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Abstract: Probabilistic constrained simulation optimization problems (PCSOP) are concerned with
allocating limited resources to achieve a stochastic objective function subject to a probabilistic
inequality constraint. The PCSOP are NP-hard problems whose goal is to find optimal solutions
using simulation in a large search space. An efficient “Ordinal Optimization (OO)” theory has
been utilized to solve NP-hard problems for determining an outstanding solution in a reasonable
amount of time. OO theory to solve NP-hard problems is an effective method, but the probabilistic
inequality constraint will greatly decrease the effectiveness and efficiency. In this work, a method
that embeds ordinal optimization (OO) into tree–seed algorithm (TSA) (OOTSA) is firstly proposed
for solving the PCSOP. The OOTSA method consists of three modules: surrogate model, exploration
and exploitation. Then, the proposed OOTSA approach is applied to minimize the expected lead
time of semi-finished products in a pull-type production system, which is formulated as a PCSOP
that comprises a well-defined search space. Test results obtained by the OOTSA are compared with
the results obtained by three heuristic approaches. Simulation results demonstrate that the OOTSA
method yields an outstanding solution of much higher computing efficiency with much higher
quality than three heuristic approaches.

Keywords: probabilistic constrained simulation; ordinal optimization; improved tree–seed algorithm;
regularized minimal-energy tensor-product splines; incremental optimal computing budget
allocation; pull-type production system

1. Introduction

The probabilistic constrained simulation optimization problems (PCSOP) are concerned with
allocating limited resources to achieve a stochastic objective function subject to a probabilistic
inequality constraint. The performance of the PCSOP is evaluated by simulations, which may be
a complex evaluation in a real-world physical system or a simple computer based mathematical
model [1]. Such problems occur in almost all fields of automatic production, such as the network
type flow line production system, buffer resource allocation, periodic review inventory system,
as well as many industrial managements, including facility-sizing of factory and strategic location
of semi-finished products in a pull-type production system. The goal of PCSOP is to search for the
optimal design variables to reach desired performance subject to a probabilistic inequality constraint.
The PCSOP belong to the class of NP-hard problems [2] for which most likely no polynomial time
optimization method exists. In practice, the large search space makes the considered problem more
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difficult to determine an optimal design variable using classical optimization techniques in a short
computational time.

There are many methods proved to be interesting in solving the NP-hard problems, such as the
evolutionary algorithms (EA) [3], gradient search methods [4], heuristic methods [5], and swarm
intelligence (SI) [6]. EA [3] are stochastic optimization approaches based on the biological evolution
metaphor, which utilize the “survival of the fittest” to produce successively superior approximations to
a design variable. Three main types of EA have been developed: evolution strategies (ES), evolutionary
programming (EP), and genetic algorithms (GA). However, EA are usually computationally intensive
and do not offer an absolute guarantee of the global optimality. The gradient search methods [4],
such as conjugated gradient and steepest descent method, tends to converge very slowly and can easily
get trapped in local minimum. The heuristic methods [5], such as Tabu search (TS) and simulated
annealing (SA), have the capability of finding global optimal solution. However, the quality of optimal
solution is highly dependent on fine-tuning of parameters.

SI [6] is an emerging field of biologically-inspired artificial intelligence based on the behavioral
models of social insects such as colonies of ants, bees, schools of fish and flocks of birds. Some of
the recent established SI methods include elephant herding optimization (EHO), bacteria foraging
optimization (BFO), social spider optimization (SSO), crow search algorithm (CSA), bat algorithm (BA)
and tree–seed algorithm (TSA) [7]. Most SI methods require only objective values and accomplish a
proper balance between exploration and exploitation. However, there are still a number of significant
barriers and technical hurdles to overcome [8].

The following three issues make the PCSOP difficult to solve: (i) the search space is large;
(ii) evaluating performance is time-consuming; and (iii) single probabilistic inequality constraint
must be satisfied. The purpose of this paper is to resolve the PCSOP efficiently and effectively.
To overcome the three issues simultaneously, an ordinal optimization (OO) theory [9] attempts to
quickly determine a good enough solution. OO is used to supplement available optimization methods,
but is not itself an optimization approach. OO theory considers order rather than value to reduce
the computational complexity of optimization process, and guarantees a high probability that the
obtained solution is good enough. In the OO theory, the first step is to create a selected subset by
rapidly evaluating all solutions using a rough evaluation. A rough evaluation estimates performance
with high tolerance of modeling noise. OO theory indicates that the order of solutions is nearly kept
even though they are assessed by a rough evaluation [9]. Next, an outstanding subset is constructed
from the selected subset. Finally, each solution in the outstanding subset is assessed using a precise
evaluation. A precise evaluation is one that can yield exact estimates of performance. The one with
the best performance in the outstanding subset is the good enough solution. The OO theory has
been successfully used in various applications, such as the flow line system [10], assemble-to-order
systems [11], and network-type production line [12].

To reduce the computing time of PCSOP, a method that embeds ordinal optimization (OO) into
tree–seed algorithm (TSA) [13–16] (OOTSA) is proposed to determine a near-optimal solution in a
short computational time. The OOTSA method contains three modules: surrogate model, exploration
and exploitation. Firstly, the regularized minimal-energy tensor-product splines (RMTS) [17] is
utilized as a surrogate model to approximately evaluate a solution. Secondly, an improved tree–seed
algorithm (ITSA) is proceeded to choose N outstanding solutions from the large search space. Finally,
an incremental optimal computing budget allocation (IOCBA) technique is employed to determine
the optimal solution from the N outstanding solutions. These three modules drastically diminish the
computing effort of PCSOP.

To test the performance of the proposed OOTSA approach, it is employed to a pull-type production
system. The pull-type production system is formulated as a PCSOP that is comprised a huge search
space. The goal of a pull-type production system is to determine the optimal work-in-process inventory
for minimizing the expected lead time while satisfying a tolerable service level. The first contribution of
this paper is to propose an OOTSA approach for a general PCSOP that is lack of structural information
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to determine a near-optimal solution in a short computational time. The second contribution is to
employ the proposed approach to minimize the expected lead time of a pull-type production system
such that the work-in-process inventory is optimized.

