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Abstract: Differential privacy mechanisms can offer a trade-off between privacy and utility by
using privacy metrics and utility metrics. The trade-off of differential privacy shows that one
thing increases and another decreases in terms of privacy metrics and utility metrics. However,
there is no unified trade-off measurement of differential privacy mechanisms. To this end, we
proposed the definition of privacy-preserving monotonicity of differential privacy, which measured
the trade-off between privacy and utility. First, to formulate the trade-off, we presented the definition
of privacy-preserving monotonicity based on computational indistinguishability. Second, building
on privacy metrics of the expected estimation error and entropy, we theoretically and numerically
showed privacy-preserving monotonicity of Laplace mechanism, Gaussian mechanism, exponential
mechanism, and randomized response mechanism. In addition, we also theoretically and numerically
analyzed the utility monotonicity of these several differential privacy mechanisms based on utility
metrics of modulus of characteristic function and variant of normalized entropy. Third, according
to the privacy-preserving monotonicity of differential privacy, we presented a method to seek
trade-off under a semi-honest model and analyzed a unilateral trade-off under a rational model.
Therefore, privacy-preserving monotonicity can be used as a criterion to evaluate the trade-off
between privacy and utility in differential privacy mechanisms under the semi-honest model.
However, privacy-preserving monotonicity results in a unilateral trade-off of the rational model,
which can lead to severe consequences.

Keywords: differential privacy; trade-off; privacy-preserving monotonicity; semi-honest model;
rational model

1. Introduction

In the non-interactive model or interactive model of computation to a database [1], a data curator’s
sensitive data needs to be protected, and a data analyst can get the availability of data for statistical
analysis. For data curators, it is easy to protect the privacy of sensitive data by adding random noise
to the query results. However, the availability of data cannot be guaranteed for data analysts. For
the research of privacy preservation in statistical queries, a crucial question is the trade-off between
privacy and utility [2]. Thus, the key challenge is to provide the trade-off between data privacy and
data utility of the computation to a database [3,4], which is achieved by using differential privacy. To
demonstrate the trade-off between privacy and utility, privacy metrics and utility metrics are used
to denote data privacy and data utility, respectively. In this paper, expected estimation error [5] and
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entropy are used as privacy metrics. The modulus of characteristic function and the variant 1− NE
of normalized entropy (NE) are used as utility metrics. According to the privacy metrics and utility
metrics of this paper, the trade-off means that one thing increases and another thing decreases in terms
of privacy and utility in differential privacy.

Differential privacy [6] has emerged as a powerful tool to provide the trade-off between privacy
and utility. Differential privacy provides a mathematical foundation for the trade-off between privacy
and utility and offers provable privacy preservation in a precise sense [7]. Laplace mechanism and
Gaussian mechanism are used to achieve the trade-off for numeric data [1]. Exponential mechanism [8]
and randomized response [9] also meet the trade-off for categorical data. There are various methods
which can get an optimal trade-off between privacy and utility in differential privacy. Hardt and
Talwar [10] used methods of convex geometry to determine a nearly optimal trade-off between
privacy and error. Fouad et al. [11] proposed a scalable algorithm that met differential privacy
when applying a specific random sampling and resolved the trade-off between data utility and
data privacy. Generalized differential privacy definitions can achieve the trade-off. Personalized
differential privacy was proposed [12], in which users specified a personal privacy requirement for
their data. Soria-Comas et al. [13] proposed individual differential privacy that offered the same
privacy guarantees as standard differential privacy to individuals and resulted in less distortion and
more analytical accuracy. The definition of differential privacy based on information theory can also
achieve the trade-off. Mutual information differential privacy ensured the trade-off between privacy
and informational utility to be gained from the output of any query mechanism [14]. The unified
privacy definition can also achieve the trade-off. He et al. [15] proposed Blowfish privacy with
the goal of seeking a better trade-off between privacy and utility. Multiparty differential privacy
protocol can reach the trade-off. Goyal et al. [16] obtained general upper bounds on accuracy of two
parties’ differential privacy protocol of computing any Boolean function. Kasiviswanathan et al. [17]
proposed local differential privacy that could also reach the trade-off by using random response
mechanism. Machine learning with differential privacy has obtained the trade-off. Since Boosting used
a general method to improve the accuracy of learning algorithms, Dwork et al. [18] used boosting to
construct improved privacy-preserving synopses of an input database. Zhang and Zhu [19] proposed
the dual variable perturbation and primal variable perturbation to provide differential privacy for
the distributed learning algorithms over a network. The former slightly outperformed the latter
for balancing the trade-off between privacy and utility. Differential privacy ensures the trade-off in
data analysis. Zeng et al. [20] proposed a differential privacy frequent itemsets mining algorithm
and had precisely quantified the trade-off between privacy and utility in frequent itemsets mining.
Search log using differential privacy can get the trade-off. Hong et al. [21] proposed a sanitization
framework to perfectly tackle the trade-off in the context of search logs in a distributed manner.
Differential privacy can guarantee the trade-off in statistics analysis. Within Bayesian inference
based on differential privacy under certain conditions on the prior, the sampling from the posterior
distribution could lead to a desired level of privacy and utility [22]. In data aggregation, keeping
trade-off using differential privacy is very important. Sei and Ohsuga [23] proposed two methods:
single to randomized multiple dummies, and single to randomized multiple dummies with Bayes,
both of which generated a set of disguised values of one sensed value of anonymization and ensured a
better trade-off between privacy and utility. Differential privacy can maintain the trade-off in data
query. Nikolov et al. [24] studied the trade-off in the context of counting queries and more general
linear queries. Data releasing using differential privacy has achieved the trade-off. Xu et al. [25]
proposed two novel mechanisms achieving the trade-off between the utility of the query results and
the degree of privacy preservation, namely NoiseFirst determining the histogram structure after
the noise injection and StructureFirst of deriving the histogram structure before the addition of the
noise. Differential privacy can achieve the trade-off in location-based service and recommendation
service. Local differential perturbation mechanisms could provide a well-balanced trade-off between
location privacy and service accuracy [26]. Guo et al. [27] proposed a mechanism to achieve differential
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privacy graph-link analysis-based social recommendation. Differential privacy can also guarantee
the trade-off in other applications fields. Fan et al. [28] adopted differential privacy aggregates of
web browsing activities that could be realized in real time while preserving the utility of shared data.
He et al. [29] proposed an efficient distortion-based privacy-preserving metering scheme that protected
an individual customer’s privacy and provided the complete power consumption distribution curve
of a multitude of customers without privacy invasion. Jin et al. [30] proposed differential privacy
crowdsourced spectrum sensing that allowed the spectrum-sensing provider to select mobile users
for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile
users. Huang and Kannan [31] showed that the exponential mechanism could be implemented as a
truthful mechanism while still preserving differential privacy for any mechanism design problem with
the objective of maximizing social welfare. However, there is no unified trade-off measurement of
differential privacy mechanisms and their applications. This problem is covered in the definition of
privacy-preserving monotonicity.

According to the privacy metrics and utility metrics of this paper, the trade-off of differential
privacy means that privacy (utility) increases and utility (privacy) decreases. Thus, the increasing
of privacy-preserving level leads to the decreasing of data utility as privacy budget decreases in
differential privacy mechanisms. Conversely, the decreasing of privacy-preserving level leads to
the increasing of data utility as privacy budget increases. Current works have no unified metrics
of measuring the trade-off of differential privacy. It is imperative to seek a unified measurement
as an evaluation criterion of the trade-off between privacy and utility in differential privacy. Thus,
we proposed the definition of privacy-preserving monotonicity of differential privacy to formulate
the trade-off between privacy and utility based on privacy metrics and utility metrics of this
paper. Thus, privacy-preserving monotonicity shows that the increasing of privacy-preserving
level leads to the decreasing of data utility as privacy budget decreases and the decreasing of
privacy-preserving level leads to the increasing of data utility as privacy budget increases in differential
privacy. Privacy-preserving monotonicity plays an important role in the research and applications of
differential privacy.

Since computational indistinguishability is the central theory of cryptography, two probability
distributions are computationally indistinguishable if no efficient algorithm can distinguish them [32].
Therefore, the closer two probability distributions are, the better indistinguishability is. Conversely,
the less close two probability distributions are, the weaker indistinguishability is. In other words,
the stronger indistinguishability is, the bigger distinguishing error or uncertainty of a polynomial
time algorithm is. Conversely, the weaker indistinguishability is, the smaller distinguishing error or
entropy is. Thus, computational indistinguishability can become the foundation of differential privacy.
In Figure 1, we presented the research framework of this paper. First, we proposed the definition of
privacy-preserving monotonicity of differential privacy based on computational indistinguishability
to measure trade-off under a non-interactive model or interactive model. Second, our theoretical
and experimental results showed the privacy-preserving monotonicity of several differential privacy
mechanisms based on the privacy metrics of the expected estimation error and entropy, such as Laplace
mechanism, Gaussian mechanism, exponential mechanism, and randomized response mechanism.
In addition, we theoretically and experimentally analyze that the utility monotonicity of these
differential privacy mechanisms based on utility metrics of modulus of characteristic function and
variant 1−NE of normalized entropy. Finally, based on privacy-preserving monotonicity of differential
privacy, we discussed the method of seeking trade-off under a semi-honest model and analyzed
unilateral trade-off under rational model. Our main contributions are as follows.

• We proposed the definition of privacy-preserving monotonicity of differential privacy based on
computational indistinguishability to measure the trade-off between privacy and utility.

• We theoretically and experimentally analyzed privacy-preserving monotonicity of existing
differential privacy mechanisms, including the Laplace mechanism, Gaussian mechanism,



Appl. Sci. 2018, 8, 2081 4 of 32

exponential mechanism, and randomized response mechanism. In addition, our theoretical and
experimental results showed the utility monotonicity of these differential privacy mechanisms.

