to measure the HRTF that suits the individual,
but the measurement cost and time pose difficulties. To overcome these shortcomings, mathematical
design methods based on measured HRTFs have also been studied in Reference [7–9]. Recently,
artificial neural networks have shown meaningful results in various applications, such as temperature
estimation and control [10,11], machinery fault diagnosis [12,13], material property prediction [14,15],
load forecasting [16], handwritten digit recognition [17], and wind-speed forecasting [18]. In particular,
based on biometric information, breast cancer classification [19] and corneal power estimation [20]
showed good performance. A deep learning approach has also been applied to explore the complex
relationship between anthropometric measurements and HRTFs [21,22], where anthropometric
measurements including detailed measurements of the head, shoulders, and ears were used as the input
features for a deep neural network (DNN). However, the performance of this approach was limited
because ear-related measurements were difficult to obtain in real life. Instead of directly measuring
anthropometric pinna measurements, we proposed a feature extraction method for ear images using
an auto-encoder based on a convolutional neural network (CNN) [23] where the bottleneck features
were extracted to represent personalized anthropometric data.

In this paper, our previous approach is extended to estimate a personalized HRTF using ear
images instead of ear-related anthropometric measurements. The proposed neural network for the
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personalized HRTF estimation is composed of three sub-networks, the first of which is a feed-forward
DNN that uses anthropometric measurements as input features to represent information on the
relationship between anthropometric measurements and HRTFs [22]. The second sub-network tries
to represent the personalized anthropometric measurements from ear images and is designed using
a CNN, which enables us to obtain bottleneck features as proposed in Reference [23]. Lastly, the two
different internal features obtained from the anthropometric measurements and ear images are
combined using another DNN to estimate personalized HRTFs. The performance of the proposed
method is evaluated objectively and subjectively. As objective measures, the root-mean-square error
(RMSE) and log-spectral distortion (LSD) between the reference and estimated HRTF are calculated.
In addition, the distance perceived by listeners after applying the estimated HRTF to a sound source
is used as a subjective measure. Next, the performance of the proposed method is compared with
that of HRTF estimation methods using the average [6] and estimated HRTF by a DNN trained with
anthropometric measurements [22].

The remainder of this paper is organized as follows: Section 2 briefly reviews deep learning-based
personalized HRTF estimation using whole anthropometric measurements. Section 3 proposes
a personalized HRTF estimation method using a neural network that combines a DNN and a CNN in
parallel applied to anthropometric measurements and ear images, respectively. Section 4 evaluates the
performance of the proposed method and compares it with those of HRTF estimation methods using
the average HRTF and the estimated HRTF by the DNN trained with anthropometric measurements.
Finally, Section 5 concludes this paper.

2. Review of HRTF Modeling Using Anthropometrics

In this section, we briefly review a method for generating personalized HRTFs based on
DNNs using anthropometric measurements, as shown in Figure 2 [22]. In the process of designing
personalized HRTFs, the public HRTF database was provided by the Center for Image Processing and
Integrated Computing (CIPIC) of the University of California at Davis [24]. This database included
head-related impulse responses (HRIRs), another representation of HRTFs, for 45 subjects at 25 different
azimuths and 50 different elevations with anthropometric measurements and ear images of each
subject. The specifications of the anthropometric measurements included in the database are as
shown in Figure 3 and Table 1. In the CIPIC database, there were 17 parameters for head and torso
measurements and 10 for pinna measurements. In particular, elevation and azimuth were sampled
using a head-centered polar coordinate system. The elevations were uniformly sampled at intervals of
5.625◦ from −45◦ to 230.625◦ while the azimuths were sampled at 25 different angles from −80◦ to
80◦ with different steps of 5◦ to 15◦. There were 1250 HRTFs of length 200 samples, corresponding to
a duration of approximately 4.5 msec at a sampling rate of 44.1 kHz.

Figure 2. Block diagram of a deep neural network (DNN)-based HRTF estimation method using
anthropometric measurements.
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Figure 3. Variables of anthropometric measurements: (a) head and torso measurements and (b) pinna
measurements [24].

Table 1. List of anthropometric measurements in the Center for Image Processing and Integrated
Computing (CIPIC) head-related transfer function (HRTF) database [24].

