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Featured Application: Paper compares the adaptive non-linear controller using the evolution
strategies with the linear PI-controller on a non-linear robotic control plant.

Abstract: The majority of non-linear systems nowadays are controlled online using rapid PI-controllers
with linear characteristics. Evolutionary algorithms are rarely used, especially for online adaptive
control, due to their time complexity. This paper proposes an online adaptive controller based on a
dynamic evolution strategy and attempts to overcome this performance problem. The main advantage
of the evolution strategies over other gradient machine learning algorithms is that they are insensitive
to becoming stuck into local optima. As a result, the proposed controller is capable of responding in
real-time (sampling time between 1–5 ms) and was tested on a non-linear, single-degree-of-freedom
robotic mechanism. To the extent of our knowledge, this is the first application of evolutionary
algorithms in such an online control. In general, the results obtained were better than the results
achieved using a traditional PI-controller.

Keywords: evolution strategies; dynamic optimization problem; online adaptive control; non-linear
control plant; PI-controller

1. Introduction

Evolutionary Algorithms (EAs) are stochastic, population-based, nature-inspired search
algorithms especially suitable for solving complex and multi-dimensional NP-hard optimization
problems [1]. The principles underlying these algorithms are found in Darwinian evolutionary
theory [2], where fitter individuals have better chances of surviving under crude environmental
conditions and subsequently pass their advantageous characteristics on to their offspring. Basically,
these are also adaptive because they can adapt to the fitness landscape throughout the evolutionary
search process [3]. This process is focused on exploring as yet undiscovered and promising regions of
the search space, whereby the current best solution can be further improved.

Although the majority of EAs are suitable for solving static problems where the fitness
landscape [4] does not change over time, dynamic problems have become more and more amenable to
being solved with EAs due to the rapid development of computer technology. In dynamic problems,
objective function changes over time and thus delineates the so-called ”dynamic fitness landscape” [3].
These changes can occur either after some predefined number of generations or, more commonly,
in each generation, where the online responses are desired by the EAs. These kinds of problems
typically occur in engineering control systems, where they must respond to changes as rapidly
as possible.
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In general, two obstacles have restricted the application of EAs in solving dynamic problems:

• their stochastic nature,
• their time complexity.

The stochastic nature of EAs appears due to the use of the random generator in constructing
new solutions, and in the worst case means that, at a particular step in the optimization process,
solutions cannot be improved any further. As the majority of the problems in physics are distinguished
by their stochastic nature, EAs have been became a useful tool for solving the variety of the problems
in physics and astronomy [5,6]. EA’s time complexity is related to the fact that EAs maintain a
population of individuals during the evolutionary process, where a mixing of the elements between
individuals allows offspring to preserve the best characteristics of their parents and pass them on to
future generations. This means that, unlike traditional deterministic algorithms, EAs cannot find a
suitable solution in only a few steps, but only after carrying out time-consuming calculations.

Researchers from the EA community have been endeavoring to apply these algorithms in
dynamic environments for over two decades. One of the first attempts to track the optimum in
simple dynamic environments was proposed by Bäck [7] using the capabilities of Evolution Strategies
(ES) and Evolutionary Programming (EP), which have extensively been used for reinforcement
learning [8], fluid dynamics [9] and credit risk evaluation [10]. Branke and Schmeck recognized the
importance of dynamic optimization problems for the EA community in real-world problems. In line
with this, they have suggested two design approaches for building EAs in dynamic environments:
memory-based and multi-population-based. Simões and Costa [11] developed a memory-based
EA for evolving the best solution and predictor module based on the Markov chain for predicting
the possible appearance of an environment in the next change. A theoretical study of dynamic
fitness landscapes was conducted by Richter [12], while the effects of population diversity on EAs in
dynamic environments were studied by Hughes [13]. Among others, EAs have also successfully been
applied for improving reliability and efficiency of technological equipment [14]. On the other hand,
differential Evolution (DE) has frequently been applied to dynamic optimization by solving a suite of
benchmark functions, as for example at the Competition on Evolutionary Computation in Dynamic
and Uncertain Environment, held during the 2009 IEEE Congress on Evolutionary Computation
(CEC) [15,16]. Additionally, optimal DC-motor control [17] and quantum computing [18] have been
conducted using EAs. More information on EAs for dynamic environments can be found in review
papers [19,20]. Finally, alternative ways of solving NP-hard problems on heterogeneous networks
were introduced in [21,22].