• We presented the method of seeking trade-off under a semi-honest model and analyzed the
unilateral trade-off under rational model for differential privacy.

 

Figure 1. Research framework of this paper.

This paper is organized as follows. Section 2 introduces the related works. Section 3 describes
the problem statement. Section 4 introduces the preliminary to differential privacy. Section 5 presents
the definition of privacy-preserving monotonicity of differential privacy. In Section 6, we theoretically
analyze privacy-preserving monotonicity and utility monotonicity of differential privacy mechanisms.
Section 7 covers numerical results of privacy-preserving monotonicity and utility monotonicity
of differential privacy mechanisms. Section 8 presents the procedure of seeking trade-off under
semi-honest model and analyzes unilateral trade-off under rational model. Section 9 concludes
this paper.

2. Related Works

In this section, we summarize and review the existing works to achieve the trade-off in differential
privacy. However, these works have not claimed that how to measure the trade-off between privacy
and utility. Thus, we proposed the definition of privacy-preserving monotonicity which can measure
the trade-off of differential privacy in this paper.

There are some methods that can get the optimal trade-off between privacy and utility in
differential privacy. With the independence of user’s side information and preferences, Ghosh et al. [33]
proposed geometric mechanism which was subject to differential privacy. This mechanism ensured
the nearly optimal utility of every potential user; however, not all differential privacy mechanisms and
all types of queries had analogous results. Hardt and Talwar [10] used methods of convex geometry to
determine a nearly optimal trade-off between privacy and error. However, since this method needed
to repeat the privacy and optimality analysis in the presence of approximation errors, this arose some
complications. Xiao et al. [34] introduced a differential privacy algorithm for computing answers
to reduce relative errors. This algorithm was effective, but it did not indicate the implications of
correlations between the answers. Fouad et al. [11] proposed a scalable algorithm that met differential
privacy when applying a specific random sampling. This algorithm resolved the trade-off between
data utility and data privacy; however, it was difficult that the algorithm was extended to the cases
when the risk threshold was small. Tossou and Dimitrakakis [35] optimized trade-off between privacy
and utility by using a novel interval-based mechanism and a continual release mechanism. Although
these mechanisms significantly improved the state of the art, they might be not suitable for a large
database in practice. Furthermore, these methods do not indicate how to measure the trade-off of
differential privacy, which is covered in the definition of privacy-preserving monotonicity.

Several novel differential privacy definitions can achieve the trade-off. Dodis et al. [36]
successfully achieved differential privacy with perfect randomness, but it required the consistent
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sampling that was strictly stronger than differential privacy and could not satisfy by any additive-noise
mechanism. Tramèr et al. [37] investigated a relaxation of differential privacy by considering more
reasonable amounts of background knowledge. They showed that it could be used to achieve
membership privacy for various adversarial settings and had shown that they could achieve a
significantly higher utility when protecting against bounded adversaries, but the drawback of
membership privacy was unsuitable for other queries to potentially improve the trade-off between
privacy and utility of differential privacy. Soria-Comas et al. [13] proposed individual differential
privacy that offered the same privacy guarantees as standard differential privacy to individuals and
allowed the data controller to adjust the distortion to the actual data set. Although this definition
resulted in less distortion and more analytical accuracy, the performance of individual differential
privacy for other common queries needed to be further studied in the interactive scenario. More
importantly, there is no unified way to measure the trade-off in novel differential privacy definitions,
which is addressed by our definition of privacy-preserving monotonicity.

Generalized definitions of differential privacy based on information theory can also achieve
the trade-off. Sanker et al. [38] applied information-theoretic tools to provide a rigorous
information-theoretic treatment of the trade-off between privacy and utility. This method guaranteeing
tight bounds of how much utility was possible for a given level of privacy and vice versa. Cuff and
Yu [14] gave an equivalent definition of privacy using mutual information that made plain some of
the subtleties of differential privacy. Mutual information differential privacy ensured the trade-off
between privacy and informational utility to be gained from the output of any query mechanism.
Rényi differential privacy could also reach the trade-off between privacy and utility [39]. For specific
situations, this method outperformed existing methods, but itself as a relaxation of differential privacy
needed to further investigation. Although these generalized definitions of differential privacy based
on information theory can achieve the trade-off, these works cannot provide the measurement method
of the trade-off, which is solved by using the definition of privacy-preserving monotonicity.

The unified privacy definition provides a way of achieving the trade-off between privacy and
utility in differential privacy. He et al. [15] proposed Blowfish privacy with the goal of seeking a
better trade-off between privacy and utility. The key feature of Blowfish was a policy, where users
could specify sensitive information that needed to be protected and knowledge about their databases
which had been released to potential adversaries. Song et al. [40] proposed Pufferfish which could be
used to address privacy of correlated data. Although Pufferfish offered a good solution to privacy of
correlated data, modeling privacy of users connected to social networks and privacy of spatiotemporal
information gathered from sensors into rigorous privacy framework of Pufferfish and designing novel
mechanism for these models were still a key challenge. On the whole, unified privacy definition does
not show how to measure the trade-off of differential privacy. Our definition of privacy-preserving
monotonicity can address the problem.

Considering multiplayer circumstance, multiparty differential privacy protocol can get the
trade-off. Goyal et al. [16] obtained general upper bounds on accuracy of two parties differential
privacy protocol of computing any Boolean function. The major result was a new general geometric
technique for obtaining non-trivial accuracy bounds for any Boolean functionality. Kairouz et al. [41]
proposed multiparty XOR computation framework of addressing the trade-off between privacy
and accuracy. This optimality result of the protocol was very general, which it held for all types
of functions, heterogeneous privacy conditions on the parties, all types of cost metrics, and both
average and worst-case measures of accuracy, but it was no longer true to correlated data and
(ε, δ)-differential privacy in multiparty context. Moreover, none of these multiparty differential
privacy protocols has offered the way to measure the trade-off. We account this problem with our
definition of privacy-preserving monotonicity.

By using different methods, local differential privacy can obtain the trade-off.
Kasiviswanathan et al. [17] proposed local differential privacy that provided strong confidentiality
guarantees in the contexts where aggregate information was released about a database containing
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sensitive information about individuals. This notion could also reach the trade-off between privacy
and utility. Kairouz et al. [42] studied the fundamental trade-off between local differential privacy
and information-theoretic utility functions. They introduced a combinatorial family of extremal
privatization mechanisms called staircase mechanisms; however, solving this linear program could
be computationally expensive for multivariate random response. Kairouz et al. [43] investigated
the constrained minimization problem and showed that randomized response [9] achieved the
optimal trade-off between privacy and utility under minimax distribution estimation. Although they
presented the hash k-ary randomized response that empirically met or exceeded the utility of existing
mechanisms at all privacy levels, these mechanisms did not consider the correlation between data.
Also, there is no way to measure the trade-off of local differential privacy, which is addressed using
the definition of privacy-preserving monotonicity.

Machine learning with differential privacy can obtain the trade-off. Dwork et al. [18] used
boosting to construct improved privacy-preserving synopses of an input database. Boosting was
a general method to improve the accuracy of learning algorithms. Chaudhuri et al. [44] provided
general techniques to produce privacy-preserving approximations of classifiers learned via empirical
risk minimization. They proposed a new method that objective perturbation was superior to output
perturbation in managing the inherent trade-off between privacy and accuracy for privacy-preserving
approximations of classifiers learning via empirical risk minimization; however, objective perturbation
method did not address the question of finding privacy solutions to more general convex optimization
problems. Iyer et al. [45] identified the skew within class ratios of the sets across training data, which
controlled the trade-off between learning and privacy preservation. Although the proposed model
that could get more accurate, the model was unsuitable for the case of continuous values. Zhang
and Zhu [19] proposed the dual variable perturbation and primal variable perturbation to provide
dynamic differential privacy to the distributed learning algorithms over a network. The former
slight outperformed the latter in balancing the trade-off between privacy and utility. Shokri and
Shmatikov [46] presented a practical system that enabled multiparty to jointly learn an accurate neural
network model for a given objective without sharing their input databases. This method offered an
attractive point in the trade-off space between privacy and utility; however, designing a completely
distributed implementation of the parameter storage system was a challenge to the independence of
parameters from each other in distributed selective stochastic gradient descent. Bernstein et al. [47]
investigated undirected graphical models using collective graphical models in a differential privacy
way. They showed that the approach to release noisy sufficient statistics using the Laplace mechanism
achieved a good trade-off between privacy, utility, and practicality. Although machine learning with
differential privacy achieves the trade-off, there is no advisable method to measure the trade-off.
The definition of privacy-preserving monotonicity can address this problem.

Keeping the trade-off is the most important thing to data mining with differential privacy.
Friedman and Schuster [48] concluded that the introduction of formal privacy guarantees into a
system required the data miner to take a different approach to data mining algorithms. Their goal was
to investigate algorithms that could extend the Pareto frontier allowing for better privacy and accuracy
trade-off; however, the large variance in the method was clearly a problem, and more stable results
were desirable even if they came at a cost. Zeng et al. [20] proposed a differential privacy frequent
itemsets mining algorithm. They had precisely quantified the trade-off between privacy and utility in
frequent itemsets mining; however, the success of their algorithm relied on the assumption that short
transactions dominated the benchmark datasets. Xu et al. [49] designed a differential privacy frequent
sequence mining algorithm by leveraging a sampling candidate pruning technique. This algorithm
was ε-differential privacy and could privately find frequent sequences of high accuracy. Although data
mining with differential privacy can obtain the trade-off, these works did not explain how to measure
the trade-off. This problem is covered in the definition of privacy-preserving monotonicity.