Variable Measurement Variable Measurement Variable Measurement

x1 Head width x10 Torso top height d2 Cymba concha height
x2 Head height x11 Torso top depth d3 Cavum concha width
x3 Head depth x12 Shoulder width d4 Fossa height
x4 Pinna offset down x13 Head offset forward d5 Pinna height
x5 Pinna offset back x14 Height d6 Pinna width
x6 Neck width x15 Seated height d7 Integral incisure width
x7 Neck height x16 Head circumference d8 Cavum concha depth
x8 Neck depth x17 Shoulder circumference θ1 Pinna rotation angle
x9 Torso top width d1 Cavum concha height θ2 Pinna flare angle

To compare the performance of our proposed method in Section 3 with the neural network model
described in this section, a DNN is constructed as shown at the upper block of Figure 2. The DNN
model here is composed of one input layer, five hidden layers, and one output layer. There are 37 input
units (17 parameters for the height and circumference measurements and 20 for the pinna measurements
for both ears), as described in Table 1, and the number of output nodes is set to 200, corresponding
to the length of the HRTFs. In addition, the number of each hidden layer’s nodes is set to 64 and
the rectified linear unit (ReLU) is applied as an activation function for each layer because the ReLU
activation function is known to be effective for solving gradient-vanishing problems [25]. Moreover,
since the range of anthropometric measurement is different between measurements, a measurement
with a small range may not influence learning. Thus, each input feature for the DNN is normalized
using the mean and variance for all training data without regard for the subjects, such as

zi =

(
1 + e−

(zi−µi)
σi

)−1

(1)

where zi and zi are the i-th component of the input and normalized feature vector, respectively, and µi
and σi are the mean and standard deviation of all the training data, respectively. Note that zi could be
xi, di, or θi in Table 1.

For training the DNN, Xavier initialization is utilized for the initial weights of the configured
model, and the biases are initialized at zero [26]. The mean square error (MSE) between the original
target and the estimate target is selected as a cost function [27]. The adaptive moment estimation
(Adam) optimization is utilized for the backpropagation algorithm and the first- and second-moment
decay rates are set to 0.9 and 0.999, respectively, with a learning rate of 0.001 [28]. In addition,
the dropout technique is utilized with the keep probability of 0.9 [29]. Finally, the model was trained
for 20,000 epochs. The performance of the DNN described thus far will be discussed in Section 4.
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3. Proposed Personalized HRTF Estimation Method

3.1. Neural Network Architecture

This section proposes a method for estimating the personalized HRTF using ear images and
anthropometric measurements. Since the measured anthropometric data may potentially be missing
information that may have been used to estimate HRTFs, it is difficult to take the ear measurements
represented in Figure 3b in practice. Thus, instead of measuring the anthropometric parameters of
a physical ear, the proposed method directly uses an image of the ear.

Figure 4 illustrates a block diagram of the proposed HRTF personalized method, including the
architecture of a DNN for the proposed personalized HRTF estimation, where both anthropometric
measurements and ear images are used as input features, and HRTFs are used as target features.
As shown in the figure, the proposed neural network is composed of three sub-networks. The first
sub-network of the proposed neural network is a DNN that uses anthropometric measurements as
input features to represent the information on the relationship between anthropometric measurements
and HRTFs, which is referred to as “Sub-network A”. The second sub-network is a feature representation
network based on CNN from ear images and referred to as “Sub-network B”. The two sub-networks are
combined together using another DNN to estimate personalized HRTFs, referred to as “Sub-network C”.

Figure 4. Block diagram of the proposed personalized HRTF estimation method using anthropometric
measurements and ear images.

Sub-network A is composed of an input layer, two hidden layers, and an output layer, as illustrated
in the left-upper corner in Figure 4. Compared to the input features of the DNN in Section 2, only 17
features (height and circumference measurements) are used here as input features for Sub-network
A. The pinna measurements of both ears can be modeled by Sub-network B, as will be described in
the next paragraph. In addition, the number of each hidden layer’s nodes is set to 32, and the output
layer consists of eight nodes and becomes a part of the input layer for Sub-network C. As an activation
function, the ReLU is applied to the hidden layers and the output layer.
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Sub-network B is composed of an input layer, two convolution layers, two max-pooling layers,
a fully connected layer, and an output layer. The 32 × 32 edge-detected ear images are used for the
input features of this sub-network. A detailed explanation is given in Section 3.2. Each convolution
layer consists of 3× 3 kernels where the number of the kernels is 16. The max-pooling layer is followed
by each convolution layer of 2 × 2 size. A fully connected layer converts a 2-D shape output to a 1-D
shape from the last max-pooling layer. The output layer of Sub-network B consists of eight nodes and is
also used as a part of the input layer of Sub-network C. Similar to Sub-network A, the ReLU activation
function is applied for two convolution layers, the fully connected layer, and the output layer.