This paper contains five sections. After this Introduction, Section 2 explains the proposed OOTSA
to search for an outstanding solution of a general PCSOP. Section 3 formulates the pull-type production
system as a PCSOP and discusses the application of the proposed OOTSA for optimization of this
PCSOP. Finally, Sections 4 and 5 are the results of this research and the conclusion, respectively.

2. Embedded Ordinal Optimization into Tree–Seed Algorithm

2.1. Mathematical Formulation

The mathematical formulation of a general PCSOP is described as follows [1].

min E[ f (x)] (1)

subject to P[g(x) ≥ 0] ≥ θ (2)

V ≤ x ≤ U (3)

where x = [x1, . . . , xn]
T is an n-dimensional decision vector, V = [V1, . . . , Vn]

T denotes the vector of
lower bound, U = [U1, . . . , Un]

T represents the vector of upper bound, f (x) is the objective function,
E[ f (x)] represents the expected objective value, P[g(x) ≥ 0] denotes the probability of the satisfaction
of the constraint g(x) ≥ 0, and θ is a fixed probability level lying in a range [0,1].

Multiple simulation runs are carried out to obtain an accurate estimate of the expected objective
value and probability. In practice, it is impossible to run simulations infinitely long. An alternative way
of approximating the expected objective value and probability is to use the sample mean as follows.

f (x) =
1
L

L

∑
j=1

f j(x) (4)

p(x) =
1
L

L

∑
j=1

yj (5)

where L represents the amount of simulation runs, f j(x) denotes the objective value of the jth
simulation run, yj = 0 indicates that the constraint g(x) ≥ 0 is not satisfied, and yj = 1 denotes
that a satisfaction of the constraint. The sample mean of f (x) achieves a better approximation of
E[ f (x)] when L increases.

Because the probabilistic constraint is a soft constraint, a quadratic penalty function [18] is used
to convert the constrained optimization problem into an unconstrained optimization problem.

min F(x) = λ× f (x) + (1− λ)× PF(x) (6)

where λ ∈ (0, 1) is a penalty weight, F(x) is a weighted objective value, and PF(x) indicates a quadratic
penalty function as follows.

PF(x) =

{
0, i f p(x) ≥ θ,

104 × (θ − p(x))2, else.
(7)

There is a sharp jump in the penalty function to guarantee that the probability does not exceed the
fixed probability level. Let Ls denote the large enough of simulation runs, and the precise evaluation
of Equation (6) is defined by using L = Ls. For simplicity, we define Fs(x) as the objective value of
Equation (6) obtained by precise evaluation for x.
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As pointed out by the OO theory [9], order of a solution is probably preserved even evaluating by
a surrogate model. To select N outstanding solutions in an exceptionally short period of time, we need
to establish a surrogate model which can evaluate a solution very fast and utilize an optimization
technique assisted by the surrogate model. The RMTS [17] is adopted as a surrogate model, and the
ITSA is the optimization technique.

2.2. RMTS Surrogate Model

Surrogate models have been used in wide fields and applications, including time series prediction,
system control, classification, curve fitting and function approximation [19]. Surrogate models are
used to approximate a function according to training samples and can be used to predict the value
of new sampling points [20]. Surrogate models can be classified as regression or interpolation [21].
Interpolation models match the function value at each training sample, while regression models do not.
Regression techniques smoothly approximate noisy data, such as the artificial neural networks (ANN),
extreme learning machine (ELM), multivariate adaptive regression splines (MARS), polynomials,
and support vector regression (SVR). Interpolation techniques try to accurately suit non-noisy data,
such as the kriging, radial basis functions (RBF), local polynomial interpolation (LPI), in-verse distance
weighting (IDW), and RMTS. Among them, RMTS is not easily influenced by training failure.

In this research, a surrogate model based on RMTS is developed to evaluate a solution very
fast [17]. The prediction output of RMTS is expressed as a linear combination of basis functions
with pre-computed coefficients obtained from training. The key point of RMTS is that the number of
basis functions is not required to be closely related to the number of training samples. The energy
minimization and regularization are used in RMTS to increase accuracy with unstructured and
small datasets. When large datasets are available, the accuracy of RMTS is higher than other
interpolation methods.

The structure of an RMTS is shown in Figure 1. The training data patterns for RMTS are (xi, Fs(xi)),
i = 1, . . . , M, where xi and Fs(xi) are the decision vector and the corresponding objective value
evaluated by precise evaluation, respectively. The goal of RMTS is to determine a function FRMTS(x)
to predict approximately the desired outputs Fs(x). The general model of RMTS is depicted as follows.

FRMTS(x) =
B

∑
i=1

ωibi(x) (8)

where x denotes the decision vector, FRMTS(x) is the prediction output, B is the number of basis
functions, ωi denotes the coefficient of the multivariate spline, and bi(x) is the ith basis function.
For adjacent elements, the values and derivatives are continuous. In matrix notation, the general
model is

FRMTS(x) = B(x)w (9)

where w = [ω1, . . . , ωB]
T is the vector of spline coefficients, and B(x) = [b1(x), . . . , bB(x)] is the vector

mapping the spline coefficients to the prediction output. RMTS obtains the coefficients of the splines,
w, by solving an energy minimization problem with the constraint that the splines must pass through
the training data patterns. The objective function of the energy minimization problem consists of the
following three terms: the first term containing the second derivatives of the splines, the second term
for regularization, and the last term representing the approximation error for the training data.

min
w

1
2

wTHw +
1
2

σwTw +
1

2ρ

M

∑
i=1

(B(xi)w− Fs(xi))
2 (10)

where xi denotes the decision vector for the ith training data pattern, Fs(xi) represents the output
value of xi, H is the matrix containing the second derivatives, B(xi) is the vector mapping the spline
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coefficients to the ith training output, σ is the weight of the term penalizing the norm of the spline
coefficients, and ρ is the weight on gradient training data.
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Figure 1. Structure of a regularized minimal-energy tensor-product splines. 