In query logs, differential privacy can guarantee the trade-off. Feild et al. [50] described an
approach to distributed search logs collection, storage, and mining, which the dual goals preserved
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privacy and made the mined information broadly available. This method had the trade-off between
the strength of the guarantees of privacy loss and the utility of the released data, but this method did
not generalize to the feasibility of realistic settings. Hong et al. [21] proposed a sanitization framework
to perfectly tackle the trade-off in the context of search logs in a distributed manner. This framework
significantly preserved the utility of the sanitized search logs, but this framework was not an effective
approach to publish search logs with the correlation between users’ query-url pairs. Korolova et al. [51]
precisely characterized the trade-off between privacy and threshold used for publishing a query. They
proposed a solution to release the search logs by an algorithm for releasing queries and clicks on a
manner that guaranteed user privacy according to a rigorous privacy definition, but it could not best
generate a search log from perturbed data. Zhang et al. [52] introduced a framework of anonymous
query logs by differential privacy. This framework was able to achieve a good balance between retrieval
utility and privacy; however, the framework was only empirically evaluated against multiple search
algorithms on their retrieval utility. Sánchez et al. [53] proposed a privacy-preserving method of query
logs that joined the flexibility and convenience of privacy-preserving data releasing with the strong
privacy guarantees of differential privacy. Although this method produced query logs with differential
privacy that was useful for data analysis, the major challenge was that the microaggregation algorithm
did adapt to the lack of structure of query logs. In addition, query logs with differential privacy do not
provide a way to measure the trade-off. This problem has been addressed based on the definition of
privacy-preserving monotonicity.

Differential privacy can ensure the trade-off of statistics analysis. Chaudhuri et al. [54] studied the
theoretical and empirical performance of differential privacy approximations to principal components
analysis. They proposed a new method which explicitly optimized the utility of the output; however,
developing a framework of analyzing general approximations to principal components analysis might
be a challenge to machine learning. Balle et al. [55] gave the details of two differential privacy policy
evaluation algorithms based on first visit Monte Carlo estimation. This algorithm came with utility
guarantees showing that the cost of privacy diminished as training batches get larger but extending the
algorithm to other applications was a challenge. Zhang et al. [56] studied a suite of mechanisms how
to communicate findings of Bayesian inference to third parties of the strong guarantee of differential
privacy. These mechanisms showed the trade-off between privacy and utility. Within Bayesian
inference based on differential privacy under certain conditions on the prior, Dimitrakakis et al. [22]
presented that the sampling from the posterior distribution could lead to a desired level of privacy
and utility. Although they had shown how Bayesian inference could already be differential privacy
by appropriately setting the prior, they had not examined how this affects learning. Furthermore, the
measurement method of the trade-off was not provided for statistics analysis with differential privacy.
Thus, we proposed the definition of privacy-preserving monotonicity to measure the trade-off.

Data aggregation using differential privacy can get the trade-off. Pathak et al. [57] proposed a
method of composing an aggregate classifier satisfying differential privacy from classifiers locally
trained by multiple untrusted parties. Although the method allowed these parties to interact with
an untrusted curator to construct additive shares of a perturbed aggregate classifier, generalizing the
theoretical analysis of the perturbed aggregate classifier to the setting in which each party had data
generated from a different distribution was also crucial challenge. Sei and Ohsuga [23] proposed
two methods: single to randomized multiple dummies and single to randomized multiple dummies
with Bayes, both of which generated a set of disguised values of one sensed value of anonymization.
These two methods ensure a better trade-off between privacy and utility, but the measurement way of
trade-off of data aggregation with differential privacy is not shown in these works. The definition of
privacy-preserving monotonicity can measure the trade-off.

Differential privacy maintains the trade-off of data query. Geng and Viswanath [58] characterized
the fundamental trade-off between privacy and utility in differential privacy and derived the staircase
mechanism for a single real-valued query function under a very general utility maximization
framework. Within the classes of mechanisms oblivious of the database and the queries exceeding the
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global sensitivity, they showed that adding query-output independent noise with staircase distribution
was optimal among all randomized mechanisms that preserved differential privacy, and this
mechanism could extend to the multidimensional setting and had been studied for (ε, δ)-differential
privacy under a similar optimization framework. Nikolov et al. [24] studied the trade-off in the
context of counting queries and more general linear queries. They showed that there was an inherent
trade-off between privacy and accuracy when answering a large number of queries. Wang et al. [59]
formulated the correlated query results as the non-zero prior knowledge and proposed a novel
differential privacy approach to enhance privacy of social network data being inferred. The proposed
approach was superior to the state-of-the-art privacy-preserving approaches with respect to data
privacy and data utility; however, this approach might be not extended to other types of social graph
queries. In addition, data query using differential privacy does not show the way to measure the
trade-off, which is accounted by using the definition of privacy-preserving monotonicity.

For data releasing with differential privacy, the trade-off is also very important. Xu et al. [25]
proposed two novel mechanisms achieving the trade-off between the utility of the query results and
the degree of privacy preservation, namely NoiseFirst determining the histogram structure after the
noise injection and StructureFirst of deriving the histogram structure before the addition of the noise.
These two proposals generated highly accurate query answers and consistently outperformed existing
competitors, but it was a challenge that the proposals were extended to publish multi-dimension
histograms under differential privacy. Xu et al. [60] proposed a differential privacy algorithm for
high-dimensional data releasing via random projection to maximize utility while guaranteeing privacy.
This algorithm substantially outperformed several state-of-the-art solutions in terms of perturbation
error and privacy budget on high-dimensional data sets, but the algorithm was not high computation
efficiency to data publication using differential privacy of large domain. Furthermore, data releasing
with differential privacy does not show that the measurement method is used to measure the trade-off.
Thus, we solve this problem using the definition of privacy-preserving monotonicity.

Location privacy-preserving based on differential privacy also needs to keep the trade-off.
Obfuscated locations could provide the means to access a location-based service without privacy
leakage [26]. With additional knowledge such as the variation in the resemblance due to different
perturbed locations, a user could be in better control of balancing location privacy and service accuracy.
In response to users’ natural personalized privacy requirements for privacy spatial data aggregation
problem of the local setting, a novel personalized local differential privacy model provided a better
trade-off between location privacy and utility [61]. The model could achieve desirable utility and
provide rigorous privacy-preserving. However, location privacy-preserving based on differential
privacy does not provide the measurement method to measure the trade-off. Thus, the definition of
privacy-preserving monotonicity is imperative to measure the trade-off.

Differential privacy achieves the trade-off in recommendation service. McSherry and Mironov [62]
found that several leading approaches in the Netflix Prize competition could be adapted to provide
differential privacy without significantly degrading their accuracy. Although the loss in accuracy
decreased as more data became available for a fixed value of the privacy parameter, these approaches
did not immediately admit applying to privacy-preserving computations of latent factors and
incorporation in differential privacy framework of advanced methods for collaborative filtering.
Guo et al. [27] proposed a mechanism to achieve differential privacy graph-link analysis-based social
recommendation. The proposed mechanism achieved a better trade-off between privacy and accuracy
in comparison with existing work. However, recommendation service with differential privacy does
not provide an approach to measure the trade-off. Thus, this problem is covered the proposed definition
of privacy-preserving monotonicity.

In further application fields, differential privacy can also ensure the trade-off. Fan et al. [28]
adopted differential privacy aggregates of web browsing behavior that could be released in real time
while preserving the utility of shared data. Although the quality of the privacy of releasing data by
this solution closely resembled that of the unperturbed aggregates, the scalability of multivariate
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method of this solution became an immediate challenge when the domain of web pages was large.
He et al. [29] proposed an efficient distortion-based privacy-preserving metering scheme that protected
an individual customer’s privacy and provided the complete power consumption distribution curve
of a multitude of customers without privacy invasion. This scheme provided a proper trade-off
between privacy-preserving and accuracy of power consumption distribution reconstruction in smart
grids. Jin et al. [30] proposed a novel framework that allowed the spectrum-sensing provider to
select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location
privacy of mobile users. This framework could provide differential location privacy to mobile users
while ensuring that the spectrum-sensing provider could accomplish spectrum-sensing tasks with
overwhelming probability and the minimum cost. Huang and Kannan [31] showed that the exponential
mechanism could be implemented as a truthful mechanism while still preserving differential privacy
for any mechanism design problem with the objective of maximizing social welfare. The trade-off
between privacy and social welfare was asymptotically optimal in combinatorial public project problem
and multiple items auction. However, these application fields with differential privacy do not show
any method to measure the trade-off. Thus, the purpose of the definition of privacy-preserving
monotonicity measures the trade-off.

To sum up, currently works only achieve the trade-off between privacy and utility in differential
privacy and its applications. However, there is no unified measurement of the trade-off between privacy
and utility in differential privacy as we know. According to the privacy metrics and utility metrics of
this paper, we proposed the definition of privacy-preserving monotonicity based on computational
indistinguishability to address this problem of differential privacy. Furthermore, our theoretical
and experimental analysis showed that the existing differential privacy mechanisms satisfy the
privacy-preserving monotonicity. In addition, we theoretically and experimentally analyzed the
utility monotonicity of differential privacy mechanisms. Finally, we discussed the method of seeking
trade-off under semi-honest model and analyzed unilateral trade-off under rational model.

3. Notation and Problem Statement

In this section, we present the model of trade-off, privacy metrics, utility metrics and identify the
problem. In Table 1, we give the explanations of some notations of this paper.

Table 1. Definition of notations.