Lastly, Sub-network C consists of an integrated input layer with 16 nodes and three hidden layers
with 32 nodes each. The output layer has 200 nodes that correspond to the length of HRTFs in the
CIPIC database, as described in Section 2. In addition, the ReLU activation function is applied for both
the hidden layers and the output layer.

3.2. Extraction of Ear Images

The ear images in the CIPIC database have different resolutions. Thus, a 32 × 32 region of interest
(ROI) is applied to each image in this paper because image processing for the ear image requires
a consistent resolution. Moreover, color ear images are converted to grayscale ones because skin color
has no impact on sound propagation.

In general, the more complex a neural network model is, the more data it requires; furthermore,
the use of insufficient data can cause severe performance degradation due to the overfitting problem.
In particular, this problem occurs more frequently in regression models [30]. For example, the National
Institute of Standards and Technology (MNIST) challenge, which recognizes handwritten digits,
provides 60,000 training images, and 10,000 test images [31]. Meanwhile, only 31 ear images are
included in the CIPIC database, and such insufficient data can lead to an overfitting problem. Thus,
instead of using features extracted from the images, edge-detected images are directly used as the input
features of Sub-network B. Therefore, the first layer of CNN performs filtering to extract low-level
features, such as edges and lines.

Figure 5 illustrates an example of an original color image from the CIPIC database as well as
the edge-detected ear image. The image size of the edge-detected ear image, as shown in Figure 5b,
is 32 × 32 pixels, where the ear image corresponds to the boxed area of Figure 5a. The Canny edge
detection algorithm [32] is used here, which is as follows:

(1) Apply a Gaussian filter to the image to remove noise and unwanted details
(2) Find the intensity gradients of the image
(3) Apply non-maximum suppression to remove spurious responses to edge detection
(4) Apply double thresholds with hysteresis by suppressing all edges that are weak and not connected

to a strong edge.

Figure 5. Illustration of (a) the ear image of subject 010 in the Center for Image Processing and Integrated
Computing (CIPIC) database and (b) its edge-detected ear image with region of interest (ROI).
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3.3. Supervised Learning

The training procedure for the proposed neural network is similar to that described in Section 2.
In the training phase, well-initialized weights can lead to good results, such as low initial cost or fast
convergence [33]. To initialize all weights of layers, we use the Xavier initialization technique, while all
biases are initialized as zero [26]. An MSE between the reference target and the estimated one is applied
with a back-propagation algorithm [27]. A basic gradient descent algorithm based on the back-propagation
method is used to update weights by minimizing the cost. In this process, the Adam optimization
technique that uses momentum and gradient adaptation methods is applied with the first and second
moment decay rates of 0.9 and 0.999, respectively, and the learning rate is set to 0.0001 [28]. To increase
the convergence speed and prevent overfitting problems, a dropout technique is applied with a keep
probability of 0.5, and a data augmentation technique of adding additive white Gaussian noise (AWGN)
is applied with a value of 0.3 [29,34]. Finally, the configured model is trained for 100,000 epochs.

4. Performance Evaluation

In this section, the performance of the proposed personalized HRTF estimation method was
evaluated in terms of both objective and subjective tests. For objective tests, the RMSE and LSD
between the reference and estimated HRTF were measured. For the subjective test, a sound localization
experiment was performed, and the distance perceived by listeners after applying the estimated
HRTF to a sound source was measured. Subsequently, the performance of the proposed method was
compared to those of the following other HRTF estimation methods: (1) an HRTF estimation method
using average HRTF, referred to as “Average HRTF”; (2) the estimated HRTF by a DNN trained with
anthropometric measurements in Section 2 [11], referred to as “DNN(37) HRTF” because there were
37 anthropometric measurements including ear measurements; (3) the estimated HRTF by a DNN
trained with only 17 head and torso measurements, referred to as “DNN(17) HRTF.” Henceforth,
the proposed method is referred to as “CNN–DNN HRTF.” Note that since it was difficult to obtain
anthropometric measurements of the pinna for a test subject, the performance of the DNN in Section 2
was only evaluated using objective measures.

