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Abstract: A photoacoustic (PA) signal of an ideal optical absorbing particle is a single N-shape wave.
PA signals are a combination of several individual N-shape waves. However, the N-shape wave
basis leads to aliasing between adjacent micro-structures, which deteriorates the quality of final PA
images. In this paper, we propose an image optimization method by processing raw PA signals with
deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure,
the raw PA signals are de-convolved with a system dependent deconvolution kernel, which is
measured in advance. EMD is subsequently adopted to further process the PA signals adaptively
with two restrictive conditions: positive polarity and spectrum consistency. With this method,
signal aliasing is alleviated, and the micro-structures and detail information, previously buried in the
reconstructing images, can now be revealed. To validate our proposed method, numerical simulations
and phantom studies are implemented, and reconstructed images are used for illustration.

Keywords: photoacoustic imaging; signal processing; deconvolution; empirical mode decomposition;
signal deconvolution

1. Introduction

Photoacoustic (PA) imaging, an emerging biomedical imaging modality based on PA effect, has
been developed extensively in recent years. During PA imaging, laser pulses energy are delivered
into biological tissues, leading to transient thermoelastic expansion and thus wideband ultrasound
emission [1]. The generated ultrasound waves propagate to the surface where detected by ultrasound
transducers [2], and are reconstructed into an image. As PA images can reveal pathology features
and physiological structures according to the specific optical absorption distribution of biological
tissues, the diagnoses on the tissue differs in physiological properties a lot, such as breast cancer
diagnosis [3], and hemodynamics monitoring [4,5], making PA imaging a promising and high potential
imaging modality.

Since typical detected PA signals of ideal optical absorbing particle is a single bipolar N-shape
pulse [6,7], PA signals of a complicated biological tissue can be considered to be the combination
of individual N-shape pulses. However, the N-shape wave basis results in two problems: the first
problem is aliasing between adjacent micro-structures. The signal of a tiny target can be affected and
even buried by the bipolar signal of a large target at a short distance, leading to unexpected aliasing
and distortion in the final image. The second problem is that the existence of the N-shape wave
complicates subsequent imaging work. When reconstructing images, the envelope of signal must
transform the negative part into positive, as the negative part possesses significant information as well.
Both drawbacks could deteriorate the quality of PA images.
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Therefore, the processing on an N-shape wave can be significant in alleviating the drawbacks and
has been investigated a number of studies. Li [7], identified some properties about the N-shape wave and
introduced processing methods, including wavelet and deconvolution. Ermilov [8,9], transformed the
bipolar N-shape pressure pulse to the monopolar pulse using wavelet transform in order to get the signal
suitable for tomographic reconstruction. The deconvolution method can convert the bipolar N-shape
wave to the monopolar wave and is rarely applied to processing signals, and thereby raising our interest.
Traditionally, the deconvolution method is often applied to image reconstruction and image processing.
For instance, Kruger [10] and Gamelin [11] used deconvolution methods in PA image reconstruction.
Cai [12] improved the image resolution of PA microscopy by using deconvolution method on images.
Recently, Nagaoka [13] proposed a reconstruction method to improve axial resolution through the
suppression of the time side lobes in PA tomography by Wiener filtering.

In this paper, we propose using the image optimization method to process raw PA signals using
signal deconvolution and empirical mode decomposition (EMD). This method mainly relies on signal
deconvolution. However, as unexpected artifacts appeared around the imaging target only with signal
deconvolution, EMD was instead adopted into our method as a subsequent step to further improve
the reconstructed image quality. Moreover, we averaged multi-sampling raw PA signals with time
shift correction by cross-correlation method as a preprocessing step in order to raise the signal-to-noise
ratio (SNR) and enhance the performance of signal deconvolution.

2. Methods

Given that the detected PA signals have low SNR that deteriorate the quality of PA images,
de-noising operation is quite common as a pre-processing step. Theoretically, averaging signals of
multiple frames can eliminate random background noise and raise the SNR. However, non-negligible
time shifts among signals of different frames always exist for a variety of reasons, including the slight
fluctuation of the water around the imaging target, the small movement from a living biological
imaging target, and system defect (possibly random delay generated by inner circuit). To solve this
issue, we adopted an effective averaging method to adjust time shifts based on cross-correlation
method [14,15].