Treating the decision vector x  as an input, the output of RMTS ( )RMTSF x  is desired to 
approximately estimate ( )sF x . After training the RMTS off-line, the value of ( )RMTSF x  for any x  can 
be obtained by performing simple arithmetic operations.  

2.3. Improved Tree–Seed Algorithm 

Next, we can efficiently select N  outstanding solutions from search space using optimization 
approaches assisted by the RMTS surrogate model. Because the TSA iteratively aims at improving 
the candidate solutions, it would be best suited for our needs. The advantages of TSA include ease of 
implementation, only a few parameters need to be adjusted, tactical interplay between searching 
diversification and intensification, quick convergence and high efficiency [14]. TSA is inspired from 
the relation between trees and seeds, which simulates the growth cycles of trees and seeds on a land 
[16]. The trees and their seeds correspond to the possible solution while the land indicates the search 
space of the optimization problems. At the beginning of the iteration, the trees are sowed to the land. 
Then, a pre-defined number of seeds for each tree are generated during the search process. If the 
performance of the best seed is better than its tree, the best seed is added to the stand and its tree is 
removed from the stand. This search process is performed until a required number of iteration is met.  

The following is a description of the developed ITSA. Firstly, an initial tree population is 
generated. Each tree is randomly assigned an initial position. Secondly, a new seed is spread from a 
tree, either the best tree location of another tree location is considered with its own location. The first 
scheme uses the best tree to provide a speed convergence, and the second one uses the randomly 
selected tree to explore spacious regions on the search space. The key point is which tree location will 
be chosen to generate a new seed location. This selection depend on the search tendency (ST), which 
varies within a range of 0–1. The number of seeds generated by a tree can be more than one, which 
depends on the seed produced rate (SPR). More seeds improve the global search capability but 
require more computing time. This iterative process is performed until the pre-defined number of 
iterations has been reached. 

The ITSA has two control factors: ST and SPR. The intensification and diversification of the ITSA 
are mainly controlled by the ST. A large ST causes a speed convergence and powerful local search, 
while a small ST provides a powerful global search but slow convergence. When the ST is decreased, 
the ability of local search decreases and the ITSA trends to perform the global search. When the ST is 
increased, the ITSA tends to conduct the local search around a local region. Similarly, a lower SPR 
tends to local search, while a higher SPR leads to global search. 

The algorithmic notations used in the ITSA are described as follows. Ψ  denotes the size of tree 
population; 

maxk  denotes the pre-defined number of iterations; 
min max[ , ]kST ST ST∈  is the ST at 

iteration k, where 
maxST  and 

minST  represent the maximum and minimum of ST, respectively; and 

min max[ , ]kγ γ γ∈  is the SPR at iteration k, where 
maxγ  and 

minγ  denote the maximum and minimum of 

Figure 1. Structure of a regularized minimal-energy tensor-product splines.

Treating the decision vector x as an input, the output of RMTS FRMTS(x) is desired to
approximately estimate Fs(x). After training the RMTS off-line, the value of FRMTS(x) for any x
can be obtained by performing simple arithmetic operations.

2.3. Improved Tree–Seed Algorithm

Next, we can efficiently select N outstanding solutions from search space using optimization
approaches assisted by the RMTS surrogate model. Because the TSA iteratively aims at improving
the candidate solutions, it would be best suited for our needs. The advantages of TSA include ease
of implementation, only a few parameters need to be adjusted, tactical interplay between searching
diversification and intensification, quick convergence and high efficiency [14]. TSA is inspired from the
relation between trees and seeds, which simulates the growth cycles of trees and seeds on a land [16].
The trees and their seeds correspond to the possible solution while the land indicates the search space
of the optimization problems. At the beginning of the iteration, the trees are sowed to the land. Then,
a pre-defined number of seeds for each tree are generated during the search process. If the performance
of the best seed is better than its tree, the best seed is added to the stand and its tree is removed from
the stand. This search process is performed until a required number of iteration is met.

The following is a description of the developed ITSA. Firstly, an initial tree population is generated.
Each tree is randomly assigned an initial position. Secondly, a new seed is spread from a tree, either
the best tree location of another tree location is considered with its own location. The first scheme
uses the best tree to provide a speed convergence, and the second one uses the randomly selected tree
to explore spacious regions on the search space. The key point is which tree location will be chosen
to generate a new seed location. This selection depend on the search tendency (ST), which varies
within a range of 0–1. The number of seeds generated by a tree can be more than one, which depends
on the seed produced rate (SPR). More seeds improve the global search capability but require more
computing time. This iterative process is performed until the pre-defined number of iterations has
been reached.

The ITSA has two control factors: ST and SPR. The intensification and diversification of the ITSA
are mainly controlled by the ST. A large ST causes a speed convergence and powerful local search,
while a small ST provides a powerful global search but slow convergence. When the ST is decreased,
the ability of local search decreases and the ITSA trends to perform the global search. When the ST is
increased, the ITSA tends to conduct the local search around a local region. Similarly, a lower SPR
tends to local search, while a higher SPR leads to global search.

The algorithmic notations used in the ITSA are described as follows. Ψ denotes the size of
tree population; kmax denotes the pre-defined number of iterations; STk ∈ [STmin, STmax] is the ST
at iteration k, where STmax and STmin represent the maximum and minimum of ST, respectively;
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and γk ∈ [γmin, γmax] is the SPR at iteration k, where γmax and γmin denote the maximum and
minimum of SPR, respectively. The position of the ith tree and the jth seed at iteration k in an
n-dimensional space is represented by xk

i = [xk
i,1, . . . , xk

i,n]
T

and sk
j = [sk

j,1, . . . , sk
j,n]

T
, respectively.

According to the analysis mentioned above, the ITSA can be summarized as follows.