All methods were implemented in MATLAB with a version of R2013b using Tensorflow whose
version was r1.1.0 with Python 3.5.2. In this paper, 30 subjects and one subject of the CIPIC database
were used for training and testing each neural network, respectively. Then, 31 cross-validations
were performed and measurements were averaged over all cross-validations. Note here that the
average HRTF method took an average over the HRTFs of all 31 subjects. In addition, since there
were 1250 different environments (25 azimuths and 50 elevations), both the proposed method and the
DNN-based methods were constructed in each different environment, resulting in 1250 CNN–DNN
HRTFs, 1250 DNN(37) HRTFs, and 1250 DNN(17) HRTFs.

4.1. Objective Evaluation

As mentioned earlier, there were two objectives measured here. One was the RMSE between the
reference HRTF y(n) and the estimated HRTF ŷ(n), which was defined as

RMSE(y, ŷ) = 20 log10

√
1
N

N−1
∑

n=0
(y(n)− ŷ(n))2 (2)

where N (=200) was the total length of the HRTF. In addition, the LSD was defined as

LSD
(
Y, Ŷ

)
=

√
1
M

M
∑

k=0

(
20 log10

|Y(k)|
|Ŷ(k)|

)2
(3)

where Y(k) and Ŷ(k) were obtained by applying a fast Fourier transform (FFT) to y(n) and ŷ(n),
respectively, and M (=512) was half the size of the FFT.
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Figure 6 compares the RMSEs of the individual subject according to different HRTF estimation
methods, measured at −135◦, −80◦, and −45◦. Note that the performances of the HRTFs at 135◦, 80◦,
and 45◦ were identical to those at −135◦, −80◦, and −45◦, respectively. In addition, Table 2 compares
the average HRTF over all the HRTFs in the CIPIC database, measured at −135◦, −80◦, and −45◦.
As shown in Figure 6 and Table 2, the DNN-based method (DNN(37) HRTF) and the proposed method
provided RMSEs that were 1.91 and 0.88 dB higher than the average HRTF method, respectively.
Even though the average HRTF had the lowest RMSE because this was obtained from exact pinna
measurements, it was actually hard to get pinna measurement data from live human ears. Without such
pinna measurements, the DNN-based method increased RMSE by 0.02 dB. Thus, the RMSE of the
estimated HRTF by the proposed method was lowered than that estimated by the DNN(17) HRTF.

Next, the LSD was computed between the reference HRTF and its estimated HRTF for each of the
four different HRTF estimation methods. Figure 7 and Table 3 compare the LSDs of the individual
subject and the average LSD according to different HRTF estimation methods, measured at −135◦,
−80◦, and −45◦, respectively. As shown in the figure and table, the average LSD measured from the
DNN(37) HRTFs was lowest among the methods. However, similar to the RMSE described above,
the average LSD of the HRTFs estimated by the proposed method was lower by 0.85 dB compared to
that by DNN(17) HRTFs. In particular, the LSDs for the HRTFs estimated by both neural network-based
methods were greatly reduced compared to the average HRTF method.

Figure 6. Comparison of the root mean square errors (RMSEs) of the individual subject according to
different HRTF estimation methods: (a) −135◦, (b) −80◦, and (c) −45◦.

Table 2. Comparison of the average root mean square errors (RMSEs) of different HRTF estimation
methods at −135◦, −80◦, and −45◦.

Azimuth Average HRTF DNN(37) HRTF DNN(17) HRTF CNN–DNN HRTF

−135◦ −20.98 −18.94 −20.31 −20.26
−80◦ −19.39 −16.78 −18.29 −18.60
−45◦ −17.32 −16.25 −16.53 −16.35
Avg. −19.23 −17.32 −18.38 −18.40
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Figure 7. Comparison of the log spectral distances (LSDs) of the individual subject according to
different HRTF estimation methods: (a) −135◦, (b) −80◦, and (c) −45◦.

Table 3. Comparison of the average log spectral distances (LSDs) for different HRTF estimation
methods at −135◦, −80◦, and −45◦.

Azimuth Average HRTF DNN(37) HRTF DNN(17) HRTF CNN–DNN HRTF

−135◦ 11.29 4.12 6.62 5.70
−80◦ 4.12 3.12 4.05 3.11
−45◦ 7.41 3.82 5.30 4.61
Avg. 7.61 3.69 5.32 4.47

4.2. Subjective Evaluation

In this subsection, we carried out a subjective evaluation of the localization experiment in which
five listeners (three males and two females) without any auditory disease participated. This experiment
was performed using Microsoft Surface Pro 4, which was manufactured by Pegatron Corporation,
Taipei, Taiwan, with Sennheiser HD 650 headphones.