The purpose of our study is to build an online adaptive controller using ESs for a dynamic
non-linear control plant. The task of this controller is to minimize the difference between a desired
input value and measured output value (also tracking error) obtained as a response by the controlled
system. On the other hand, the optimal tracking error value must be obtained as quickly as possible.
This means that in practice, such a controller, belonging to a class of fast mechatronic devices, must react
within 1–5 ms. When a system is capable of responding within the mentioned interval, this response is
treated as the online response. Typically, controls for systems requesting online response have until
now been provided using PI-controllers with a proper parameter setting obtained after a lengthy
parameter tuning process [23]. These controllers are linear in nature and have limited capabilities
in controlling non-linear systems. The proposed adaptive controller using EAs is therefore better
suited to this task and represents a novelty in control technique because, as far as we know, EAs have
not been used for these purpose before. Although some authors have already tried to build an
adaptive controller using an Artificial Neural Network (ANN) [24,25], the ANN-learning process
usually became stuck in local optima, causing the ANN to crash.

In our study, we try to overcome both obstacles that occur when solving dynamic problems with
EAs by focusing on Evolution Strategies (ES). ES are one of the older members of the EA family suitable
for global optimization, and were originally introduced by Rechenberg [26] and Schwefel [27] at the
Technical University of Berlin in 1970. Due to an increase in the reactive behavior of the proposed
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adaptive controller, the single-membered Dynamic Evolution Strategies (DES) algorithm denoted as
(1+1)-DES was chosen, because a single-membered population does not require long-term calculations.
On the other hand, the inherited self-adaptation feature allows changes made in the current individual
to better track the modifications of input values due to a characteristic of the Gaussian perturbation,
where smaller changes are more likely than larger ones.

Interestingly, the (1+1)-DES is not executed in a disembodied computer system, but is moved into
the hardware, where it acts autonomously. Consequently, the fitness function cannot be calculated
from the phenotype directly, but must be evaluated on the basis of its behavior in the environment in
which it acts [28]. Actually, the environment is expressed as a difference between the desired (reference)
and actual (measured) value obtained from the controlled system. Unfortunately, the measured value
is not known at the moment when it is needed for the evaluation. Therefore, this value must be
predicted using the so-called surrogate model [29]. In our study, the surrogate model is implemented
using Artificial Neural Networks (ANN) capable of modeling highly non-linear systems [30,31]. As a
result, the proposed Online Adaptive Controller based on dynamic ES (OAC-DES) consists of two
components: (1+1)-DES for dynamic optimization and ANN for fitness function prediction.

The OAC-DES was used in controlling the highly non-linear laboratory setup (i.e., non-linear,
single-degree-of-freedom robotic mechanism) in which velocity control was tested. Thus, the behavior
of the proposed adaptive controller was compared with the behavior of the traditional PI-controller in a
velocity control response test in real-time. The results obtained for the OAC-DES were very promising
and showed significant potential for the future.

We should note that the aim of the present paper is to show that the proposed (1+1)-DES can be
applied in solving dynamic optimization problems in real-time. Therefore, no rigorous theoretical
analysis of the stability of the overall OAC-DES system is provided here. This study was just based
on the fact that (1+1)-DES algorithm is asymptotically stable, as was proven in the sources [26,27].
Actually, the last assertion presents the theoretical basis for the analysis of an asymptotic stability of
the controlled system for the future work.

The structure of the remainder of this paper is as follows: Section 2 describes the laboratory setup
and presents the characteristics of the controlled system in detail. In Section 3, evolutionary algorithms
for dynamic environments are presented. First, the ANN fundamentals necessary for understanding
the principles of fitness function evaluation are discussed followed by an outline of the proposed
(1+1)-DES algorithm. The experiments and their results are the subject of Section 4. The paper
concludes with Section 5, which offers suggestions for future research.

2. Laboratory Setup

The OAC-DES proposed in this paper was tested in a carefully designed laboratory setup in order
to demonstrate possibility of using the (1+1)-DES as an optimization algorithm for online adaptive
control. The laboratory setup was comprised of three elements:

• a non-linear, single-degree-of-freedom robotic mechanism,
• a controller,
• a computer system with power electronics.

The central device was a non-linear mechanism with a DC-motor windings electrical time constant
of approximately 1 ms and a mechanical time constant varying from 5 ms to 25 ms. The latter
varies depending on the mode of the non-linear mechanism made by spring and sliding gear-box
(see Figure 1). The non-linear mechanism is controlled by a controller with current and velocity
feedback control loops. The computer system is used to create an online run-time environment, and the
power electronics to amplify and transform the signals. In the following subsections, these elements
are described in detail.
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(a) (b)

Figure 1. A non-linear robotic mechanism: (a) front view, (b) back view.