Notation Definition

PM Privacy metric
PMe Expected privacy metric under expected privacy budget εe
PMε Privacy metric under privacy budget ε
UM Utility metric
UMε Utility metric under privacy budget ε
EEE Expected estimation error
φ(t) Characteristic function
|φ(t)| Modulus of characteristic function
ENT Entropy
NE Normalized entropy

1− NE Utility metric of output of random selection
N Set of all nonnegative integers
X Universe set of data types

x, y Databases represented by histograms, x, y ∈ N|X |
xi The number of elements in the database x of type i ∈ X
R Set of real numbers
R Range of exponential mechanism
r Exponential mechanism outputting an element r ∈ R
A Probabilistic polynomial time algorithm
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3.1. Model of Trade-Off

In differential privacy, privacy budget cannot clearly show privacy-preserving level. Thus,
privacy metric can show privacy-preserving level, and utility metric shows the availability of data.
According to the privacy metrics and utility metrics of this paper, the increasing of privacy metric
causes the decreasing of utility metric and the decreasing of privacy metric leads to the increasing
of utility metric. Thus, when privacy budget increases, the privacy metric decreases, and the utility
metric increases. When privacy budget decreases, the privacy metric increases and the utility metric
decreases. This result is consistent with differential privacy using privacy budget controlling the
privacy-preserving level of data and the availability of data, when a differential privacy mechanism
achieves the trade-off. For example, the model of the trade-off shows that privacy metric decreases
and utility metric increases as privacy budget increases in Figure 2. Conversely, the privacy metric
increases and utility metric decreases as privacy budget decreases.

 

Figure 2. Model of trade-off of differential privacy.

3.2. Threat Model

There are two models of computation, including non-interactive model and interactive model [1].
In these two models, we consider the data curator is fully trusted, while the data analyst is semi-honest.
Data analyst is curious about sensitive information on the data analysis. We assume that two entities
can mutually authenticate within the application models. Furthermore, we consider both data curator
and data analyst to be rational. Specifically, rational data curator does not ensure that an expected
privacy preservation cannot suffer any privacy leakage of data releasing, but it does guarantee that any
undesirable privacy preservation cannot gain any privacy preservation. Rational data analyst does not
ensure that an expected data utility cannot suffer any worthless results from data analysis, but it does
guarantee that any undesirable data utility cannot gain any valuable results. In this paper, expected
privacy preservation refers to the preference regarding the privacy budget of a differential privacy
mechanism. The expected data utility means the preference regarding the data utility of valuable
analysis under a differential privacy mechanism. Since data curator and data analyst are rational,
both hope to obtain the maximum privacy-preserving level and the best data utility, respectively.
However, the protecting strategies of data curator and the analysis strategies of data analyst are
mutually restrictive in non-interactive model or interactive model. Therefore, data curator and data
analyst hope to get the expected privacy preservation and expected data utility, respectively, which is a
better result. Formally, we denote privacy metric and utility metric by using PM and UM, respectively.
PMε and UMε denote privacy metric and utility metric under privacy budget ε, respectively. PMe and
UMe denote the expected privacy metric and expected utility metric of data curator and data analyst,
respectively. PMe is the expected privacy metric under the expected privacy budget εe. Thus, rational
data curator hopes to the privacy metric PMε satisfying PMe ≤ PMε under privacy budget ε meeting
ε ≤ εe. When ε ≤ εe, data curator may be suffering privacy leakage. However, when εe ≤ ε, data
curator cannot gain any privacy-preserving. Rational data analyst hopes to the utility metric UMε

satisfying UMe ≤ UMε under privacy budget ε meeting εe ≤ ε. When UMe ≤ UMε, data analyst may
be suffering worthless analysis result. However, when UMε ≤ UMe, data analyst cannot gain any
valuable results.
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In this paper, considering the above two application models, the specific threat model is as follows.
Semi-honest model: data curator is trusted, and data analyst is honest-but-curious. Rational model:
data curator and data analyst are rational.

3.3. Privacy and Utility Metrics

To numerical and categorical data, some privacy metrics and utility metrics are necessary for
formalizing the model of trade-off. It cannot compare Euclidean distances between categorical data,
because the categorical data directly indicate the semantics. Thus, Euclidean distance cannot be used as
privacy metric for categorical data. Since differential privacy mechanisms make randomized selection
of categorical data, the uncertainty can be used as privacy metric. In this paper, the expected estimation
error and entropy are used as privacy metrics. The modulus of characteristic function and the variant
1− NE of normalized entropy are used as utility metrics.

Let s
′
i be random perturbation value of the original si. The expected estimation error (EEE) of

query results is
EEE = ∑ P(s

′
i)||s

′
i − si||1 (1)

Since the characteristic function of any random variable completely defines its probability
distribution, we use the modulus of characteristic function as utility metric. When X is a continuous
random variable and the probability density function of X is p(x), the characteristic function of X is

φ(t) =
∫ +∞

−∞
p(x) exp(itx)dx,−∞ < t < +∞ (2)

Thus, the modulus of φ(t) = a + ib is |φ(t)| =
√

a2 + b2. In this paper, the |φ(t)| denotes the data
utility of a differential privacy mechanism. When use the modulus |φ(t)| of characteristic function
φ(t) as utility metric, the parameter t is a preset fixed value.

By random selection query results of a database, the entropy (ENT) of output is

ENT = −∑ P(si) log2 P(si) (3)

We can get the normalized entropy of n outputs is

NE = −∑ P(si) log2 P(si)

log2 n
(4)

Since normalized entropy indicates the uncertainty of output of random selection and 0 ≤ NE ≤ 1,
we use 1− NE denotes the utility metric of output of random selection.

3.4. Problem

Trade-off of differential privacy shows that one increases while the another decreases to privacy
metric and utility metric of this paper. The increasing of privacy metric means the decreasing of
utility metric. Conversely, the decreasing of privacy metric leads to the increasing of utility metric for
differential privacy. In other words, the privacy metric decreases as privacy budget increases, and
the utility metric increases as privacy budget increases. Conversely, the privacy metric increases as
privacy budget decreases, and the utility metric decreases as privacy budget decreases. In view of
the privacy metrics and utility metrics of this paper, we only need a mathematical model of privacy
metric changing with privacy budget to formulate the trade-off between privacy-preserving and utility
in differential privacy. In this paper, the privacy metric PM denotes the expected estimation error or
entropy. PMε denotes the privacy metric using differential privacy mechanisms under privacy budget
ε. The utility metric is denoted by UM, which is the modulus of characteristic function or the variant
1− NE of normalized entropy. UMε denotes the utility metric using differential privacy mechanisms
under privacy budget ε. The formalization of this problem is as follows.
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In a differential privacy, privacy metric PM decreases and the utility metric UM increases as
privacy budget ε increases. Conversely, the privacy metric PM increases and the utility metric UM
decreases as privacy budget ε decreases. Thus, the increasing of privacy metric PM leads to the
decreasing of utility metric UM as privacy budget ε decreases. Conversely, the decreasing of privacy
metric PM leads to the increasing of utility metric UM as privacy budget ε increases.

4. Differential Privacy

In this section, we introduce preliminary to differential privacy [1]. A database x as being
collections of records coming from a universe X of data types. It will be convenient to represent
databases by histograms, x ∈ N|X |, in which each xi represents the number of elements in the database
x of type i ∈ X . Symbol N denotes the set of all nonnegative integers. In this presentation, a natural
measurement of distance between two databases x and y will be `1 norm ||x− y||1. If ||x− y||1 ≤ 1,
then two databases x and y is called as adjacent databases.

Definition 1 (Differential Privacy). A randomized algorithm M with domain N|X | is (ε, δ)-differential
privacy if for all S ⊆ Range(M) and for all x, y ∈ N|X | such that ||x− y||1 ≤ 1, then

P(M(x) ∈ S) ≤ eεP(M(y) ∈ S) + δ (5)

where the probability space is over the coin flips of the mechanismM. If δ = 0,M is ε-differential privacy.

For each record of every individual, the coin flips of the mechanism mean thatM inherently
has only two possible and equally likely outcomes. Specifically, differential privacy ensures that any
sequence of outputs in response to queries is essentially equally likely to occur, which probability
spaces is the coin flips of the mechanism, independent of the presence or absence of any individual.
The coin flips of the mechanism have the same mean for the following definition of local differential
privacy. According to the definition of (ε, δ)-differential privacy, the mechanismM is ε-differential
privacy with probability at least 1− δ for all adjacent databases x and y. In the follow-up section,
symbol R is the set of real numbers.

Definition 2 (`1-Sensitivity). The `1-sensitivity of a function f : N|X | → Rk is

∆ f = max
x,y∈N|X |
||x−y||1=1

|| f (x)− f (y)||1 (6)

Definition 3 (Laplace Mechanism). Given any function f : N|X | → Rk, the Laplace mechanism is defined as

ML(x, f (·), ε) = f (x) + (Y1, . . . , Yk) (7)

where Yi are independent identical distribution random variables drawn from Laplace distribution Lap(∆ f
ε ).

Definition 4 (`2-Sensitivity). The `2-sensitivity of a function f : N|X | → Rk is

∆2 f = max
x,y∈N|X |
||x−y||1=1

|| f (x)− f (y)||2 (8)

Definition 5 (Gaussian Mechanism). Given any function f : N|X | → Rk, the Gaussian mechanism is
defined as

MG(x, f (·), ε) = f (x) + (Y1, . . . , Yk) (9)
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where Yi are independent identical distribution random variables drawn from Gaussian distribution N(0, σ2)

with parameters σ ≥
∆2 f

√
2 ln( 1.25

δ )

ε and ε ∈ (0, 1).

While both Laplace mechanism and Gaussian mechanism are suitable for numerical data,
exponential mechanism and randomized response mechanism are used for categorical data. Given
some arbitrary rangeR of exponential mechanism, the exponential mechanism is defined with respect
to some utility function u : N|X | ×R → R, which maps database and output pairs into utility scores.
The sensitivity of utility scores u is

∆u = max
r∈R

max
x,y:||x−y||1≤1

|u(x, r)− u(y, r)| (10)

Definition 6 (Exponential Mechanism). The exponential mechanismME(x, u,R) selects and outputs an
element r ∈ R with probability proportional to exp( εu(x,r)

2∆u ).