Table 4 shows the anthropometric measurements of each listener, where male and female listeners
are denoted as M1–3 and F1–2, respectively, and x1–x17 are head and torso measurements, as described
in Table 1. Both these anthropometric measurements and each listener’s ear images were used as input
features for the proposed method. Then, each personalized HRTF was estimated in an environment
for each specific listener by the proposed method and the DNN-based method using only head and
torso measurements. Next, the estimated HRTFs and average HRTF at a given environment were
applied to a speech signal of 10-s duration at a sampling rate of 44.1 kHz. In other words, each HRTF
was convoluted with the speech signal. Here, the environments selected in this paper were at eight
different azimuths (0◦, ±45◦, ±80◦, ±135◦, and 180◦) with an elevation of 0◦. For the evaluation,
each participant listened to a pair of speech signals that were convolved with average HRTF, DNN(17)
HRTF, or CNN–DNN HRTF, and then he/she judged the azimuth at which each speech signal was
assumed to be directed.
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Table 4. Measured anthropometric data of five listeners.

Listener
Variable (cm)

x1 x2 x3 x4 x5 x6 x7 x8 x9

M1 17.8 23.7 18.8 1.8 4.0 11.4 9.2 10.9 33.1
M2 16.8 25.1 19.6 2.5 3.4 11.7 7.4 11.7 42.2
M3 17.6 23.4 18.2 2.8 4.7 12.4 8.4 13.4 34.6
F1 13.4 21.5 17.3 2.3 2.6 8.4 4.5 8.7 26.3
F2 14.6 21.3 17.6 2.2 2.7 9.7 5.2 9.2 37.3

Listener
Variable (cm)

x10 x11 x12 x13 x14 x15 x16 x17

M1 15.3 21.7 45.3 3.4 183.5 96.0 60.0 113.6
M2 12.6 22.7 52.1 1.4 184.2 90.0 62.4 130.4
M3 13.8 25.9 49.8 1.3 175.1 89.5 61.0 123.3
F1 9.6 78.9 38.7 2.0 161.0 80.3 58.0 90.4
F2 7.8 28.0 44.7 2.2 160.2 77.2 55.5 106.0

Figure 8 illustrates the sound localization performance to show the azimuths judged by the
participants versus the target azimuth when average HRTF, DNN(17) HRTF, and CNN–DNN HRTF
were used. In the figure, the main diagonal solid line indicates correct judgment, and the upper and
lower off-diagonal solid lines indicate±30◦ margin of error. On the one hand, if a sound is judged on or
near the dashed lines, this corresponds to front/back confusion. For example, when the target azimuth
was set to 50◦, the sound should be located in the front-right direction. However, the sound seemed
to be heard in the back-right direction if the azimuth was judged at 130◦. In addition, two dotted
lines parallel to the dashed lines means that the margins of errors are ±30◦. As shown in the figure,
judged azimuths when using the proposed method were clustered better than when using average
HRTFs or DNN(17) HRTFs.

Figure 8. Results of the localization test according to the different HRTF estimation methods: (a) average
HRTF, (b) 17 head and torso measurements for HRTF (DNN(17) HRTF), and (c) CNN–DNN HRTF
(proposed method).

Table 5 compares the accuracies within specific margins, such as ±15◦ and ±30◦, and the
front/back confusion rate of the localization experiment between the average HRTF and the proposed
method. As shown in the table, the proposed CNN–DNN-based HRTF estimation method achieved
higher accuracies of 10% and 12.5% than the average HRTF method for the ±15◦ and ±30◦ margins,
respectively. In addition, the accuracy of the proposed method was improved by 10% and 2.5%,
compared to the average HRTF method and the DNN(17)-based method, respectively. Moreover,
the front/back confusion rate of the proposed method was reduced by 12.5% and 2.5%, compared to
the average HRTF method and the DNN(17)-based method, respectively.
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Table 5. Comparison of average accuracies within specific margins (15◦ and 30◦) and front/back
confusion rate for different HRTF estimation methods.