2.1. Non-Linear, Single-Degree-of-Freedom Robotic Mechanism

Used robotic device (also non-linear robotic mechanism) is a single-degree-of-freedom mechanism
that is simulated by an eccentric coupling with a spring to create a changeable and repetitive torque.
It can be further partitioned into the following elements:

• DC-motor (ESCAP 28D11-219P) with a nominal voltage of ua = 12 V, nominal current ia = 1.5 A,
nominal velocity ωnom

a = 600 rad/s, inertia moment Jm = 17.6 × 10−7 kgm2, viscous friction
coefficient Bm = 1× 10−7 Nms/rad and nominal torque T = 28.4× 10−3 Nm.

• Incremental encoder Omron E6B2-CWZ1Y of resolution 2000 pulses/rev (electronically multiplied
by four to reach resolution 8000 pulses/rev), mechanically connected directly to the axis of the
DC-motor using elastic coupling.

• Sliding gear-box with transmission ratio i = 11.25 used to produce unexpected slips (unexpected
load torque disturbances) between the primary and secondary axis of the sliding gear-box.
The friction between both gear-wheels can be adjusted by a clamping screw which can move
the bearing of the secondary gear-wheel left or right and thus adjust the amplitude of the slide
between both gear-wheels. Maximum rotational velocity on the secondary side of the sliding
gear-box is ωmax

a = 45 rad/s.
• The non-linear robotic mechanism with a spring used to drive the DC-motor from the motor to

generator regime and vice versa, thus producing the repeatable load torque disturbances.

Repeatable load torque disturbances produced by the non-linear robotic mechanism with spring
require that the DC-motor produces variable drive torque. The latter varies between the minimum and
maximum torques, causing the DC-motor to switch to the generator regime and vice versa. When the
secondary axis is rotated 90◦, the load torque reaches its maximum peak, and at the moment of
rotation, the sliding gear-box usually slides between both contact surfaces. Furthermore, a singular
point emerges between the minimum and maximum points when the drive torque is zero. The singular
point is presented in Figure 2.

In the remainder of this section, we provide a detailed description of the controller, along with
proof of non-linearity of the robotic mechanism.
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Figure 2. A non-linear robotic mechanism: overview of singular position.

2.2. Controller

The controller, illustrated in Figure 3, consists of a non-linear mechanism that is controlled by
the inner current (faster) and outer velocity (slower) feedback controllers. Current control is designed
using the linear PI-antiwindup controller with sampling time Tsc. The velocity controller runs at
sampling time Tsv and can be implemented either as a classical PI-antiwindup or as the proposed
OAC-DES controller, using a simple switch to select the desired mode. To guarantee equal conditions
for both velocity controllers, the same sampling times are taken. Antiwindup controllers are used to
prevent the integral (I element in PI-controller) windup that can cause sudden increases of a control
variable and cause saturations of the non-linear robotic mechanism.

Evolutionary process
of (1+1)-DES

(see Algorithm 1)
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Figure 3. Block scheme of controller with design of the OAC-DES.

As can be seen from Figure 3, design of the OAC-DES (presented in the upper rectangle) is
more complex than the linear PI-controller, because of the coexistence of the (1+1)-DES and ANN.
Although two ANNs are denoted in the OAC-DES box, i.e., ANN-learning and ANN-simulation, only a
single ANN is used, although it plays two different roles. At first, ANN-learning is used to model the
behavior of the estimated velocity ω̂ according to the actual rotational velocity ωa in real time. Next,
the learned ANN is used to predict the velocity ω̂ in the ANN-simulation needed for the calculation of
the fitness function in (1+1)-DES. It is noteworthy that both phases, i.e., ANN-learning and (1+1)-DES
are run sequentially one after another within one velocity sampling time Tsv. In each velocity sampling
time Tsv, weights are updated according to the behavior of the control plant.

To prove that the control plant is really non-linear, a simple test was performed. Using the
actual rotational velocity ωa and reference current of a DC-motor ir, a non-linear characteristic was
simultaneously recorded. The latter was varied within the interval [−1,+1] A, and the actual rotational
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velocity ωa was recorded. As a result, the double hysteresis-like curve of the non-linear characteristics
ωa = f (ir) was obtained, as shown in Figure 4.

Figure 4. Non-linear characteristic ωa = f (ir) of the robotic mechanism.

Figure 4 shows the measured non-linear characteristic. First, when the reference current was
increased, the DC-motor did not move due to the load of the spring. Next, when the reference
current was increased still further, the DC-motor started to move, but did not rotate. By even
further increasing the current, the DC-motor overcame the load at some point. As a consequence,
the non-linear robotic mechanism started rotating at maximum velocity (the sudden jump of the blue
line). Finally, additional increases in the reference current ir did not results in any further acceleration
of the DC-motor.

