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Abstract: Vertical straightness errors are the key factor that affects the flatness of the workpiece
during vertical machining. Traditionally, the individually measured and fitted vertical straightness
errors of the X and Y axes are used to compensate the Z axis and, thus, obtain the flatness of the
working table of the machine tool. However, it is difficult to measure and compensate the vertical
straightness error of the desired position on the working table, not to mention the centroid variation
effect of the working table on the measured data. In this study, an online dual-axis measurement
system with repeatability (3σ) of 2.46 µm is developed to simultaneously measure X-axis and Y-axis
straightness errors of the desired position of a working table. Furthermore, the measured data are
utilized to establish a flatness error model to reduce the vertical straightness error of the working
table such that the repeatability (3σ) of the measured flatness may be kept within a range of 0.65 µm.
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1. Introduction

Straightness, linear positioning and angular errors exist in every linear movement system [1], and
the straightness of a moving platform can be measured by using a displacement indicator according
to ISO230-1. The industry compensation method employed for straightness error measurements
is usually conducted by using a single-axis mechanism with a laser interferometer and an optical
mirror/prism that moves the other axis to the center of the measured axis, and then establishes the
compensation data for vertical straightness with the measured X- and Y-axis straightness errors.

Fan et al. [2] proposed a low-cost straightness measurement system using a laser source and a
quadrant detector. Lin et al. [3] integrated a dual-linear reflector, a Wollaston prism, and a corner
cube to establish a measurement system of repeatability (3σ) of 1 µm. In a similar way, Feng [4] and
Kuang [5] utilized a single-mode fiber-coupled laser module as the reference line for straightness
measurements. Hwang et al. [6] proposed a three-probe system for measuring the parallelism and
straightness of a pair of rails for ultra-precision guideways. Iqbal et al. [7] first described how randomly
arising illumination noises produce unpredicted variations in the position sensing detector (PSD)
output. You et al. [8] proposed a straightness error measurement approach based on common-path
compensation in order to eliminate the laser beam drift by utilizing an optical module with a PSD and
a quadrant detector (QD).

Huang et al. [9] developed a new measurement method based on a phase sensitive detection
technique, which consists of a single-mode fiber pigtailed laser diode, a collimator, a PSD, and a
corner cube. To eliminate the influence of background light, the laser diode was modulated by a
sinusoidal wave current and the PSD signal phase was demodulated by using the sensitive detection

Appl. Sci. 2018, 8, 2130; doi:10.3390/app8112130 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0899-4591
http://www.mdpi.com/2076-3417/8/11/2130?type=check_update&version=1
http://dx.doi.org/10.3390/app8112130
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 2130 2 of 16

technique. Borisov et al. [10] replaced the laser interferometer with a customized taut-wire module
and successfully developed a straightness measurement system with a standard deviation of 1.5 µm
over a measuring range of 1.5 m.

Liu et al. [11] also replaced the laser interferometer with a high-power fiber-coupled light emitting
diode (LED) as a light source for measuring straightness errors within a limited detecting range.
Feng et al. [12] developed a fast and accurate system for gantry type milling centers by real-time
modeling one serial of straightness errors using B-spline curves.

The X and Y axes of a machine tool need to be moved during the machining process; however, the
vertical straightness errors are compensated by using the individually measured vertical straightness
errors of X or Y axis. The single-axis mechanism utilized in above mentioned literature may result
in compensation error for vertical straightness due to the variation of center-of-gravity, especially
for machine tools of long-travelling distance or high-loading operation conditions. In this study,
a dual-axis measurement system based on a single-axis mechanism via the least squares method, is
developed. Its advantage is that the system can simultaneously measure and compensate both vertical
straightness and flatness errors for the moving working table of the machine tool.

2. Dual-Axis Measurement System

The proposed system is composed of two single-axis straightness measurement modules, which
mainly includes two laser sources (LBS-532-TD-5, Laserglow Tech., Toronto, ON, Canada), two
PSDs (DLS-10, OSI Optoelectronics, Hawthorne, CA, USA), two lab-developed signal processors,
one analog-to-digital card (USB-6210, National Instruments Co., Taipei, Taiwan), one angle sensor
(0737-0604-99, Fredericks Co., Huntingdon Valley, PA, USA), and one lab-developed beam-path
adjustment module.

The PSDs are dual-lateral detectors calibrated with a laser interferometer (Agilent 5529A, Agilent
Tech., Santa Clara, CA, USA) and used to obtain the correct relationship between voltage and beam
position projected on the PSD, as shown in Figures 1 and 2.
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Figure 2. Setup of PSD calibration using a laser interferometer.