Algorithm 1: The ITSA

Step 1: Define parameters
Define the values of Ψ, kmax, STmin, STmax, γmin, γmax, and set ST0 = STmin, γ0 = γmax, k = 0, where k
denotes the iteration index.
Step 2: Initialization
(a) Initialize the first population of Ψ trees with positions x0

i as follows.

x0
i,j = Vj + rand[0, 1]× (Uj −Vj), i = 1, . . . , Ψ, j = 1, . . . , n. (11)

where rand[0, 1] is a random number in the interval [0,1], Uj is the upper bound, and Vj is the lower bound.
(b) Evaluate the approximate fitness FRMTS(x0

i ) of each tree assisted by the RMTS, i = 1, . . . , Ψ.
(c) Rank these Ψ trees based on their fitness from lowest to highest, then determine the best-so-far tree

x∗ = [x∗1 , . . . , x∗n]
T.

Step 3: Generate the number of seeds for each tree

`k
i =

⌊
Ψ×

(
γmin + (γk − γmin)× rand[0, 1]

)⌋
+ 1, i = 1, . . . , Ψ. (12)

where b•c indicates the rounding function, which rounds • to the next lower integral value.
Step 4: Spreading seeds
(a) Generate positions of all seeds

For i = 1, . . . , Ψ, do
For l = 1, . . . , `k

i , do
For j = 1, . . . , n, do

If rand[0, 1]<STk

sk
l,j = xk

i,j + rand[−1, 1]×
(

x∗j − xk
r,j

)
(13)

Else
sk

l,j = xk
i,j + rand[−1, 1]×

(
xk

i,j − xk
r,j

)
(14)

where x∗j denotes the jth position of best-so-far tree, rand[−1, 1] is a random number in the interval [−1,1],

and i 6= r. If sk
l,j < Vj, set sk

l,j = Vj, and if sk
l,j > Uj, set sk

l,j = Uj.

(b) Evaluate the approximate fitness FRMTS(sk
l ) for each seed produced from the ith tree assisted by the RMTS,

l = 1, . . . , `k
i .

(c) Rank these `k
i seeds based on their fitness from lowest to highest, then select the best seed hk

i . Apply the
greedy choice among hk

i and xk
i . If FRMTS(hk

i ) < FRMTS(xk
i ), then set xk+1

i = hk
i ; else, set xk+1

i = xk
i .

Step 5: Update control parameters

STk+1 = STmin + (STmax − STmin)× exp
(

1− kmax

k + 1

)
(15)

γk+1 = γmin + (γmax − γmin)× exp

(
ln
(

γmin
γmax

)2
× k + 1

kmax

)
(16)

Step 6: Update best-so-far tree
Apply the greedy choice among xk+1

i and x∗, i = 1, . . . , Ψ. If FRMTS(xk+1
i ) < FRMTS(x∗), then set x∗ = xk+1

i .
Step 7: Termination
If k ≥ kmax, stop; otherwise, set k = k + 1 and go to Step 3.

The ITSA uses the following two conditions to determine when to stop. The first one stops when
the best-so-far fitness does not change during the last given iterations, and the other stops when the
number of iterations reaches a required number of iterations. In this paper, the ITSA stops when the
number of iterations reaches kmax iterations. The final Ψ trees are ranked based on their objective
values after termination. Accordingly, the top N trees are selected to be the N outstanding solutions.

2.4. Incremental Optimal Computing Budget Allocation

Starting from the N outstanding solutions, we continue to search for the best solution by the
IOCBA technique. The IOCBA technique can incrementally decide the computing efforts for promising
solutions. The key criteria of the IOCBA is providing less computing effort on most mediocre
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solutions and more on few excellent solutions. Focusing on only few excellent solutions can decrease
computation time and reduce the variances of these excellent solutions.

By calculating the means and standard deviations of objective value resulted from the N
outstanding solutions, we can decide the additional simulation runs to spend more computing effort
for excellent solutions. Let Cb represent the available computing budget, and Li denote the amount
of simulation runs assigned to the ith solution. The initial amount of simulation runs is L0, and the
computing budget is increased by a pre-specified ∆ in every iteration. The purpose of the IOCBA is to
optimally allocate Cb to L1, L2, . . . , LN such that L1 + L2 + . . .+ LN = Cb; meanwhile, the probability of
obtaining the best solution is maximized. The available computing budget Cb is defined as Cb = N×Ls

s ,
where Ls = 104 is the amount of simulation runs utilized in precise evaluation and s indicates a
reduction factor of computing time which can be found by the OCBA theorem [22].

To decrease the computational complexity of the original OCBA, an IOCBA technique is presented
in this section. The original OCBA needs to carry out all simulation runs to obtain the means and
standard deviations of cumulative amount of simulation runs. The IOCBA requires only the means
and standard deviations of additional amount of simulation runs to obtain the means and standard
deviations of cumulative amount of simulation runs. The step-wise procedure for the IOCBA technique
is described in Algorithm 2.

Algorithm 2: The IOCBA

Step 1. Define the value of L0 and set l = 0, L0
1 = L0, . . . , L0

N = L0. Determine the value of Cb = N×Ls
s .

Step 2. If
N
∑

i=1
Ll

i ≥ Cb, terminate and select the best solution x∗ with minimum objective value; else, go to Step 3.

Step 3. Increase a pre-specified computing budget ∆ to
N
∑

i=1
Ll

i , and calculate the new number of simulation

runs by

Ll+1
j = (

N

∑
i=1

Ll
i + ∆)× αl

j/(α
l
b +

N

∑
i=1,i 6=b

αl
i) (17)

Ll+1
b =

αl
b

αl
j
× Ll+1

j (18)

Ll+1
i =

αl
i

αl
j
× Ll+1

j (19)

for all i 6= j 6= b, where αl
i

αl
j
=

(
δl

i×(Fl
b−Fl

j)

δl
j×(Fl

b−Fl
i)

)2

, αl
b = δl

b

√
N
∑

i=1,i 6=b
(

αl
i

δl
i
)

2
, Fl

i =
1
Ll

i

Ll
i

∑
h=1

Fh(xi),

δl
i =

√
1
Ll

i

Fl
i

∑
h=1

(
Fh(xi)− Fl

i

)2
, xi is the ith solution, Fh(xi) is the objective value of xi at the hth simulation run,

and b = arg min
i

Fl
i .