First, we calculated the time shifts (∆m1, ∆m2, · · ·) between the reference frame and other frames
by cross-correlation. For discrete PA signals p1(n) and p2(n), an estimate of the cross-correlation
function is defined as [16]:

R̂p1 p2(m) =

{
1

L−|m| ∑L−m−1
n=0 p1(n + m)p∗2(n), m ≥ 0

R̂p1 p2(−m), m < 0
, (1)

where p∗2(n) is the complex conjugate of p2(n), L is the maximum length of p1(n) and p2(n),
the normalization coefficient 1/(L− |m|) can avoid the zero bias inherent in the standard
cross-correlation function. According to this equation, the value of time shift ∆m should equal
to the value of m when the cross-correlation function R̂p1 p2(m) is of maximum value.

Assuming p1(n) is the uniform reference, p2(n), the signals of all the rest frames need to be shifted
to the length of their corresponding |∆m| forwards or backwards based on the sign of ∆m. After that,
shifted signals of multiple frames that all align is acquired, so we can obtain the final de-noised signal
p̂(n) by simply averaging them all.

Mathematically, the convolution result of a single wave and positive pulses with different
delay is the superposition of many same-shaped waves with different delay, and the specific size
of each wave depends on the size of the corresponding positive pulse. Hence, we assumed that PA
signal is the convolution result of a series of specific monopolar pulses and a single N-shape wave.
With that assumption, the monopolar signal, which contains the amplitude information and time
information, can theoretically be acquired through deconvolution. As we mentioned in the former
section, the N-shape wave basis has defects that will reduce the quality of PA images, while the
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de-convolved monopolar signals possess equally important information for imaging as raw PA signals
and perform better than raw N-shape PA signals when reconstructed into images. We intended to
acquire de-convolved signals to replace raw PA signals.

Generally, the discrete detected PA signal s(n) can be represented in convolution form as:

s(n) = o(n) ∗ h(n) + n(n), (2)

where ∗ denotes convolution, h(n) is the kernel of this signal convolution system, s(n) is the detected
raw signal, o(n) refers to the signal which we aim to acquire and n(n) represents the additive noise.
In our method, we took h(n) as a normalized single N-shape pulse which is acquired by detecting
an approximately ideal optical absorbing particle, specifically, the smallest source which the PA data
acquisition system can measure. For example, assuming that velocity is 1540 m/s, an L7-4 ultrasound
probe whose center frequency is 5.208 MHz can detect the minimum source is approximately a diameter
of 0.296 mm, so in this case, the kernel h(n) ought to be acquired by detecting the source whose size is
closest to and bigger than 0.296 mm.

The deconvolution algorithm we used was the Wiener deconvolution [17]. A typical simulated
signal was used for demonstration. As shown in Figure 1b, the signal was converted from a bipolar
signal to monopolar signal after deconvolution. However, directly using de-convolved signal to
reconstruct images creates defects. As shown in Figure 1c, when reconstructing images by conventional
delay-and-sum algorithm, assuming the velocity is uniform, the value corresponding with the position
of the imaging target was also added to the other positions of the same distance to the transducer
element as imaging target. Normally, artifacts can be restrained as the signal has both positive part and
negative part to cancel each other out. Since the de-convolved signal is monopolar, unexpected artifacts
will appear around the imaging object because amplitude cannot be cancelled out when summing
up as they are all positive. To alleviate this phenomenon and further optimize the images, EMD was
adopted subsequent to signal deconvolution.
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Figure 1. (a) Diagram of the normalized deconvolution kernel h(n) in simulation; (b) comparison of
simulated signal before and after deconvolution; (c) illustration of the widespread artifacts forming
process in delay-and-sum algorithm.