2.1. System Configuration

Two proposed single-axis straightness measurement sub-systems (i.e., 1st and 2nd laser optical
modules) were installed, respectively, on the X- and Y-axis of the machine tool and tested in order to
clarify the vertical variation of XY plane of the working table, as shown in Figure 3.

First, PSD-1 was installed on the working table of the machine tool, Laser Source-1 (LS-1) and
PSD-2 were installed on the X-axis, and Laser Source-2 (LS-2) was installed aside as shown in Figure 4.
Secondly, beam paths were adjusted according to the distance between beam spots projected on PSD.
For the two straightness measurement systems had no mutual effect on each other, it was unnecessary
to pay attention to the adjustment order of beam paths.

With regard to the beam path adjustment principle, the distance between start and end points of
the projected beam spot on PSD had to be kept less than 10√2 µm in order to reduce the cosine error,
as shown in Figure 5. Since LS-1 was not set on a rigid stage, but on the saddle edge of the machine
tool, there will exist a pitch angle error when the working platform was moved close to LS-1 along the
X-axis direction, as shown in Figure 6.

In order to compensate the pitch angle error, an angle sensor mounted on the lab-developed
beam-path adjustment module was set aside of LS-1 for detecting the angle variation caused by the
movement of the working platform, see Figure 4. The measured data were analyzed by using the least
squares method in order to obtain more accurate vertical straightness of the working table.
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Figure 6. Pitch angle error of the laser source due to the motion of the working table: (a) moving away;
and (b) moving closer to the laser source.

2.2. Measurement Principle

As shown in Figure 7, the measurement path was inspired by previous study [13]. The straightness
variation of the moving working table is detected by PSDs. The laser beam of the 2nd module is utilized
not only as the reference line projected on PSD-2 for measuring the vertical straightness errors of the
Y-axis, as shown in Figure 3, but also as the connection for linking the errors measured by the 1st module.
The reference-point of the machine tool is at the left down corner, and the measurement was performed
in horizontal motion along the X-Y plane of the machine tool. The moving direction of PSD-1 along the
X-axis was from machine position X—100 mm to X—900 mm (measurement distance: 800 mm), and the
PSD-1 along Y-axis was from Y—100 mm to Y—500 mm (measurement distance: 400 mm).
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The vertical straightness error Zσ can be expressed as the sum of the measured X- and Y-axis
vertical straightness XσZ and YσZ :

Zσ = XσZ + YσZ (1)

The equation for the least-squared plane can be expressed as follows:

Z − AX − BY − C = 0 (2)

where A, B, and C are constants; X, Y, and Z are coordinates on the least-squared plane.
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The vertical straightness error of every sampling point Ei can be expressed as:

Ei = Zσi − AXi − BYi − C = Zσi − (AXi+ BYi+ C) = Zσi − Zi for i = 1 ∼ n (3)

And the squared error E is given by:

E =
n

∑
i=1

E2
i =

n

∑
i=1

[Zσi − (AXi + BYi + C)]2 i = 1 ∼ n (4)

The minimum value of the squared error can be obtained by taking partial derivatives of E with
respect to A, B and C, setting these derivatives to zero, and then solving for A, B, and C:

∂E
∂A

=
n

∑
i=1

2(Zσi − AXi − BYi − C)(−Xi) = 0

∂E
∂B

=
n

∑
i=1

2(Zσi − AXi − BYi − C)(−Yi) = 0

∂E
∂C

=
n

∑
i=1

2(Zσi − AXi − BYi − C)(−1) = 0

(5)

Equation (5) can be expressed in a matrix form: ∑ X2
i ∑ XiYi ∑ Xi

∑ XiYi ∑ Y2
i ∑ Yi

∑ Xi ∑ Yi ∑ 1


 A

B
C

 =

 ∑ XiZσi

∑ YiZσi

∑ Zσi

 (6)

The constants A, B and C are obtained from Equation (6). Thus, the Z-axis coordinate on the
least-squared plane Zi can be calculated by substituting A, B and C back into Equation (2), and then
the vertical straightness error of every sampling point Ei can be calculated by subtracting Zi from Zσi

of Equation (3). Finally, the plane flatness is given by using the extremum of Ei:

E =
(Ei)max − (Ei)min√

1 + A2 + B2
(7)

If the plane of interest is in close proximity to the horizontal plane, i.e.,
√

1 + A2 + B2 ≈ 1,
Equation (7) can be simplified to:

E = (Ei)max − (Ei)min (8)

3. Uncertainty Analysis

System errors are mainly originated from environmental variation, modules setup, signal jamming,
etc., and the uncertainty analysis represents the distribution range of measured data which include
systematic and/or random errors in most cases. Therefore, the uncertainty of measured data should
be analyzed as possible to recognize the key factors that may improve the measurement accuracy or to
remove potential factors causing inaccuracy of the proposed system.