Step 4. Carry out additional number of simulation runs, i.e., max
[
0, Ll+1

i − Ll
i

]
, on the ith promising solution,

then compute the means F̂l+1
i and standard deviations δ̂l+1

i of those additional number of simulation runs by

F̂l+1
i =

1

(Ll+1
i − Ll

i)

Ll+1
i

∑
h=Ll

i+1

Fh(xi) (20)

δ̂l+1
i =

√√√√√ 1

(Ll+1
i − Ll

i)

Ll+1
i

∑
h=Ll

i+1

(
Fh(xi)− F̂l+1

i

)2
(21)

respectively.

Step 5. Compute the means Fl+1
i and standard deviations δl+1

i of cumulative amount of simulation runs for
the ith promising solution by

Fl+1
i =

1

Ll+1
i

(
Ll

i × Fl
i + (Ll+1

i − Ll
i)× F̂l+1

i

)
(22)

δl+1
i =

√
1

(Ll+1
i −1)

×
(

Ll
i

(
Fl

i

)2
+ (Ll

i − 1)
(

δl
i

)2
+ (Ll+1

i − Ll
i)
(

F̂l+1
i

)2
+ (Ll+1

i − Ll
i − 1)

(
δ̂l+1

i

)2
− Ll+1

i

(
F̂l+1

i

)2
)

(23)

respectively. Set l = l + 1 and go to Step 2.
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2.5. The Proposed OOTSA Approach

Figure 2 shows the flow chart of the proposed OOTSA approach. The proposed OOTSA approach
is presented as follows (Algorithm 3).Appl. Sci. 2018, 8, 2153 10 of 19 
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Algorithm 3: The OOTSA

Step 1: Define the values of M, Ψ, STmin, STmax, γmin, γmax, kmax, N, Ls, L0, and ∆.
Step 2: Randomly generate Mx’s and calculate Fs(x) for each x, then apply these M input–output pairs,

(x, Fs(x)), to train the RMTS.
Step 3: Randomly generate Ψ x’s as the initial tree population and employ Algorithm 1 to these trees assisted

by RMTS. After Algorithm 1 terminates, rank the Ψ x’s based on their approximate fitness FRMTS(x)
from smallest to largest and choose the prior N x’s to be the N outstanding solutions.

Step 4: Apply Algorithm 2 to the N outstanding solutions and determine the best x∗, and this one is the
near-optimal solution.
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3. Application to Pull-Type Production System

3.1. Pull-Type Production System

In some manufacturing environment, various products are made from the same raw material in
many stages of manufacturing processes. Some intermediate states of semi-finished products may
be shared by some product family members. A pull-type production system is a lean manufacturing
strategy used to reduce waste in the production process [23,24]. Since components are just replaced
once after they were entirely consumed in the manufacturing process, manufacturers will only supply
enough products to fulfill customer’s demands. Thus, all resources of the company are used to produce
components which can be sold immediately and obtain a benefit. A pull-type production system starts
with the order of customers, then it works backwards and adopts visual signals to facilitate operation in
each previous step of the production process. The product is pulled through the production sequence
based on the demands of consumer.

Pull-type production systems are designed to respond quickly to the demand change.
The downstream machines pull the production from the upstream ones based on the demands created
at their output buffers. Some kinds of message are sent to the upstream machines to indicate the
demand for a particular component. When production stages do not need a specified resource, locating
manufacturing equipment at essential stages and processing parts ahead of time can reduce the lead
time using a low work-in-process level. After each operation, the product becomes a specific state
that is closer to its final state. The closer the product is to its final shape, the shorter the lead time
needs to produce it to a finished product. Nevertheless, when the product becomes closer toward its
final shape, its flexibility to transform into a comprehensive final products is decreased. Suppose the
demand of final products is uncertain, a good compromise between the service levels and lead times
could be accomplished if inventories of semi-finished products were held in intermediate stages. If the
production system is operated in a pull-type environment, this consideration will obtain a better result.

The goal of pull-type production system is to find the optimum work-in-process inventory
for minimizing the average lead time as well as: (i) satisfying uncertain demands; (ii) maintaining
the inventory levels at desirable values; and (iii) keeping a tolerable service level [25]. However,
the considered problem is obviously more complex since the resources are shared at several stages of
production. When stages need more rare resources to be supplied with more levels of semi-finished
products, appropriately allocating the work-in-process inventories is required. Because each operation
must share specified resource with other activities, it is difficult for existing optimization approaches to
determine an optimal solution quickly. Furthermore, the probabilistic inequality constraint of pull-type
production system significantly influences the efficiency and effectiveness during the search processes.
In this section, we focus on the following two subjects: (i) convert the pull-type production system
to a PCSOP; and (ii) apply the OOTSA approach to determine the optimal in-process inventories for
minimizing the average lead time and maintaining an acceptable service level.

3.2. Mathematical Formulation

Consider a production system Q = (D, E) has the set of nodes D = {1, 2, . . . , n}. There are K different
final products and m machines MC1, MC2, . . . , MCm. Each arc represents the transformation from one
intermediate product to another and each node in D denotes a state of the product. Every transforming
process uses one of the machines. Orders of the K final products are arrived at random intervals,
and processing times of the m machines are also random with specified distributions. The time horizon
is defined as H. The available number of raw material is equal to the expected value of the total demand
for K final products.