Definition 7 (Local Differential Privacy). A randomized algorithmM is ε-local differential privacy if for
any possible output ξ ∈ Range(M) and for any two inputs b1, b2, then

P(M(ξ|b1)) ≤ eεP(M(ξ|b2)) (11)

where the probability space is over the coin flips of the mechanismM.

The randomized response [9] is a major perturbation mechanism of local differential privacy [17].
For example [63], for any possible output ξ ∈ {0, 1} (the top of the matrix of Equation (12)) and any
input b ∈ {0, 1}(the left side of the matrix of Equation (12)), the conditional probability matrix of the
bivariate randomized response mechanism is

( 0 1

0 eε

1+eε
1

1+eε

1 1
1+eε

eε

1+eε

)
(12)

For any possible output ξ ∈ {1, 2, . . . , n} (the top of the matrix of Equation (13)) and any input
b ∈ {1, 2, . . . , n} (the left side of the matrix of Equation (13)), the conditional probability matrix of the
multivariate randomized response mechanism is



1 2 · · · n
1 eε

n−1+eε
1

n−1+eε · · · 1
n−1+eε

2 1
n−1+eε

eε

n−1+eε · · · 1
n−1+eε

...
...

... · · ·
...

n 1
n−1+eε

1
n−1+eε · · · eε

n−1+eε

 (13)

5. Privacy-Preserving Monotonicity

Computational indistinguishability [32] is the foundation of differential privacy. Two probability
distributions are computationally indistinguishable if no efficient algorithm can distinguish them.
Considering two distributions X and Y over database x ∈ N|X |, X and Y each assigns some probabilities
to every element in x. X and Y are computationally indistinguishable, if for any probabilistic
polynomial time algorithm A there exists a negligible function negl(n) on security parameter n
such that

|P(A(x, X))− P(A(x, Y))| ≤ negl(n) (14)
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Equivalently, the variant of computational indistinguishability is

1− negl(n) ≤ P(A(x, X))

P(A(x, Y))
≤ 1 + negl(n) (15)

Let negl(n) = ε. Since eε ≈ 1 + ε for small ε, we get the equal variant of computational
indistinguishability is

e−ε ≤ P(A(x, X))

P(A(x, Y))
≤ eε (16)

Since ε is small under computational indistinguishability, we say that algorithm A cannot
distinguish these two distributions. This means that A cannot distinguish whether an element xi
sampled according to distribution X or whether an element xi sampled according to distribution Y.
The smaller ε is, the better indistinguishability is. Thus, the closer to 1 the probability ratio of two
distributions X and Y is, the better indistinguishability is. Therefore, the stronger indistinguishability
is, the bigger distinguishing error or uncertainty of an algorithm A is. Conversely, the weaker
indistinguishability is, the smaller distinguishing error or uncertainty of an algorithmA is. The stronger
indistinguishability is, the better privacy-preserving level is. The weaker indistinguishability is, the
worse privacy-preserving level is.

We can see that differential privacy definition is a generalization of computational
indistinguishability, when algorithm A is replaced with randomized algorithmM and the `1 distance
is ||x − y||1 ≤ 1. Therefore, the smaller privacy budget ε is, the stronger indistinguishability is.
Conversely, the bigger privacy budget ε is, the weaker indistinguishability is. According to the
privacy metrics and utility metrics of this paper, the smaller privacy budget ε is, the bigger the privacy
metric is and the smaller the utility metric is. Conversely, the bigger privacy budget ε is, the smaller
the privacy metric is and the bigger the utility metric is. Thus, the expected estimation error or
entropy of a differential privacy mechanism increases as privacy budget decreases, but the modulus
of characteristic function or the variant 1− NE of normalized entropy decreases as privacy budget
decreases. Conversely, the expected estimation error or entropy of a differential privacy mechanism
decreases as privacy budget increases, but the modulus of characteristic function or the variant 1− NE
of normalized entropy increases as privacy budget increases.

Therefore, the expected estimation error or entropy decreases and the modulus of characteristic
function or the variant 1−NE of normalized entropy increases as privacy budget increases. Conversely,
the expected estimation error or entropy increases and the modulus of characteristic function or the
variant 1− NE of normalized entropy decreases as privacy budget decreases. In other words, the
smaller privacy budget is, the better privacy-preserving level is and the worse the availability of data
is. Conversely, the bigger privacy budget is, the worse privacy-preserving is and the better data utility
is. According to the privacy metrics and utility metrics of this paper, the increasing of privacy metric
leads to the decreasing of utility metric as privacy budget decreases. Conversely, the decreasing of
privacy metric causes the increasing of utility metric as privacy budget increases. Thus, we only give
the monotonicity property of privacy metric of differential privacy as privacy budget changing based
on privacy metrics and utility metrics of this paper. In view of this, we can know the monotonicity
property of utility metric of differential privacy as privacy budget changing. That is to say, the
monotonicity of privacy metric can show the trade-off between privacy and utility of differential
privacy based on privacy metric and utility metric of this paper. In other words, privacy-preserving
monotonicity can show the trade-off between privacy and utility of differential privacy. According
to the model of the trade-off of differential privacy, the privacy metrics, the utility metrics, and the
identification of the problem, we have the following definition of privacy-preserving monotonicity.

Definition 8 (Privacy-Preserving Monotonicity). A privacy metric PM of differential privacy, the
privacy-preserving monotonicity is defined as PMε1 ≥ PMε2 , when ε1 ≥ 0, ε2 ≥ 0 and ε1 ≤ ε2.
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According to Definition 8 and the privacy and utility metrics of this paper, given ε1 ≥ 0, ε2 ≥ 0
and ε1 ≤ ε2, we have PMε1 ≥ PMε2 , then UMε1 ≤ UMε2 . Conversely, given ε1 ≥ 0, ε2 ≥ 0 and
ε1 ≥ ε2, we have PMε1 ≤ PMε2 , then UMε1 ≥ UMε2 . Thus, the increasing of privacy metrics
leads to the decreasing of utility metrics as privacy budget decreases. Conversely, the decreasing
of privacy metrics leads to the increasing of utility metrics as privacy budget increases. Thus, the
definition of privacy-preserving monotonicity can describe the trade-off between privacy and utility,
and it also shows that privacy-preserving level decreases as privacy budget increases and that data
utility increases as privacy budget increases. Conversely, privacy-preserving monotonicity shows
that privacy-preserving level increases as privacy budget decreases and that data utility decreases as
privacy budget decreases.

6. Privacy-Preserving Monotonicity of Several Differential Privacy Mechanisms

Since privacy budget cannot directly show the privacy-preserving level of differential privacy
mechanisms for sensitive data, the expected estimation error and entropy are used as privacy metrics
to show privacy-preserving level. Thus, we analyze the privacy-preserving monotonicity of serval
differential privacy mechanisms based on expected estimation error and entropy. Also, we analyze the
utility monotonicity of these differential privacy mechanisms based on utility metrics of modulus of
characteristic function and variant 1− NE of the normalized entropy.

6.1. Privacy-Preserving Monotonicity Based on Expected Estimation Error

Theorem 1. The EEE of Laplace mechanism decreases as privacy budget ε increases.

Proof. The probability density function of Laplace distribution is

p(x) =
1
2b

exp(−|x|
b
) (17)

where b = ∆ f
ε .

Then

EEE =
∫ +∞

−∞

1
2b

exp(−|x|
b
)|x|dx = −

∫ 0

−∞

1
2b

exp(
x
b
)xdx +

∫ +∞

0

1
2b

exp(
−x
b

)xdx = b =
∆ f
ε

(18)

Therefore, dEEE
dε = −∆ f

ε2 < 0. The EEE of Laplace mechanism decreases as privacy budget
ε increases.

The characteristic functions of Laplace mechanism can refer to literature [64] for analysis of utility
metric with privacy budget varying.

Corollary 1. The modulus |φ(t)| of characteristic function of Laplace mechanism increases as privacy budget
ε increases.

Proof. Since the characteristic function of Laplace mechanism is

φ(t) =
ε2

ε2 + ∆ f 2t2 (19)

the modulus of characteristic function of Laplace mechanism is

|φ(t)| = ε2

ε2 + ∆ f 2t2 (20)
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Thus, we can get
d(|φ(t)|)

dε
=

2ε∆ f 2t2

(ε2 + ∆ f 2t2)2 ≥ 0 (21)

Therefore, the modulus |φ(t)| of characteristic function of Laplace mechanism increases as privacy
budget ε increases.

By Theorem 1, the expected estimation error of Laplace mechanism decreases as privacy budget
increases. The privacy-preserving level of Laplace mechanism decreases as privacy budget increases.
Corollary 1 shows that the modulus of characteristic function of Laplace mechanism increases as
privacy budget increases. Thus, the data utility using Laplace mechanism increases as privacy budget
increases. According to Definition 8, Theorem 1 shows the privacy-preserving monotonicity of Laplace
mechanism. Privacy-preserving monotonicity of Laplace mechanism shows the trade-off between
privacy and utility according to the Theorem 1 and Corollary 1.

Theorem 2. The EEE of Gaussian mechanism decreases as privacy budget ε increases.

Proof. The probability density function of Gaussian distribution is

p(x) =
1√
2πσ

exp(− x2

2σ2 ) (22)

where σ =
∆2 f

√
2 ln( 1.25

δ )

ε .
Then

EEE =
∫ +∞

−∞

1√
2πσ

exp(− x2

2σ2 )|x|dx =

√
2σ√
π

=
2∆2 f

√
ln( 1.25

δ )

ε
√

π
(23)

Therefore, dEEE
dε = −

2∆2 f
√

ln( 1.25
δ )

ε2√π
< 0. The EEE of Gaussian mechanism decreases as privacy

budget ε increases.