The principle of EMD [18], is to decompose a signal into several intrinsic mode functions
(IMFs) without setting any basis function in advance, and each of them reserves the local features
of the original signal with different time scales. Given that different IMFs possess different features,
we were able to rebuild new signals to meet our requirements by depressing some of the IMFs and
enhancing other IMFs. Specifically, we applied weight coefficients to each IMF and refactor new signal
automatically under the constraints which is set in advance. In our proposed method, we apply the
de-convolved signal to EMD and refactor it with two constraints, positive polarity and spectrum
consistence. Given that EMD can only process one-dimensional signals at a time, a one-dimensional
signal o1(n) (detected by a single transducer element of the probe) of de-convolved signal o(n) should
be considered as an example, the procedure [19] is described in detail as follows:
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Step 1: Use EMD method to decompose signal o1(n) into k IMFs (k is a changeable number) and
the residue:

o1(n) = ∑k
i=1 IMFi + res(n), (3)

Step 2: Set weight coefficient value of each IMF to refactor a set of new signals:

newo1(n) = [a1 a2 · · · ak]×


IMF1

IMF2
...

IMFk

, (4)

where a = [a1 a2 · · · ak] refers to the weight coefficients of IMFs. As the number of IMFs is k,
the number of weight coefficient is also k and each weight coefficient corresponds with an IMF.
The value of each weight coefficient ranges from [0, 1] with step 0.1, so that the number of iteration is
11k. The coefficient of residue remains 1.

Step 3: Calculate two constraints in each iteration:
The first constraint is positive polarity. As the original de-convolved signal is monopolar,

positive polarity is set to avoid distortion between the refactor signal and the original signal.
Positive polarity is defined as:

p =
min(new_o1(n))
max(new_o1(n))

> threshold, (5)

where the threshold here should equal the minimum amplitude of o1(n) divided by maximum
amplitude of o1(n). Within each iteration, the second constraint can be calculated if the refactored
signal satisfies the positive polarity. Otherwise, this iteration should be skipped and to begin the
next iteration.

The second constraint is spectrum consistence. As the high frequency components usually retain
detailed information, we applied the spectrum consistence to refactoring a new signal, with more
detail and less aliasing. Spectrum consistence is defined as:

c = ∑ f2
ω= f1

f (ω)

/
∑ f1

ω= f0
f (ω), ω <

fs

2
, (6)

where f (ω) is the FFT result of refactored signal, fs refers to the sampling frequency. As band-limited
ultrasound transducers can only receive the signal with a limited frequency band, f0 refers to the low
cut-off frequency, f2 refers to the high cut-off frequency and f1 is the middle frequency point of the
frequency band. We assume that the high frequency component and the low frequency component is
divided by f1. Set the initial c = 0, and if the c of this iteration is bigger than the former one, the weight
coefficient of this iteration should be adopted and the former c should be substituted by the new c.

Step 4: repeat the iterations in Step 2 and Step 3 until it traverses all the weight coefficients,
and we can then assume that the new_o1(n), which satisfies the positive polarity and obtains the
biggest spectrum consistence c is the best refactored signal.

3. Results

3.1. Numerical Simulations

We implemented numerical simulations based on the MATLAB (The MathWorks, Natick, MA,
USA) k-Wave toolbox [20] using a HP server (Hewlett-Packard, Palo Alto, CA, USA), which has 2 Intel
(Intel Corporation, Santa Clara, CA, USA) Xeon (R) X5670 CPU working at 2.93 GHz and 72.0 GB RAM.
PA data were detected by 128 linear ultrasound element transducers, which distributed on the upper
side of the numeric phantom. The speed of sound was set to 1540 m/s. In the simulation, two numeric
phantoms were used to validate the effectiveness of our proposed method. To prevent the interference
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of the reconstruction method in k-Wave toolbox, we used the basic delay-and-sum reconstruction
algorithm to reconstruct each image in our study.

First, the deconvolution kernel h(n) was acquired from a single transducer element on the upper
side, which detects the numeric phantom that only consists of a point source of radius 1 in the middle
position. The normalized h(n), shown in Figure 1a performs as the uniform deconvolution kernel in
our simulations.