Figure 3 shows an example of three product pull-type production system. There are two stages
and each process is performed by one machine of either MC1 or MC2. Orders for the products may
arrive in batches from any of the final nodes. If finished products are ready at final nodes, orders are
fulfilled immediately. If no product is ready, a set of orders is delivered to some supplying nodes
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according to the workloads on machines. The workload is defined as the time used to produce the
products which are waiting in the queue. A tally is kept on the work which is already appointed but
not yet finished. For example, if an order arrives to node 5, it can be either fulfilled by semi-finished
products at node 3 using MC1 through process “3-5” or by those at node 2 using MC2 through process
“2-5”. According to the workloads on these two machines, the production will be allocated to the
machine with light load. Ties can be broken arbitrarily.
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To reduce the average lead time, all intermediate products can be processed in advanced. However,
if there are too many raw materials being tied up in other products, some demands will not be satisfied.
Thus, the goal of production system is to minimize the expected lead time as well as keeping a
tolerable service level with high probability. Because the selections of machines, supplying nodes,
and demanding nodes are not unique, the following three assumptions are used to decide the priority:
(i) When a process “a-b” enters the queue of machine MCk, the machine is reserved. The machine MCk
cannot begin any new arrival process until process “a-b” is finished, even if it has to be idle until node
a becomes available. (ii) The processing time of any product in a queue is known. Thus, each machine
can determine the total workload. (iii) If a demand can be fulfilled by different supplying nodes on
different machines, the machine with the minimum workload is chosen.

The pull-type production system can be formulated as the following PCSOP.

min E[ f (x)] (24)

subject to P(g(x) ≥ b) ≥ 1− α (25)

V ≤ x ≤ U (26)

where x = [x1, . . . , xn]
T is the decision vector, xi is the levels of work-in-process inventory at node i

(i.e., the amounts of intermediate products to be processed ahead of time), V = [V1, . . . , Vn]
T denotes

the vector of lower bound, U = [U1, . . . , Un]
T is the upper bound vector, E[ f (x)] represents the

expected lead time of work-in-process inventories x, g denotes the service level, b is a pre-specified
acceptable service level, P(g(x) ≥ b) denotes the probability of the acceptable risk, and α denotes the
risk which violates the acceptable service level.

Based on the above terminologies, we can reformulate the PCSOP as follows.

min
1
L

L

∑
j=1

f j(x) (27)

subject to
1
L

L

∑
j=1

yj ≥ 1− α, (28)
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yj ∈ {0, 1}, j = 1, . . . , L. (29)

V ≤ x ≤ U. (30)

where L is the total amount of simulation runs and f j(x) denotes the objective value of the jth
simulation run. The inequality constraint in Equation (28) guarantees that the probability of satisfying
service level is large than tolerable risk. The constraint in Equation (29) indicates whether the service
levels satisfy (yj = 1) or fail to satisfy (yj = 0) the acceptable service level.

The constrained optimization problem in Equations (27)–(30) is a PCSOP that has computationally
expensive objective functions. The purpose of this PCSOP is to find an optimal solution, x∗, to minimize
the expected lead time while satisfying a tolerable service level with high probability. Because
the probabilistic constraint is a soft constraint, a quadratic penalty function is used to relax this
constraint. Therefore, the constrained optimization problem in Equations (27)–(30) is converted into an
unconstrained optimization problem.

min F(x) = λ× 1
L

L

∑
j=1

f j(x) + (1− λ)× PF(x) (31)

where λ ∈ (0, 1) denotes a penalty weight, F(x) is an objective value and PF(x) indicates a penalty
function, which is defined as follows.

PF(x) =


0, i f 1

L

L
∑

j=1
yj ≥ 1− α,

104 × (1− α− 1
L

L
∑

j=1
yj)

2

, else.
(32)

There is a sharp jump in the penalty function to maintain an acceptable service level. Similarly,
we define Fs(x) as the objective value of Equation (31) obtained by precise evaluation for x.

The input–output relationship in pull-type production system is shown in Figure 4, where x is a
decision vector, F(x) denotes the output objective value, and L is the amount of simulation runs.
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3.3. Employ the OOTSA Approach

This section presents the three modules of the OOTSA approach for solving the PCSOP in
pull-type production system.

3.3.1. Construct the Surrogate Model

The cubic Hermite spline is used as the basis function in the RMTS, which divides the domain
into tensor-product cubic elements. The following five steps construct the RMTS surrogate model to
approximately evaluate a solution: (i) Arbitrarily select M x’s from search space and estimated the
value Fs(x) by precise evaluation. (ii) Denote these M selected solutions and their objective values as
x(i) and Fs(x(i)), respectively. (iii) Select proper parameters of regularization coefficients and cubic
Hermite spline. (iv) Compute the discretized matrix H as a sparse matrix for the continuous energy
functional. (v) Compute the coefficient of the multivariate spline w.
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3.3.2. Employ the ITSA to choose N outstanding solutions

We are ready to select N outstanding solutions from search space by the ITSA. We began with
randomly generated Ψ trees as initial population. The position xi,j in the ith tree xi of population was
randomly generated using rand[Vi, Ui], where rand[Vi, Ui] is a random number in the interval Vi and
Ui. The evaluation of each tree was based on the RMTS surrogate model. After the ITSA evolved for
kmax iterations, the Ψ trees were ranked according to their objective values. Although the development
of ITSA is for a real-valued space, it is acceptable to round off the real optimum values to the next
lower integral value for an integer-valued space. Once the real optimum value is determined, it can be
rounded to the next lower integral value using the bracket function zi,j =

⌊
xi,j

⌋
, where xi,j ∈ < and

zi,j ∈ Z. Finally, the former N trees are selected to be the outstanding solutions needed in the IOCBA.

3.3.3. Search for the Excellent Solution

Starting from the N outstanding solutions, we continue to search for an excellent solution using
the IOCBA technique. To reduce computing effort, the value of N should not be too large. Nevertheless,
if N is too small, some superior solutions may be lost. To find the relationship between the computing
effort and solution quality, the IOCBA technique uses various values of N. An appropriate choice for
L0 is between 5 and 20, and a proper choice of ∆ is larger than 5% but smaller than 10% of N [22].