Once rotating, the DC-motor did not react to slight decreases in the reference current. A significant
decrease in ir was needed to reduce velocity, and two additional reference decreases were necessary to
fully stop the DC-motor. Stopping the DC-motor was somewhat more gradual than starting it had
been. The difference can be explained by static friction in the DC-motor and load, which is present
only when starting the DC-motor.

2.3. Computer System with Power Electronics

A computer system with power electronics is both the brain and the heart of our application.
A modern digital signal controller (DSC), together with a current sensor, are used as a computer
system, while a motor driver and power supply unit (PSU) serve as power electronics. The former
collects and processes necessary information, and enables execution of control algorithms. Actually,
it is a hardware into which the (1+1)-DES is embedded. The latter delivers information received as a
commands from the computer system to the DC-motor.

The following computer configuration is employed in our study:

• digital signal controller Texas Instruments TMS320F28377S Delfino,
• current sensor Allegro ACS712,
• motor driver STM L298N,
• power supply unit InterTech CombatPower CP-650W Plus.

The DSC architecture consists of two computer components: the central processing unit (CPU)
and control law accelerator (CLA). These can both run on clock frequency 200 MHz in hardware
parallelism and execute 800 million instructions per second (MIPS), which provides the means for the
online execution of OAC-DES.

The control program is thus divided into two parts: the two linear controllers which run on the
CLA accelerator (coprocessor), and the main management program, together with OAC-DES and
ANN, which run on the CPU. Table 1 specifies the most important properties of TMS320F28377S [32].
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Table 1. Common characteristics of TMS320F28377S.

Characteristics CPU CLA

Processing speed 400 MIPS 400 MIPS
Clock Frequency 200 MHz 200 MHz
Flash size 1024 kB 512 kB
RAM size 164 kB 132 kB
No. of ADC ch. up to 24 ch. up to 24 ch.
Programming language C, ASM ASM

The current sensor operates on the Hall Effect. Its input is connected to the DC-motor, while the
output goes to the DSC. It is then incorporated into the CPU using an A/D conversion. If the current
sensor weakens the power of the DC-motor to receive usable information, then the motor driver does
the opposite, i.e., strengthens the information to power the DC-motor. The PSU guarantees that the
computer system and motor driver are well supplied.

3. Implementation of the OAC-DES

Many of the problems with which people are confronted today are dynamic in nature. This means
that environmental conditions are not static, but change over time. In EAs, these changes often affect
the real-time fitness function, whereby the optimal solution at one time is non-optimal at another and
vice versa. Algorithms for solving dynamic problems must therefore [3]:

• be aware of the changing environment,
• respond to environmental changes efficiently.

Usually, the first condition can be met by using additional memory, where a redundant individual
(also called a sentinel) is used in the population. The change in the fitness landscape is detected due to
the change of the fitness function value. Indeed, the fitness value is changed after the environment has
been changed. The prerequisite for the second condition is sufficient population diversity that allows
the already converged population at the most recent optimum to search for the new optimum in a
changed fitness landscape.

Classical EAs suffer from a lack of reactivity due to maintaining the population of the solution.
Although this population allows EAs to find a near-optimum solution in many cases, the time needed
for finding it is unsuitable for systems in real situations, in which the so-called feedback control
systems must respond to a sequence of cause-and-effect relationships among the system variables.
The theory of feedback control systems [33] asserts that for mechanical time constants of non-linear
robotic mechanisms, a suitable sampling time should be between Tsv ∈ [1, 5] ms. This means that when
the EAs are applied in the feedback control system, small populations with rapid responses should be
achieved to limit the time complexity. Consequently, the most suitable EAs for this purpose are most
certainly Evolution Strategies (ES) [34] that are, in their simplest configuration (1+1)-ES, capable of
maintaining only one population member, and are therefore not too time complex. Additionally,
ES also support self-adaptation, which is indispensible in achieving the fast response time of this
feedback system.

Unfortunately, the (1+1)-ES cannot be run autonomously on the computer system, because of
fitness function evaluation. This evaluation actually demands an immediate response from the
feedback control system, where a behavior of the generated solution needs to be estimated. This means
that the wrong solutions generated by (1+1)-DES could cause faulty operation of the control system,
resulting in damage. At the same time, however, changing the test values of the real control system
online is time consuming and therefore inappropriate for real-time processing. Therefore, in our study
the evaluation is not performed on the real system directly, but is predicted using ANN-simulation.
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However, reliable prediction by an ANN-simulator is possible only when it is conducted on the
regularly learned ANN. Consequently, ANN-learning must be launched before ANN-simulation in
each sampling time. The OAC-DES consists of three algorithms:

• ANN-learning,
• (1+1)-DES,
• ANN-simulation.