To illustrate the deformation of signal and the direct results in reconstructed image clearly, we used
a simple numeric phantom as seen in Figure 2a, which consists of a large point source in the middle
and four small point sources around. Meanwhile, to make the simulation more realistic, we used a
vessel-like image as seen in Figure 3a to simulate the complex numeric phantom.
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As observed in Figures 2e and 3e, bipolar N-shape signals are converted to monopolar signals
after processing and more detailed information appears, especially in Figure 3e. The small N-shape
waves affected by the negative part of the big N-shape waves became apparent. From the reconstructed
images in Figures 2 and 3, we can observe that the original signals result in aliasing and blurring in
reconstruction (as Figures 2b and 3b), the five dots and the two main branches are hard to distinguish.
Moreover, the existence of N-shape wave leads to distortion in the image. Using Figure 2b as an
example, the two points in the lower side are obviously weaker than the two points in the upper side,
and on the other hand, the position of the two points in the lower side slightly moves downward
compared with the set position (Figure 2a). This is because the wave after big waves is affected and
even buried by the negative part of the big waves. But by performing deconvolution on signals
(Figures 2c and 3c), aliasing is alleviated, and distortion is corrected. After processing by EMD
(Figures 2d and 3d), the edge sharpness and resolution of the images were further improved. With the
gap widening between main imaging targets, the five dots in Figure 2 and the branches in Figure 3,
are distinguishable and separated now.

Since the original PA signal is bipolar, using an envelope is necessary when reconstructing images
by means of delay-and-sum algorithm. However, this step could be left out due to the positive polarity
of the refactored signal, which further improves image quality and increases efficiency.

3.2. Experiments

The schematic of our experimental setup is shown in Figure 4a. A tunable optical parametric
oscillator (OPO) system (Phocus Mobile, Opotek, CA, USA) is pumped by a Nd; YAG laser (Brilliant
B, Bigsky, MT, USA) is employed as the laser source. The laser works at the wavelength of 720 nm
with pulse repetition rate of 10 Hz and pulse duration of 5.5 ns. A Verasonics system (Verasonics
Inc., Kirkland, WA, USA) is controlled by a computer to receive raw PA data. An ultrasound linear
array (L7-4, Philips, Amsterdam, The Netherlands) with 128 elements, 5.208 MHz center frequency
and 0.298 mm element pitch was used. Ultrasonic coupling agent is used as the acoustic transmission
medium between phantom and ultrasound probe.
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Figure 4. (a) Schematic of the experimental setup; (b) the phantom used as imaging target (two rubber
threads); (c) the phantom to acquire the deconvolution kernel (one tungsten wire); (d) a photo of the
experiment setup.

The phantoms used in this experiment were made of porcine gelatin with 8% concentration as
shown in Figure 4b,c. Figure 4b is the phantom used as the imaging target in our experiment which
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embedded with two rubber threads of diameter 1 mm and Figure 4d shows the placement of phantom,
probe and laser in this experiment. The arrows in Figure 4b,c both point to the position where a probe
acquired a signal of each phantom while carrying out the experiment. During the process of signal
acquisition, each set of signals contained approximately 200 frames for a continuous period to average.

The deconvolution kernel is acquired from the middle transducer element of the probe,
which detected a single tungsten wire of diameter 0.3 mm (as Figure 4c); approximately the smallest size
L7-4 probe can measure. The normalized deconvolution kernel (as shown in Figure 5), averaged from
200 frame signals, was used as the deconvolution kernel in this experiment.
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Figure 5. Diagram of the normalized deconvolution kernel in the experiment.

The comparison of the reconstructed result is shown in Figure 6. We can observe that the two
oblique rubber wires are too close to look separated in the image reconstructed with original PA signal,
as shown in Figure 6a. Without knowing the imaging targets in advance, it is difficult to distinguish
the structure visually. After applying our proposed method, as shown in Figure 6b, the two lines are
completely separated, and the realistic inner structures of this phantom can be more clearly identified.
Meanwhile, image resolution is enhanced, and the artifact is slightly reduced.

To quantify the width of gaps in Figure 6 and compared to the realistic width of gap in Figure 4b,
we measured the width of gaps in Figure 6. In Figure 4b, the diameter of the two rubber wires in the
phantom are both 1 mm, we can observe that the realistic gap, where the arrow mark is pointing to,
is approximately 0.4 mm. In respect of the reconstructed image of the original signal as shown in
Figure 6a, the width of the gap is about 0.08 mm. For the reconstructed image of the processed signal
as shown in Figure 6b, the width of the gap is about 0.3 mm. From the quantification, we can find that
the image of processed signal more aptly indicates the accurate width and position of realistic targets.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 9 

 
Figure 6. Reconstruction results of the experiment. (a) the reconstructed image of original signal; (b) 
the reconstructed image of processed signal. 