3.1. Vibration Error of the Laser Source

In an ideal environment, Laser source 2 set on the ground is utilized as the measurement baseline,
which is supposed to be kept at a static state without any vibration. However, in an actual measurement
environment, there may exist an angle error due to the vibration of Laser Source-2 caused by nearby
machine operation, crane movement in the factory, staff walking, etc., as shown in Figure 8.
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The laser vibration error can be expressed as:

ESh = f (DLP, θSh) = DLP tan(θSh) (9)

where ESh is the laser vibration error, DLP is the distance between laser source and PSD, and θSh is the
angle error generated by environmental vibration. Table 1 shows the result of error analysis.

Table 1. Error analysis of laser-source vibration

DLP (mm) θSh (arc-sec) Esh (µm)

1000 1 4.8
1000 5 24.4
5000 1 24.2
5000 5 121.2

3.2. PSD Setup Error

During the PSD setup process, a pitch/yaw angle error could exist due to PSD fixture, machine
operation, misalignment, and so on, which may result in a cosine error in the X- or Y-axis, as shown in
Figure 9. The PSD setup error can be expressed as:

EPθ = f (LPor, θPs) = sec(θPs)LPor − LPor (10)

where EPθ is the PSD setup error, θPs is the angle error due to PSD setup, and LPor is the distance
between the beam spot and the center point of PSD detection area. Table 2 shows the PSD setup error.

Table 2. Error of PSD setup.

LPor (µm) θPs (Degree) EPθ (µm)

100 0.5 0.0038
100 1 0.0152
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3.3. Uncertainty of Dual-Axis Measuring

For the 1st straightness measurement module was set on the X-axis of the machine tool; therefore,
the vertical straightness error of X-axis (Exzi , i = 1~n) can be expressed as follows:

Exzi = P1zi + DLP1i
tan
(
θASi

)
+ ESh1i

+ EPθ1i
(11)

where P1zi is the measurement of PSD-1, DLP1 i is the distance between the beam spot and the PSD
center, θASi is the measurement of the angle sensor, ESh1i

is the vibration error of LS-1, and EPθ1i
is the

setup error of PSD-1.
The vertical straightness error of X-axis (Exzi , i = 1~n) can be expressed as follows:

Eyzi = P2zi + ESh2i
+ EPθ2i

(12)

where P2zi is the measurement of PSD-2, ESh2i
is the vibration error of LS-2, and EPθ2i

is the setup error
of PSD-2.

The vertical straightness error of machine tool WPzi , which can be observed during the moving
of working table, is the most critical factor of vertical straightness and flatness measurements, and is
given by:

WPzi = Exzi + Eyzi (13)

where Exzi is the vertical straightness error of X-axis, and Eyzi is the vertical straightness error of
Y-axis of the machine tool.

The compensation of each measured point of the machine tool, LsmWPzi , can be obtained by
substituting WPzi into the least-squares equation:

LsmWPzi = WPzi − AXi − BYi − C (14)
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The original surface flatness data of workpiece W pDi can be obtained by introducing the
measurement of triangulation laser TLi:

W pDi = TLi − LsmWPzi (15)

The workpiece flatness W pF can then calculated by the relation of the maximum and minimum
of LsmW pDi which is obtained by substituting W pDi into the least-squares equation:

LsmW pDi = W pDi − AXi − BYi − C (16)

W pF =
(LsmW pDi)max − (LsmW pDi)min√

1 + A2 + B2
(17)

Equation (13) represents the sum of vertical straightness errors of X-axis and Y-axis originated
from the motion of the working table during the machining process, which is the most critical to the
system uncertainty, and can be rewritten by combining Equations (9)–(12):

WPz = P1z + DLP1 tan(θAS) + DLP1 tan
(
θSh1

)
+ sec

(
θPs1

)
LPor1 − LPor1 + P2z

+DLP2 tan
(
θSh2

)
+ sec

(
θPs2

)
LPor2 − LPor2

(18)

Taking partial derivatives of WPz with respect to the uncertainty factors DLP1 , θPs1 , DLP2 , and θPs2 ,
we obtain:

4WPz = 4 f ≈ d f =
∂ f

∂DLP1

dDLP1 +
∂ f

∂θPs1

dθPs1 +
∂ f

∂DLP2

dDLP2 +
∂ f

∂θPs2

dθPs2 (19)

∂ f
∂DLP1

= tan(θAS) + tan
(
θSh1

)
(20)

∂ f
∂θPs1

= sec
(
θPs1

)
tan
(
θPs1

)
LPor1 (21)

∂ f
∂DLP2

= tan
(
θSh2

)
(22)

∂ f
∂θPs2

= sec
(
θPs2

)
tan
(
θPs2

)
LPor2 (23)

Finally, the system uncertainty, σ, is given by:

σ = ±

√(
∂ f

∂DLP1

dDLP1

)2
+

(
∂ f

∂θPs1

dθPs1

)2
+

(
∂ f

∂DLP2

dDLP2

)2
+

(
∂ f

∂θPs2

dθPs2

)2
(24)

The system uncertainty analysis result is listed in Table 3, and the most critical single factors
is dDLP1 which is originated from the manual setup error of the distance between LS-1 and PSD-1.
Meanwhile, although the individual contributions of θAS and θSh1 are less effective than dDLP1 , yet the

combination contribution, i.e., ∂ f
∂DLP1

, is equal to dDLP1 . This finding reveals that the pitch angle and

vibration of LS-1 have to be limited in order to minimize measurement uncertainties.
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Table 3. System uncertainties.

θAS
(arc-sec)

θSh1
(arc-sec)

LPor1
(µm)

θSh2
(arc-sec)

LPor2
(µm)

dDLP1
(µm)

dθPs1
(arc-sec)

dDLP2
(µm)

dθPs2
(arc-sec) σ (µm)

1 1 10 1 10 5000 360 500 360 0.05
1 1 10 1 10 50,000 3600 50,000 3600 0.60
10 10 100 10 100 5000 360 5000 360 0.60
5 5 50 5 50 10,000 720 10,000 720 0.60
1 10 100 10 100 50,000 3600 50,000 3600 4.37
10 1 100 10 100 50,000 3600 50,000 3600 4.37
10 10 10 10 100 50,000 3600 50,000 3600 5.70
10 10 100 1 100 50,000 3600 50,000 3600 5.45
10 10 100 10 10 50,000 3600 50,000 3600 5.70
10 10 100 10 100 5000 3600 50,000 3600 3.49
10 10 100 10 100 50,000 360 50,000 3600 5.70
10 10 100 10 100 50,000 3600 5000 3600 5.45
10 10 100 10 100 50,000 3600 50,000 360 5.70
10 10 100 10 100 50,000 3600 50,000 3600 5.96
20 10 100 10 100 50,000 3600 50,000 3600 8.05
10 20 100 10 100 50,000 3600 50,000 3600 8.05
20 20 100 10 100 50,000 3600 50,000 3600 10.30
10 10 100 20 100 50,000 3600 50,000 3600 7.29
10 10 200 10 100 50,000 3600 50,000 3600 6.68
10 10 100 10 200 50,000 3600 50,000 3600 6.68
10 10 100 10 100 100,000 3600 50,000 3600 10.30
10 10 100 10 100 50,000 7200 50,000 3600 6.68
10 10 100 10 100 50,000 3600 100,000 3600 7.29
10 10 100 10 100 50,000 3600 50,000 7200 6.68
20 20 100 10 100 100,000 3600 50,000 3600 19.70
10 10 200 10 100 50,000 7200 50,000 3600 9.01
10 10 100 20 100 50,000 3600 100,000 3600 11.12
10 10 100 10 200 50,000 3600 50,000 7200 9.01

4. System Verification

4.1. Verification of Vertical Straightness Measurements

The verification of the vertical straightness of the proposed system was conducted by using the
laser interferometer, which was also utilized for PSD calibration, as a reference to measure the vertical
straightness errors of the in-house-developed three-axis machine tool in an air-conditioned laboratory,
as shown in Figures 10 and 11.
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Figures 12 and 13 show the vertical straightness errors and repeatability of single-axis straightness
measurements, and Figures 14 and 15 show those of dual-axis straightness measurements. Table 4
compares vertical straightness verification results of the laser interferometer and the proposed system.
The repeatability (3σ) of the laser interferometer and the proposed system were 2.32 µm and 2.32 µm
for single–axis measurements, and 2.32 µm and 2.46 µm for dual-axis measurements.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 16 
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Table 4. Verification of vertical straightness measurements.