4. Simulation Results and Comparisons

4.1. Test Example and Results

Two test examples were provided by Anjie Guo [26]. The first one is a small problem with three
products and six nodes, as shown in Figure 3. The second one is a large problem with four products
and 12 nodes, as shown in Figure 5. In both problems, the interarrival times of orders follow a normal
distribution with a mean of 30 and a standard deviation of 5. The risk is α = 10%. The computational
experiment was coded in MATLAB 9.1 (R2016b) (MathWorks: Natick, MA, USA) and conducted using
an Intel Core i7, 3.2 GHz CPU, 4 GB RAM computer.
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In the small problem, each order has a batch of 10, and the probabilities for Products 1, 2, and 3
are 0.5, 0.35, and 0.15, respectively. The time horizon H is 600, so 200 sets of raw material are ordered.
The processing times for 1-2, 1-3, 2-4, 2-5, 3-5, and 3-6 are normally distributed with parameters (4,1),
(3,1), (5,2), (4,1), (4,1) and (3,1). In the large problem, each order has a batch of 10, and the probabilities
for Products 1, 2, 3, and 4 are 0.5, 0.25, 0.1, and 0.15, respectively. The time horizon H is 1200, so 400
sets of raw material are ordered. The processing times for 1-2, 1-3, 1-4, 2-5, 2-6, 2-7, 3-5, 3-6, 4-7, 4-8,
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5-9, 5-10, 6-9, 6-10, 6-11, 7-11, 7-12, 8-11 and 8-12 are normally distributed with parameters (4,1), (3,1),
(5,2), (4,1), (4,1), (5,2), (4,2), (4,1), (5,1), (4,2), (3,1), (5,2), (5,1), (4,1), (5,1), (3,1), (4,2), (5,2) and (4,1).

In the two problems, the RMTS was trained off-line by arbitrarily selecting M = 9604 x from the
search space, and their Fs(x) was estimate by precise evaluation. The sampling value M = 9604 was
calculated by the sample size formula using a confidence level of 95% and a confidence interval of
1% [27]. In the choice of parameters for modeling RMTS, σ = 0.5 and ρ = 10−14 were obtained by the
analytic approach.

For the small problem, the penalty weight λ was 0.9. The number of outstanding solutions was N
= 5. The parameters used in Algorithm 1 were obtained by a series of hand-tuning experiments as:
Ψ = 10, STmin = 0.1, STmax = 0.5, γmin = 0.1, γmax = 0.3, and kmax = 1000. Elementary experiments
demonstrated that ITSA with these parameters performed uniformly better over 30 independent
runs. The developed ITSA favorably explored the entire search space at the early iterations and likely
exploited excellent solutions at the later iterations. As the search evolved, the values of ST and γ

were dynamically changed to strengthen diversification at first and intensification toward the end.
Figure 6 presents the trends of ST and γ over iterations. The value of ST is exponentially increased.
A small value of ST favors diversity in the beginning, while a large value makes fine tuning ability near
the end. The parameter γ exponentially decreased to achieve the balance between exploration and
exploitation. At the beginning, most of the search utilized randomly selected pitches to accomplish
global exploration. As the searching process progressed, γ was exponentially decreased and the search
progressively revolved around the best tree in memory to realize local exploitation.
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The parameters of Algorithm 2 were L0 = 20, ∆ = 10 and Ls = 104. The reduction factor s
corresponded to N = 5 is 2.08 [22]. Thus, the available computing budget Cb was 24038. Table 1 shows
the excellent solution x∗, the corresponding E[ f (x)], P(g(x) ≥ b), F(x) and the consumed CPU times.

Table 1. The excellent solution x∗, the corresponding E[ f (x)], P(g(x) ≥ b), F(x) and the consumed
CPU times of small problem.

x∗ E[f(x)] P(g(x)≥b) F(x) CPU Times (s)

[19,28,28,42,42,41]T 10.72 0.9009 9.648 24.67

For the large problem, the penalty weight λ was also 0.9. The parameters in Algorithm 1 were:
Ψ = 50, STmin = 0.1, STmax = 0.5, γmin = 0.1, γmax = 0.3, and kmax = 2000. The parameters in
Algorithm 2 were: L0 = 20, ∆ = 10 and Ls = 104. To find the relationship between the computing
effort and solution quality, four values of N were simulated in Algorithm 2: N = 20, 15, 10 and 5.
The reduction factors corresponding to N = 20, 15, 10 and 5 were s = 6.07, 4.72, 3.4 and 2.08 [22],
respectively. Thus, the available computing budgets were Cb = 32949, 31780, 29412 and 24038 for
N = 20, 15, 10 and 5, respectively. Table 2 lists the excellent solution x∗, the corresponding E[ f (x)],
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P(g(x) ≥ b), F(x) and the CPU times. When the value of N increases, the corresponding E[ f (x)]
decreases but the CPU time increases. In principle, the value of N depends on the available computing
budget for various applications. From the results shown in Table 2, N = 20 is a suggested choice for the
large problem. The CPU times in all cases were less than 100 s, which is short enough for real-time
purposes. Besides, the inter-arrival times of orders and processing times of tasks can exhibit any
distribution, and the dimensions of the problem can be high.

Table 2. The excellent solution x∗, the corresponding E[ f (x)], P(g(x) ≥ b), F(x) and the consumed
CPU times for four values of N in large problem.

N x∗ E[f(x)] P(g(x)≥b) F(x) CPU Times (s)

20 [51,49,48,47,48,30,29,20,20,20,19,19]T 68.39 0.9002 61.56 96.35

15 [52,47,48,49,49,29,29,20,20,19,19,19]T 69.75 0.9013 62.77 93.41

10 [53,48,49,48,47,29,30,20,20,19,19,18]T 70.94 0.9024 63.84 90.94

5 [54,49,47,48,48,30,29,20,19,18,20,18]T 71.39 0.9019 64.25 89.17

There is no systematic procedure to obtain the preferable and robust values of the following
control parameters, [STmin, STmax], [γmin, γmax] and N. Although a proper parameter setting can help
to have a good performance, such setting is very problem dependent. After analyzing the influence on
convergence rate and solution accuracy, the preferable values of [STmin, STmax], [γmin, γmax] and N
were obtained by a series of hand-tuning experiments for the considered problem.