4. Discussion and Conclusions 

From the contrast of signals in the simulation before and after processing, the bipolar signals are 
converted into non-negative signals, whereas the processed signals in the experiment are relatively 
monopolar, but not strictly monopolar. The deconvolution result is sensitive to noise, which is 
inevitable in the signal acquisition procedure. Meanwhile, the relatively monopolar signals have 
some benefit in reducing artifacts in the final reconstructed image. Widespread artifacts as shown in 
Figure 2d appear around imaging targets when using the strictly monopolar signal, whereas artifacts 
can be slightly alleviated if the relatively monopolar signal are used. 

In this work, we demonstrate an image optimization method by processing the raw PA signals 
using signal deconvolution and EMD. Using this method, raw bipolar signals are converted into 
quasi-monopolar signals and more detailed information can be obtained to alleviate the signal 
aliasing phenomenon. With the processed signals, PA image can be optimized, especially in 
resolution and edge sharpness. Moreover, the micro-structures, which were previously hidden and 
buried by large imaging targets, can now be revealed and separated. Both numeric simulations and 
phantom study illustrate the effectiveness of this method. As this method can help to distinguish 
between close objects and reveal detail information, it can potentially help with diagnoses, especially 
on tissues with micro-structures. 

Author Contributions: Conceptualization, C.G. and J.Y.; data curation, C.G.; formal analysis, C.G.; funding 
acquisition, J.Y.; investigation, C.G.; methodology, C.G., J.Y. and Y.Z.; project administration, J.Y.; resources, J.Y., 
Q.C. and X.W.; software, C.G.; supervision, J.Y.; validation, C.G., Y.C. and Q.C.; visualization, C.G.; writing–
original draft, C.G.; writing–review and editing, J.Y. and Y.Z. 

Funding: This research was funded by the National Key Research and Development Program of China (No. 
2017YFC0111402) and the Natural Science Funds of Jiangsu Province of China (No. BK20181256). 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. 
2. Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631 
3. Ku, G.; Fornage, B.D.; Jin, X.; Xu, M.; Hunt, K.K.; Wang, L.V. Thermoacoustic and photoacoustic 

tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat. 2005, 4, 559–565. 
4. Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic 

tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. 
5. Wang, X.; Xie, X.; Ku, G.; Wang, L.V.; Stoica, G. Noninvasive imaging of hemoglobin concentration and 

oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006, 11, 
024015, doi:10.1117/1.2192804. 

6. Oraevsky, A.A.; Andreev, V.A.; Karabutov, A.A.; Esenaliev, R.O. Two-dimensional optoacoustic 
tomography: Transducer array and image reconstruction algorithm. In Proceedings of the BiOS ‘99 
International Biomedical Optics Symposium, San Jose, CA, USA, 14 June 1999; p. 12. 

(a) (b) 

Figure 6. Reconstruction results of the experiment. (a) the reconstructed image of original signal;
(b) the reconstructed image of processed signal.

4. Discussion and Conclusions

From the contrast of signals in the simulation before and after processing, the bipolar signals are
converted into non-negative signals, whereas the processed signals in the experiment are relatively
monopolar, but not strictly monopolar. The deconvolution result is sensitive to noise, which is
inevitable in the signal acquisition procedure. Meanwhile, the relatively monopolar signals have
some benefit in reducing artifacts in the final reconstructed image. Widespread artifacts as shown in



Appl. Sci. 2018, 8, 2113 8 of 9

Figure 2d appear around imaging targets when using the strictly monopolar signal, whereas artifacts
can be slightly alleviated if the relatively monopolar signal are used.

In this work, we demonstrate an image optimization method by processing the raw PA signals
using signal deconvolution and EMD. Using this method, raw bipolar signals are converted into
quasi-monopolar signals and more detailed information can be obtained to alleviate the signal aliasing
phenomenon. With the processed signals, PA image can be optimized, especially in resolution and
edge sharpness. Moreover, the micro-structures, which were previously hidden and buried by large
imaging targets, can now be revealed and separated. Both numeric simulations and phantom study
illustrate the effectiveness of this method. As this method can help to distinguish between close
objects and reveal detail information, it can potentially help with diagnoses, especially on tissues
with micro-structures.
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