Result
Instrument

Laser Interferometer Proposed System

Single-axis
Measuring

Error (µm) 1.98 2.67 3.85 2.87 3.43 4.72
Repeatability (3σ, µm) 2.32 2.32

Dual-axis
Measuring

Error (µm) 4.43 3.04 2.62 4.34 2.66 2.55
Repeatability (3σ, µm) 2.32 2.46

4.2. Verification of the Flatness Measurement System

The flatness error verification of dual-axis measurement system was conducted by measuring the
flatness of a surface-scraped cast-iron workpiece (300 mm × 97 mm × 33.9 mm) using a three-axis
vertical milling machine tool (KSC-611, KENT, New Taipei city, Taiwan) equipped with a triangulation
laser (LK-H020, Keyence Co., Osaka, Japan) in an air-conditioned laboratory, as shown in Figure 4.

The triangulation laser was mounted on the spindle head (i.e., Z-axis) of the machine tool, which
was utilized for ball-screw profile detection and flatness measurement in previous study [13,14].
Up to the present, there is no commercial instrument capable of conducting dual-axis straightness
measurements on the proposed system, therefore, the feasibility of the proposed system is determined
according to the repeatability of the flatness measurement.

Figure 16 shows the vertical straightness error model and corresponding flatness of X-Y plane
on the moving working table detected by the proposed system, which could be regarded as the
surface topography to a certain extent. The measurement interval of both axes is 50 mm, and the
measurement ranges of the X- and Y-axes are 800 mm and 400 mm, respectively. The average flatness
and repeatability (3σ) of the proposed system was 12.43 µm and 0.65 µm, respectively.

Obviously, the vertical straightness errors measured along the X-axis with a varied Y-axis position
were totally different, and their distribution were generally uneven. These finding prove that vertical
straightness error cannot merely rely on the fitting results of individually-measured X- and Y-axis
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vertical straightness errors using the traditional single-axis method, for the X-axis vertical straightness
errors are indeed varying with the Y-axis position.

Before the workpiece flatness being measured, the upper surface of scrapped workpiece
was placed on a blue-painted standard plate for marking high points on the scrapped surface.
The workpiece was first placed in the detection range of the triangulation laser; thereupon, the
proposed system was set on the three-axis machine tool. During the measurement process, the
workpiece was moved by the working table according to the requested detection path; in addition, the
flatness was obtained via the least-squares analysis.

With the errors compensated by the proposed system, the matched high-points in the dash
windows was conspicuously improved, evidencing the cancellation of vertical straightness errors
originated from the moving working-table could be a significant benefit for surface topography
measurements. Furthermore, both the average flatness and accuracy repeatability (3σ) were also
improved from 64.65 µm to 52.14 µm and from 2.13 µm to 1.46 µm, respectively, as shown in
Table 5, which proves the system’s feasibility for increasing the accuracy and precision of surface
flatness measurements.

Conclusively, it is shown that simultaneously online measurements of the proposed system could
be utilized to compensate both the vertical straightness error and the plane flatness of the working
table after it being moved to the desired position and this, in turn, increased the machining accuracy.
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Table 5. Compensation result of surface flatness by the proposed system.

Workpiece Surface Flatness (µm)

Measured by Triangulation Laser Compensated by Proposed System

1st measurement 63.36 51.23
2nd measurement 65.30 52.49
3rd measurement 65.31 52.15
4th measurement 64.57 52.62
5th measurement 64.71 52.20

Average 64.65 52.14
Repeatability (3σ) 2.13 1.46

5. Conclusions

This paper addressed the problems that traditional measurement will have when measuring the
vertical straightness on the machine tool. An online simultaneous dual-axis measuring system was
developed for improving the machining accuracy by compensating vertical straightness errors of the
moving working table using real-measured data, rather than by traditional curve fittings. The proposed
system was verified by commercial instrument. The features of the proposed system are described as
follows:

1. The vertical straightness of the X- and Y-axes of machine tools can be measured simultaneously
with repeatability (3σ) as low as 2.46 µm.

2. The measurements of the proposed system could be utilized to establish the error model for
monitoring and compensating the vertical straightness errors of machine tools, especially for
vertical milling machines.

3. The surface topography of the workpiece could be significantly improved by vertical straightness
error compensation.

4. The flatness of the moving working-table could be compensated by the proposed system with
repeatability (3σ) being reduced to as low as 0.65 µm.
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