4.2. Comparisons of Large Problem

To illustrate the computing efficiency of the proposed method, three heuristic methods, PSO, GA
and ES, were used to solve the large problem with precise evaluation. The parameters used in the
PSO [28] were: both social factor and cognitive factor were 2; the maximum permissible velocity was
0.5; inertia factor was 1; and size of population was 50. The parameters used in the GA [29] were: size
of population was 50; crossover rate was 0.8; and mutation rate was 0.03. A real-value coding, single
point crossover and roulette wheel selection were employed in the GA. The parameters used in the
ES [30] were: size of population was 50, number of offspring was 100, and mutation strength constant
was 1/

√
12. It should be noted that the precise evaluation was used to estimate the objective value for

each method.
The large problem was simulated over 30 independent runs. Because the three heuristic methods

spend a long period obtaining the optimal solutions, we terminated their executions when they had
spent 100 min of CPU time. Since the case N = 20 takes the longest consumed CPU time in large
problem, progression result obtained using the OOTSA for case N = 20 was compared with three
heuristic methods. Figure 7 shows the solution qualities and computational efficiencies obtained
by four methods for 30 independent runs. The “∗” point with coordinates (1.61, 61.55) shown in
Figure 7 represents the pair of (consumed CPU time, average obtained objective value F(x)) obtained
using the OOTSA for case N = 20. The progressions of the average best-so-far objective value and the
corresponding consumed CPU times at the end of every iteration of three competing methods are also
shown in Figure 7. The progressions of these values associated with PSO, GA and ES are plotted as
solid lines with triangles “
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”, respectively. Table 3 demonstrates that the average best-so-far objective values that were
obtained by PSO, GA and ES were 10.74%, 18.47% and 16.21% larger than that obtained by OOTSA.
The average best-so-far objective values obtained by the three heuristic methods were worse than not
only that determined by the OOTSA with N = 20, but also those obtained using the three other values
of N. Test results reveal that the OOTSA approach frequently determines an excellent solution in a
limited amount of time and significantly outperforms three heuristic methods with precise evaluation.
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Table 3. Statistics of the average best-so-far objective values at termination over 30 independent runs.

Methods ABOV † ABOV−∗
∗§ ·100%

OOTSA, case N = 20 61.55 0

PSO with precise evaluation 68.16 10.74%

GA with precise evaluation 72.92 18.47%

ES with precise evaluation 71.53 16.21%
† ABOV, average best-so-far objective value F(x) at termination. § *, average best-so-far objective value obtained
by OOTSA.

Subsequently, the solution quality of the OOTSA is appreciable. To judge the global optimality
of the obtained solution, the rankings of the solution resulted from four methods were compared.
It is impossible to compare the rankings of all solutions in the entire search space. Accordingly,
a representative subset, Θ, was constructed to substitute the large search space. We arbitrarily selected
16,641 solutions from search space to construct the representative subset Θ and utilizes the precise
evaluation to estimate their objective values. The size |Θ| = 16,641 was calculated by the sample size
formula using a confidence level of 99% and a confidence interval of 1% [27].

A ranking rate analysis was performed to represent the ranking of a solution in the representative
subset Θ. The ranking rate is defined as rk/|Θ| × 100%, where rk is the ranking of a solution, which
can easily be determined from its objective value. Table 4 lists statistics of the objective value and
average ranking rate over 30 independent runs that were obtained by four approaches. The mean,
standard deviation and standard error of mean of the objective value obtained by the OOTSA for N =
20 over 30 independent runs were 61.55, 0.52 and 0.0949, respectively. The tiny standard error of mean
reveals that most of the objective value obtained by the OOTSA is around the mean or practically near
the best solution over 30 independent runs. Thus, the OOTSA approach can usually determine an
excellent solution, even if it is not a global optimal solution.
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Table 4. Statistics of the objective values and average ranking rate over 30 independent runs.

Approaches Minimum Maximum Mean Standard
Deviation

Standard Error of
the Mean

Average
Ranking Ate

OOTSA, case
N = 20 60.37 62.97 61.55 0.52 0.0949 0.002%

PSO with precise
evaluation 66.56 70.42 68.16 0.76 0.1388 0.562%

GA with precise
evaluation 70.38 75.81 72.92 1.03 0.1881 0.821%

ES with precise
evaluation 69.91 73.68 71.53 0.87 0.1588 0.658%

5. Conclusions

To resolve the computationally expensive PCSOP for an excellent solution in a reasonable amount
of time, a method that embeds OO into TSA is presented. The developed method has three modules:
surrogate model, exploration and exploitation. The RMTS surrogate model approximated a solution
quickly. The developed method integrated the ITSA for exploration with the IOCBA for exploitation.
The ITSA achieved the diversification at first and shifted toward intensification of good solutions
near the end. The IOCBA improved the efficiency of simulation to determine an excellent solution.
The proposed method was employed to a pull-type production system, which is formulated as
a PCSOP. The proposed method was compared with three heuristic methods, PSO, GA and ES,
with precise evaluation. The excellent solution obtained by the proposed method provided a high
solution quality with beneficial computing efficiency. Simulation results reveal that most objective
values obtained by the OOTSA are around the mean or practically near the best solution in several runs.
The proposed method can frequently determine an excellent solution even if it is not a global optimal
solution. Actually, the proposed OOTSA approach can be applied to solve most industrial optimization
problems, such as picking strategy in food supply chain [31], ergonomic assessment in infrequent
job rotations [32], production–distribution planning in supply chain systems [33], dynamic job shop
scheduling problems [34], and minimal cost of supply chain management [35]. Further research will
address extension of the proposed method to consider more complex probabilistic constrained model,
such as perishable inventory management problem and portfolio financial optimization problem.
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