The characteristic functions of Gaussian mechanism can refer to literature [64] for analysis of
utility metric with privacy budget varying.

Corollary 2. The modulus |φ(t)| of characteristic function of Gaussian mechanism decreases as privacy budget
ε increases.

Proof. Since the characteristic function of Gaussian mechanism is

φ(t) = exp(−
∆2 f 2t2 ln( 1.25

δ )

ε2 ) (24)

the modulus of characteristic function of Gaussian mechanism is

|φ(t)| = exp(−
∆2 f 2t2 ln( 1.25

δ )

ε2 ) (25)

Thus, we can get

d(|φ(t)|)
dε

=
2∆2 f 2t2 ln( 1.25

δ )

ε3 exp(−
∆2 f 2t2 ln( 1.25

δ )

ε2 ) ≥ 0 (26)

Therefore, the modulus |φ(t)| of characteristic function of Gaussian mechanism increases as
privacy budget ε increases.
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According to the Theorem 2, the expected estimation error of Gaussian mechanism decreases as
privacy budget increases. The privacy-preserving level of Gaussian mechanism decreases as privacy
budget increases. By Corollary 2, the modulus of characteristic function of Gaussian mechanism
increases as privacy budget increases. Thus, the data utility using Gaussian mechanism increases as
privacy budget increases. According to Definition 8, Theorem 2 demonstrates the privacy-preserving
monotonicity of Gaussian mechanism. Privacy-preserving monotonicity of Gaussian mechanism
demonstrates the trade-off between privacy and utility based on Theorem 2 and Corollary 2.

6.2. Privacy-Preserving Monotonicity Based on Entropy

To prove privacy-preserving monotonicity of exponential mechanism, we introduce the following
Cauchy-Schwarz inequality [65].

Lemma 1 (Cauchy-Schwarz Inequality). Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two sequences of real
numbers. Then

(
n

∑
i=1

aibi)
2 ≥

n

∑
i=1

a2
i ×

n

∑
i=1

b2
i (27)

with equality if and only if there is a k ∈ R such that ai = kbi for each i ∈ {1, . . . , n}.

Theorem 3. The ENT of output of exponential mechanism decreases as privacy budget ε increases.

Proof. The exponential mechanismME(x, u,R) selects and outputs an element r ∈ Rwith probability
proportional to exp( εu(x,r)

2∆u ) to utility function u : N|X | ×R → R. For convenience, we set ui =
u(x,ri)

2∆u .
Let

Hi(ε) = −
eεui

∑n
j=1 eεuj

log2
eεui

∑n
j=1 eεuj

(28)

Thus, the entropy of output is

H(ε) = −
n

∑
i=1

Hi(ε) = −
n

∑
i=1

eεui

∑n
j=1 eεuj

log2
eεui

∑n
j=1 eεuj

(29)

We have
dHi
dε

= − 1
ln 2

eεui ∑n
j=1(ui − uj)e

εuj

(∑n
j=1 eεuj)2 (εui − ln

n

∑
j=1

eεuj + 1) (30)

and

dH
dε

=
n

∑
i=1

dHi
dε

= −
n

∑
i=1

eεui ∑n
j=1(ui − uj)e

εuj

(∑n
j=1 eεuj)2 ln 2

(εui − ln
n

∑
j=1

eεuj + 1)

= − 1
(∑n

j=1 eεuj)2 ln 2
(

n

∑
i=1

eεui
n

∑
j=1

εui(ui − uj)e
εuj +

n

∑
i=1

eεui
n

∑
j=1

(ui − uj)e
εuj(1− ln

n

∑
j=1

eεuj))

(31)

Since

n

∑
i=1

eεui
n

∑
j=1

(ui − uj)e
εuj =

n

∑
i=1

eεui
n

∑
j=1

(uie
εuj − uje

εuj) =
n

∑
i=1

eεui
n

∑
j=1

uie
εuj −

n

∑
i=1

eεui
n

∑
j=1

uje
εuj

=
n

∑
i=1

n

∑
j=1

eεui uie
εuj −

n

∑
i=1

n

∑
j=1

eεui uje
εuj =

n

∑
i=1

n

∑
j=1

uieεui eεuj −
n

∑
i=1

n

∑
j=1

uieεui eεuj

= 0

(32)
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we have

dH(ε)

dε
= − 1

(∑n
j=1 eεuj)2 ln 2

n

∑
i=1

eεui
n

∑
j=1

εui(ui − uj)e
εuj

= − ε

(∑n
j=1 eεuj)2 ln 2

(
n

∑
i=1

u2
i eεui

n

∑
i=1

eεui − (
n

∑
i=1

uieεui )2)

(33)

According to Lemma 1, we get

n

∑
i=1

u2
i eεui

n

∑
i=1

eεui =
n

∑
i=1

(
√

u2
i eεui )2

n

∑
i=1

(
√

eεui )2 ≥ (
n

∑
i=1

(
√

u2
i eεui
√

eεui ))2 = (
n

∑
i=1

uieεui )2 (34)

Therefore, dH(ε)
dε ≤ 0. The ENT of output of exponential mechanism decreases as privacy budget

ε increases.

Corollary 3. The utility metric 1 − NE of output of exponential mechanism increases as privacy budget
ε increases.

Proof. According to Equation (29), the normalized entropy of output of exponential mechanism is

NE =
H(ε)

log2 n
= − 1

log2 n

n

∑
i=1

eεui

∑n
j=1 eεuj

log2
eεui

∑n
j=1 eεuj

(35)

Since dH(ε)
dε ≤ 0, the normalized entropy NE of output of exponential mechanism decreases as

privacy budget ε increases. Therefore, the utility metric 1− NE of output of exponential mechanism
increases as privacy budget ε increases.

By Theorem 3, the entropy of output of exponential mechanism decreases as privacy budget
increases. The privacy-preserving level of output of exponential mechanism decreases as privacy
budget increases. According to the Corollary 3, the utility metric 1− NE of output of exponential
mechanism increases as privacy budget increases. Thus, the data utility using exponential
mechanism increases as privacy budget increases. According to Definition 8, Theorem 3 shows
the privacy-preserving monotonicity of exponential mechanism. Privacy-preserving monotonicity
shows the trade-off between privacy and utility based on Theorem 3 and Corollary 3.

Theorem 4. The ENT of output of bivariate randomized response mechanism decreases as privacy budget
ε increases.

Proof. For any possible output ξ ∈ {0, 1} and any input b ∈ {0, 1}, the conditional probability matrix
of the bivariate randomized response mechanism is Equation (12). Let π1 denotes the proportion of
value 1 in {0, 1}. Then, the proportion of value 0 is π0 = 1− π1.

Then, we have

P(ξ = 0) = (1− π1)
eε

1 + eε
+ π1

1
1 + eε

=
(1− π1)eε + π1

1 + eε
(36)

and
P(ξ = 1) = (1− π1)

1
1 + eε

+ π1
eε

1 + eε
=

1− π1 + π1eε

1 + eε
(37)
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Thus, we get

Hξ(ε) = −P(ξ = 0) log2 P(ξ = 0)− P(ξ = 1) log2 P(ξ = 1)

= − (1− π1)eε + π1

1 + eε
log2

(1− π1)eε + π1

1 + eε
− (1− π1) + π1eε

1 + eε
log2

(1− π1) + π1eε

1 + eε

(38)

and
dHξ(ε)

dε
=

(2π1 − 1)eε

(1 + eε)2 log2
eε(1− π1) + π1

π1eε + 1− π1
(39)

Since π1eε + 1− π1 > 0, we have

eε(1− π1) + π1 > π1eε + 1− π1 ⇔ 2π1(1− eε) > 1− eε (40)

Obviously, 1− eε < 0. Thus, we have

2π1(1− eε) > 1− eε ⇔ π1 <
1
2

(41)

Similarly, 0 < eε(1−π1)+π1
π1eε+1−π1

< 1⇔ 1
2 ≤ π1 ≤ 1.

Therefore, when 0 ≤ π1 ≤ 1
2 , we have 2π1 − 1 ≤ 0 and log2

eε(1−π1)+π1
π1eε+1−π1

≥ 0, and so we can get
dHξ (ε)

dε ≤ 0. When 1
2 ≤ π1 ≤ 1, we have 2π1 − 1 ≥ 0 and log2

eε(1−π1)+π1
π1eε+1−π1

≤ 0, and so we can obtain
dHξ (ε)

dε ≤ 0. The ENT of output of bivariate randomized response mechanism decreases as privacy
budget ε increases.

Corollary 4. The utility metric 1− NE of output of bivariate randomized response mechanism increases as
privacy budget ε increases.

Proof. According to Equation (38), the normalized entropy of output of bivariate randomized response
mechanism is

NE = Hξ(ε) = −
(1− π1)eε + π1

1 + eε
log2

(1− π1)eε + π1

1 + eε
− (1− π1) + π1eε

1 + eε
log2

(1− π1) + π1eε

1 + eε
(42)

Since dHξ (ε)
dε ≤ 0, the normalized entropy NE of output of bivariate randomized response

mechanism decreases as privacy budget ε increases. Therefore, the utility metric 1− NE of output of
bivariate randomized response mechanism increases as privacy budget ε increases.

According to the Theorem 4, the entropy of output of bivariate randomized response mechanism
decreases as privacy budget increases. The privacy-preserving level of output of bivariate randomized
response mechanism decreases as privacy budget increases. By Corollary 4, the utility metric of 1−NE
of output of bivariate randomized response mechanism increases as privacy budget increases. Thus,
the data utility using bivariate randomized response mechanism increases as privacy budget increases.
According to Definition 8, Theorem 4 demonstrates the privacy-preserving monotonicity of bivariate
randomized response mechanism. Privacy-preserving monotonicity shows the trade-off between
privacy and utility based on Theorem 4 and Corollary 4.