Average HRTF DNN(17) HRTF CNN–DNN HRTF

Accuracy within ±15◦ (%) 70.0 70.0 80.0
Accuracy within ±30◦ (%) 72.5 82.5 85.0

Front/back confusion rate (%) 25.0 15.0 12.5

4.3. Performance Comparison with Data Augmentation

The number of ear images in the CIPIC database seems so small that the deep learning model
could be overfitted to the training data [30]. Data augmentation can be an alternative to prevent
this problem. In this paper, data augmentation techniques, such as zero-phase component analysis
(ZCA) [35] and/or image shifting [36], were applied to 30 ear images; thus, the total numbers of
training data were increased to 60 after applying ZCA and 90 after applying ZCA combined with
image shifting, respectively.

Tables 6 and 7 compare the RMSEs and LSDs for individual subjects according to the proposed
HRTF estimation method with and without data augmentation, respectively, as measured at −135◦,
−80◦, and −45◦. As shown in Table 6, the average RMSE went a little higher as the amount of
augmentation data increased. In other words, the average RMSE of ZCA + Image Shift-CNN–DNN
HRTF was increased by 0.45 dB compared to that of CNN–DNN HRTF. Meanwhile, the average LSD
was decreased as the amount of data augmentation increased. Table 7 showed that the ZCA+Image
Shift-CNN–DNN HRTF could reduce the average LSD by 0.29 dB compared to CNN–DNN HRTF.

Table 6. Comparison of average RMSEs of the proposed HRTF estimation method with/without data
augmentation at −135◦, −80◦, and −45◦.

Azimuth CNN–DNN HRTF CNN–DNN HRTF with ZCA CNN–DNN HRTF with ZCA + Image Shift

−135◦ −20.26 −20.20 −19.44
−80◦ −18.60 −18.60 −18.49
−45◦ −16.35 −16.16 −15.93
Avg. −18.40 −18.32 −17.95

Table 7. Comparison of average LSDs for the proposed HRTF estimation method with/without data
augmentation at −135◦, −80◦, and −45◦.

Azimuth CNN–DNN HRTF CNN–DNN HRTF with ZCA CNN–DNN HRTF with ZCA + Image Shift

−135◦ 5.70 5.43 5.27
−80◦ 3.11 3.30 3.26
−45◦ 4.61 4.27 4.01
Avg. 4.47 4.33 4.18

5. Conclusions

In this paper, a personalized HRTF estimation method has been proposed on the basis of deep
neural networks using anthropometric measurements and ear images. In particular, while a conventional
DNN-based method aimed to estimate HRTFs using the anthropometric data including head, torso,
and pinna measurements, the proposed method replaced pinna measurements with ear images due
to the difficulty of obtaining pinna measurements for live human ears. Thus, the neural network in
the proposed method was composed of three sub-networks. The first one was a DNN to represent
the head and torso measurements and the second one was a CNN for extracting pinna measurements
from edge-detected ear images instead of actually measured pinna data. The two sub-networks were
then merged into another DNN to estimate a personalized HRTF.

The performance of the proposed personalized HRTF estimation method was evaluated in terms
of both objective and subjective tests. For the objective tests, the RMSEs and LSDs between the reference
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and estimated HRTFs were measured. For the subjective test, a sound localization experiment was
performed, and the distance perceived by listeners after applying the estimated HRTF to a sound
source was measured. After that, the performance of the proposed method was compared with
those of HRTF estimation methods using average HRTF, the estimated HRTF by a DNN trained with
anthropometric measurements, and the estimated HRTF by a DNN trained with only head and torso
measurements. Consequently, it was shown from the objective evaluation that the proposed method
decreased the RMSE and LSD by 0.02 and 0.85 dB, respectively, compared to the DNN-based method
using anthropometric data without pinna measurements. In addition, it was shown form the subjective
evaluation that the proposed method provided higher localization accuracy of 6% than the DNN-based
method. In addition, the front/back confusion rate for the proposed method was reduced by 2.5%
compared to the DNN-based method. Next, data augmentation was performed to increase the training
data by applying zero-phase component analysis (ZCA) and image shifting. Thus, it was shown that
after data augmentation, the proposed method could increase the RMSE but reduce the LSD by 0.29 dB,
compared to only using ear images from the CIPIC HRTF database.

In future work, to improve the performance of the proposed CNN–DNN HRTF estimation method,
different model structures need to be studied, such as a residual network [37] or a dense network [38].
Moreover, the CIPIC HRTF database is too small to train deep learning models. Even though data
augmentation has been performed in this paper, further sophisticated investigation of the effect of data
augmentation on the performance of the proposed method, particularly the RMSE, will be studied.
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