We introduce the following Chebyshev inequality [65] to prove the privacy-preserving
monotonicity of multivariate randomized response mechanism.



Appl. Sci. 2018, 8, 2081 20 of 32

Lemma 2 (Chebyshev Inequality). Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two sequences of real numbers.
If a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn, then

n

∑
i=1

aibi ≥
1
n

n

∑
i=1

ai ×
n

∑
i=1

bi (43)

Theorem 5. The ENT of output of multivariate randomized response mechanism decreases as privacy budget
ε increases.

Proof. For any possible output ξ ∈ {1, 2, . . . , n} and any input b ∈ {1, 2, . . . , n}, the conditional
probability matrix of the multivariate randomized response mechanism is Equation (13). Let πi(i =
1, 2, . . . , n) denote the proportion of value i in {1, 2, . . . , n}. Then, ∑n

i=1 πi = 1. Moreover, ∑n
j=1,j 6=i πi =

1− πi for i ∈ {1, 2, . . . , n}.
For any i ∈ {1, 2, . . . , n}, we have

P(ξ = i) = πi
eε

n− 1 + eε
+

n

∑
j=1,j 6=i

πj
1

n− 1 + eε
=

πieε + 1− πi
n− 1 + eε

(44)

Thus, we have

Hξ(ε) = −
n

∑
i=1

πieε + 1− πi
n− 1 + eε

log2
πieε + 1− πi

n− 1 + eε
(45)

Since
d( πi eε+1−πi

n−1+eε )

dε = eε(nπi−1)
(n−1+eε)2 , then

dHξ(ε)

dε
= − eε

(n− 1 + eε)2 [
n

∑
i=0

(nπi − 1) log2(πieε + 1− πi)

−
n

∑
i=1

(nπi − 1) log2(n− 1 + eε)− 1
ln 2

n

∑
i=1

(nπi − 1)]
(46)

Here, ∑n
i=1(nπi − 1) = ∑n

i=1 nπi −∑n
i=1 1 = n ∑n

i=1 πi − n = n× 1− n = 0. Thus, we have

dHξ(ε)

dε
= − neε

(n− 1 + eε)2 [
n

∑
i=0

πi log2(πieε + 1− πi)−
1
n

n

∑
i=1

log2(πieε + 1− πi)] (47)

Let ai = πi and bi = log2(πi(eε − 1) + 1). Since the addition has the commutative law, we assume
a1 ≤ a2 ≤ · · · ≤ an. Moreover, the function log2 x is monotonically increasing and eε − 1 is also
monotonically increasing, we have b1 ≤ b2 ≤ · · · ≤ bn. According to Lemma 2, we can get

∑n
i=0 πi log2(πieε + 1− πi)

n
≥ ∑n

i=1 πi

n
× ∑n

i=1 log2(πi(eε − 1) + 1)
n

(48)

Thus,
n

∑
i=0

πi log2(πieε + 1− πi) ≥
∑n

i=1 log2(πi(eε − 1) + 1)
n

(49)

Therefore, dHξ (ε)
dε ≤ 0. The ENT of output of multivariate randomized response mechanism

decreases as privacy budget ε increases.

Corollary 5. The utility metric 1− NE of output of multivariate randomized response mechanism increases as
privacy budget ε increases.
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Proof. According to Equation (45), the normalized entropy of output of multivariate randomized
response mechanism is

NE =
Hξ(ε)

log2 n
= − 1

log2 n

n

∑
i=1

πieε + 1− πi
n− 1 + eε

log2
πieε + 1− πi

n− 1 + eε
(50)

Since dHξ (ε)
dε ≤ 0, the normalized entropy NE of output of multivariate randomized response

mechanism decreases as privacy budget ε increases. Therefore, the utility metric 1− NE of output of
multivariate randomized response mechanism increases as privacy budget ε increases.

By Theorem 5, the entropy of output of multivariate randomized response mechanism decreases as
privacy budget increases. The privacy-preserving level of output of multivariate randomized response
mechanism decreases as privacy budget increases. According to the Corollary 5, the utility metric
of output of multivariate randomized response mechanism increases as privacy budget increases.
Thus, the data utility using multivariate randomized response mechanism increases as privacy budget
increases. According to Definition 8, Theorem 5 shows the privacy-preserving monotonicity of
multivariate randomized response mechanism. Privacy-preserving monotonicity of multivariate
randomized response mechanism demonstrates the trade-off between privacy and utility based on
Theorem 5 and Corollary 5.

Furthermore, Laplace mechanism and Gaussian mechanism are applicable for categorical data
based on the entropy of continuous random variables. Since the entropy of output of Laplace
mechanism and Gaussian mechanism may be negative, we do not consider the variant 1 − NE
of normalized entropy as the utility metric of Laplace mechanism and Gaussian mechanism. We only
use the modulus of characteristic function as the utility metric of Laplace mechanism and Gaussian
mechanism. Thus, we can get the following theorems.

Theorem 6. The ENT of output of Laplace mechanism decreases as privacy budget ε increases.

Proof. The entropy of output of Laplace mechanism is

ENT = −
∫ +∞

−∞
p(x) log2 p(x)dx =

1
ln 2

(ln(2b) + 1) =
1

ln 2
(ln(

2∆1 f
ε

) + 1) (51)

Therefore, dENT
dε = − 1

ε ln 2 < 0. The ENT of output of Laplace mechanism decreases as privacy
budget ε increases.

According to the Theorem 6, the entropy of output of Laplace mechanism decreases as privacy
budget increases. The privacy-preserving level of output of Laplace mechanism decreases as
privacy budget increases. According to Definition 8, Theorem 6 demonstrates the privacy-preserving
monotonicity of Laplace mechanism. Similarly, privacy-preserving monotonicity of Laplace mechanism
demonstrates the trade-off between privacy and utility based on Theorem 6 and Corollary 1.

Theorem 7. The ENT of output of Gaussian mechanism decreases as privacy budget ε increases.

Proof. The entropy of output of Gaussian mechanism is

ENT = −
∫ +∞

−∞
p(x) log2 p(x)dx =

1
ln 2

(ln(
√

2πσ) +
1
2
) =

1
ln 2

(ln(
2∆2 f

√
π ln( 1.25

δ )

ε
) +

1
2
) (52)

Therefore, dENT
dε = − 1

ε ln 2 < 0. The ENT of output of Gaussian mechanism decreases as privacy
budget ε increases.
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By Theorem 7, the entropy of output of Gaussian mechanism decreases as privacy budget increases.
The privacy-preserving level of output of Gaussian mechanism decreases as privacy budget increases.
According to Definition 8, Theorem 7 demonstrates the privacy-preserving monotonicity of Gaussian
mechanism. Similarly, privacy-preserving monotonicity of Gaussian mechanism demonstrates the
trade-off between privacy and utility based on Theorem 7 and Corollary 2.

7. Numerical Results

In this section, we conduct numerical experiments for these conclusions of Section 6. We conduct
these numerical experiments by implementing them with MATLAB (R2013b) and run our experiments
on a desktop computer with Intel i5-2400 3.10 GHz processor, 4GB RAM, and Windows 7 platform.
The detailed parameter settings are shown in Table 2.

Table 2. Parameter setting.

Mechanism Parameter Value

Laplace mechanism
∆ f
t

∆ f = 1, ∆ f = 2, ∆ f = 3
t = 1

Gaussian mechanism
δ

∆2 f
t

δ = 0.1
∆2 f = 1, ∆2 f = 2, ∆2 f = 3

t = 1

Exponential mechanism u1, u2, u3, u4, u5

u1 = 2, u2 = 2, u3 = 2, u4 = 2, u5 = 2
u1 = 1, u2 = 3, u3 = 2, u4 = 3, u5 = 1
u1 = 1, u2 = 4, u3 = 3, u4 = 1, u5 = 1

Bivariate randomized response
π1
ε

π1 = 0.5, π1 = 0.7, π1 = 0.9
ε = 0.1, ε = 0.2, ε = 0.3

Multivariate randomized response π1, π2, π3, π4

π1 = 0.25, π2 = 0.25, π3 = 0.25, π4 = 0.25
π1 = 0.1, π2 = 0.2, π3 = 0.3, π4 = 0.4
π1 = 0.1, π2 = 0.4, π3 = 0.4, π4 = 0.1

∆ f : `1-sensitivity of Laplace mechanism. t: Parameter of characteristic function of Laplace mechanism and
Gaussian mechanism. δ: Gaussian mechanism is ε-differential privacy with probability at least 1− δ for
all adjacent databases x and y. ∆2 f : `2-sensitivity of Gaussian mechanism. u1, u2, u3, u4, u5: Utility scores
of four arbitrary outputs of exponential mechanism. π1: Proportion of input 1 of bivariate randomized
response mechanism. ε: Entropy of output of bivariate randomized response mechanism for different π1
under a fixed privacy budget ε. π1, π2, π3, π4: Probabilities of input 1, 2, 3, 4 of multivariate randomized
response mechanism.

In Figure 3, we can observe that the expected estimation error decreases as privacy budget ε

increases when using Laplace mechanism for numeric data. This is consistent with Theorem 1. Figure 4
shows that the modulus of characteristic function of query results of Laplace mechanism increases as
privacy budget increases. This verifies Corollary 1. In Figure 5, we know that the expected estimation
error of query results using Gaussian mechanism decreases as privacy budget ε increases, which is
consistent with Theorem 2. Conversely, we observe that the modulus of characteristic function of
query results of Gaussian mechanism increases as privacy budget increases from Figure 6. This further
demonstrates Corollary 2. We see that the expected estimation error increases as sensitivity increases to
Laplace mechanism and Gaussian mechanism from Figures 3 and 5. We can also conclude that expected
estimation error increases as sensitivity increases to Laplace mechanism and Gaussian mechanism
from Equations (18) and (23). Conversely, we observe that the modulus of characteristic function of
query results using Laplace mechanism and Gaussian mechanism decreases as sensitivity increases
from Figures 4 and 6. We can also conclude that the modulus of characteristic function of query
results using Laplace mechanism and Gaussian mechanism decreases as sensitivity increases from
Equations (20) and (25).
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Figure 3. Expected estimation error of query results of Laplace mechanism.
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Figure 4. Modulus of characteristic function of query results of Laplace mechanism.
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Figure 5. Expected estimation error of query results of Gaussian mechanism.
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In Figure 7, we can get the monotonically decreasing curve of entropy of output using exponential
mechanism. The result verifies Theorem 3. Figure 8 shows that the utility metric 1− NE of data
using exponent mechanism increases as privacy budget increases. This result is covered in Corollary 3.
By Theorem 3, when ε = 0 or u1(x, r1) = u2(x, r2) = . . . = un(x, rn) = 0, H(ε) has the maximal value
log2 n. At the same time, all random variables have the maximum uncertainty. Thus, this leads to the
maximum entropy and gets the best privacy preservation. At the same time, the utility metric 1− NE
is equal to 0 in Figure 8, which results in the worst availability of data.
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Figure 7. Entropy of output of exponential mechanism.

Entropy of output using bivariate randomized response mechanism decreases as privacy budget
ε increases from Figure 9. This illustrates Theorem 4. In Figure 10, the utility metric 1− NE of data
using bivariate randomized response mechanism increases as privacy budget increases. This verifies
Corollary 4. In Figure 11, we observe that Hξ(π1) (Equation (38)) monotonically increases as π1

increases to bivariate randomized response mechanism, when 0 ≤ π1 ≤ 1
2 . When 1

2 ≤ π1 ≤ 1, Hξ(π1)

is monotonically decreasing as π1 increases. Thus, Hξ(π1) has the maximal value 1 when π1 = 1
2 .

Hξ(π1) is symmetry on π1 = 1
2 . That is to say, Hξ(π1) = Hξ(1− π1) for all π1 ∈ [0, 1]. This reason is

P0(π1) = P1(1− π0) and P1(π1) = P0(1− π0). In Figure 10, the utility metric 1− NE of data using
bivariate randomized response mechanism is equal to 0 when π1 = 1

2 . Thus, this results in the worst
availability of data.
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Figure 8. Utility metric 1− NE of output of exponential mechanism.
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Figure 9. Entropy of output of bivariate randomized response mechanism.
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Figure 11. Entropy of output of bivariate randomized response mechanism under different π1.

For privacy-preserving monotonicity of multivariate randomized response mechanism, we can
also see that entropy of output decreases as privacy budget ε increases from Figure 12. This is consistent
with Theorem 5. We can obtain that the utility metric 1− NE of data using multivariate randomized
response mechanism increases as privacy budget increases from Figure 13. This demonstrates
Corollary 5. We can conclude that entropy of multivariate randomized response mechanism is
maximal value log2 n when π1 = π2 = . . . = πn = 1

n from Figure 12. At the same time, the utility
metric 1− NE of data using multivariate randomized response mechanism is equal to 0 in Figure 13,
which results in the worst availability of data.
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Figure 12. Entropy of output of multivariate randomized response mechanism.

We observe that the entropy of output using Laplace mechanism deceases as privacy budget
ε increases from Figure 14, which conforms to Theorem 6. In Figure 15, the entropy of output
using Gaussian mechanism decreases as privacy budget ε increases. The result further demonstrates
Theorem 7. For Laplace mechanism and Gaussian mechanism, we can see that the entropy increases
as sensitivity increases from Figures 14 and 15. Moreover, we also get that the entropy increases as
sensitivity increases to Laplace mechanism and Gaussian mechanism from Equations (51) and (52).
Conversely, the availability of data using Laplace mechanism and Gaussian mechanism decreases as
sensitivity increases based on Equations (20) and (25).
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Figure 13. Utility metric 1− NE of output of multivariate randomized response mechanism.
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Figure 14. Entropy of output of Laplace mechanism.
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Figure 15. Entropy of output of Gaussian mechanism.

For the research and applications of differential privacy, we can theoretically and numerically
show the privacy-preserving monotonicity of privacy metrics of the differential privacy mechanisms
to measure the trade-off between privacy and utility. According to the theoretical and numerical
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results, privacy-preserving monotonicity shows a double mean, then (i) the privacy metric decreases
as privacy budget increases, and the utility metric increases as privacy budget increases, and (ii) the
privacy metric increases as privacy budget decreases, and the utility metric decreases as privacy budget
decreases. Thus, we can conclude that a differential privacy mechanism can reach a trade-off between
privacy and utility by using privacy-preserving monotonicity.

8. Discussion

We have presented the definition of privacy-preserving monotonicity of differential privacy to
formulate the trade-off between privacy and utility. Our theoretical and experimental results show
that several existing differential privacy mechanisms can ensure privacy-preserving monotonicity.
In the following discussion, we discuss the method of seeking trade-off under semi-honest model and
analyze unilateral trade-off under rational model.

We have verified privacy-preserving monotonicity of differential privacy mechanisms. To provide
a guideline on solving trade-off, we discuss the method of differential privacy under the semi-honest
model. We denote the utility metric by using UMε under privacy budget ε. In Figure 2, since differential
privacy mechanisms ensure privacy-preserving monotonicity, the specific privacy metric PMε0 and
utility metric UMε0 have one-to-one relationship to privacy budget ε0. Thus, data curator can ensure
the trade-off between data privacy and data utility under the semi-honest model. The procedure is
as follows.

• Data curator evaluates privacy metrics PMε0 under different privacy budget ε0 for a differential
privacy mechanism.

• Since data analyst is semi-honest, data curator chooses desirable privacy budget ε0 according to
the corresponding privacy metric PMε0 .

• Data curator adding noise to the queries results using differential privacy mechanism under
desirable privacy budget ε0.

From the above steps, a differential privacy mechanism can achieve the trade-off between privacy
and utility under semi-honest model. Therefore, privacy-preserving monotonicity of formulating
trade-off is beneficial to data curator under semi-honest model. However, we see the data are
completely not available under a tiny privacy budget for data analyst. Data curator benefits to protect
data privacy, but data analyst has no choice on the data utility. Thus, trade-off of a differential privacy
mechanism may lead to utility disaster of engineering implementation under semi-honest model.

Thus, we need to consider the rational model. Next, we discuss whether the trade-off between
privacy and utility exits under rational model. Rational data curator and rational data analyst hope
to the maximum privacy-preserving level and the maximum data utility, respectively. However, the
protection strategies of data curator and the analysis strategies of data analyst are mutually restrictive
in non-interactive model or interactive model. Considering rational data curator and rational data
analyst, both of them hope to get expected privacy-preserving and expected data utility. Thus, based
on the privacy-preserving monotonicity of differential privacy mechanism, data curator can achieve
expected privacy preservation, but this may lead to utility disaster. Similarly, data analyst can achieve
expected data utility by negotiation with data curator, but this may lead to privacy leakage of data
curator. Data curator and data analyst can only achieve unilateral trade-off under rational model.
Therefore, the trade-off between privacy of data curator and utility of data analyst cannot be achieved
under the rational model.

Privacy-preserving monotonicity shows the trade-off between privacy and utility under the
semi-honest model. However, unilateral trade-off would create a unilateral benefit of the data
curator or data analyst under rational model. As a result, unilateral trade-off boosts (or degrades)
privacy-preserving of data curator and reduces (or improves) data utility of data analyst. Therefore,
it is needed to modify differential privacy with multilateral negotiation, which can achieve expected
privacy-preserving and expected data utility of differential privacy under rational model. This resolves
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the restriction of unilateral trade-off and ensures the expected privacy-preserving of data curator and
expected data utility of data analyst.

9. Conclusions

We proposed the definition of privacy-preserving monotonicity of differential privacy based
on privacy metrics and utility metrics of this paper, which is a measurement of the trade-off
between privacy and utility. According to the privacy metrics of expected estimation error and
entropy, our theoretical and numerical results showed that several differential privacy mechanisms,
such as Laplace mechanism, Gaussian mechanism, exponential mechanism, bivariate randomized
response mechanism, and multivariate randomized response mechanism, ensure privacy-preserving
monotonicity. In addition, we theoretically and numerically analyzed the utility monotonicity of
these differential privacy mechanisms based on utility metrics of modulus of characteristic function
and variant of normalized entropy. Finally, based on privacy-preserving monotonicity of differential
privacy, we presented the method of seeking trade-off under a semi-honest model and discussed
unilateral trade-off of differential privacy under rational model. Privacy-preserving monotonicity
is helpful to explore privacy-preserving mechanisms requiring the trade-off between privacy and
utility under the semi-honest model. However, privacy-preserving monotonicity resulting in the
unilateral trade-off can lead to bad results of differential privacy under a rational model. In future
work, we will resolve the restriction of unilateral trade-off by modifying differential privacy definitions
using multilateral negotiation.
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c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Notation and Problem Statement
	Model of Trade-Off
	Threat Model
	Privacy and Utility Metrics
	Problem

	Differential Privacy
	Privacy-Preserving Monotonicity
	Privacy-Preserving Monotonicity of Several Differential Privacy Mechanisms
	Privacy-Preserving Monotonicity Based on Expected Estimation Error
	Privacy-Preserving Monotonicity Based on Entropy

	Numerical Results
	Discussion
	Conclusions
	References