In the remainder of this paper, these OAC-DES algorithms are presented in detail.

3.1. ANN-Learning

ANNs are a universal tool for system modeling [35]. During the modeling, the ANN searches
for an optimal mapping of the input to the output values. In our case, the main goal of the modeling
is to incorporate the aforementioned non-linearity into the modeled system. This non-linearity is
recognized during the ANN-learning process in which the proper ANN model is constructed on the
basis of known pairs of input and output values. The learned ANN model is then capable of predicting
output values according to the unknown input during the ANN-simulation.

The principle of ANN-learning, launched at the start of each sampling time before (1+1)-DES
optimization, is presented in Figure 5, from which it can be seen that the ANN consists of two inputs,
n-neurons in hidden layer ”J”, and one neuron in output layer ”L”. Linear activation functions are used
for neurons in both the hidden and output layers [36]. The two inputs enter the ANN-learning block,
i.e., the reference current ibest

r (k) and previous actual rotational velocity ωa(k− 2), while the output
value returns the estimated rotational velocity ω̂(k− 1), where k denotes the observed sampling time
Tsv. In the feedback system, the supervisory back-propagation (BPG) learning algorithm is engaged for
modifying the weights in the hidden and output layers. Thus, the BPG learning algorithm is guided
by decreasing the magnitude of tracking error on the one hand, and the learning pace controlled by
two learning rates, i.e., the hidden layer learning rate εJ and output layer learning rate εL, on the other
hand. The task of the BPG algorithm is to decrease the tracking error as much as possible.

ω (k-2)a

ω (k-1)

ω   (k-1)a

besti (k)r

+

-

learning
value of ANN

Inputs
Hidden ”J”

layer
Output ”L”

layer

estimated

non-linear robotic
mechanism

Figure 5. Online ANN-learning.

Practically speaking, we realized that two simple rules apply with regard to BPG learning rates:
(1) the higher the learning rates εJ and εL, the more rapid the ANN-learning, and (2) divergence and
instability may occur when the learning rates are set too high. Additionally, wrong starting weights
may have a crucial influence on the stability of the system. Therefore, it is important to start the
control process with proven weights found during so-called introductory ANN-learning, as described
in detail below.
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In summary, two diverse inputs in the ANN guarantee that it is equipped with enough information
history for proper modeling. It is particularly important to keep the number of neurons in the input
and hidden layers as low as possible. There are two reasons for this: (1) the learning process increases
in complexity as the number of neurons increases, and consequently an extra time is needed for
back-propagation, which is not suitable for real-time operation, and (2) the momentum problem occurs,
whereby the ANN-simulation cannot predict the result properly due to low effect of the best reference
current ibest

r (k + 1). By increasing the number of neurons, the variation of ω̂ is lowered and therefore
modeling becomes inaccurate. As a result, choosing the proper number of neurons in the hidden layer
is crucial for system stability.

Introductory ANN-Learning

Introductory ANN-learning, or ANN-learning from scratch, usually takes a long time. Initial ANN
weights are set using a random number generator. The purpose of introductory ANN-learning is
to build a model based on the input/output pairs obtained from the control plant, which is good
enough to be used as a stepping stone in the continuing operation of the OAC-DES. This learning
should guarantee favorable starting weights of the ANN and thus prevent crashing of the OAC-DES
controller. This is done by first running introductory ANN-learning until convergence occurs, and then
storing the obtained weights in permanent memory. These then guarantee a stable and accurate start.
However, this does not mean that ANN-learning cannot improve the weight values during OAC-DES
operation. On the contrary, it only ensures that the controller does not crash instantly. The weights are
then further improved during OAC-DES operation.

During introductory ANN-learning, the learning rates are lowered to the minimum in order to
enable slow learning and to prevent instability of the non-linear robotic mechanism.

3.2. Evolutionary Algorithm in OAC-DES

In our study, the EA was moved from the disembodied computer system into real hardware
in a dynamic environment, where it acts autonomously. In line with this, the fitness of solutions
could not be calculated directly from a phenotype of solution, but had to be obtained after
observation of how the phenotype reacted to the conditions of the dynamic process governed by the
environment [37]. Thus, the behavior of the phenotype was evaluated after the solution was exposed
to the dynamic conditions of the environment. Consequently, the traditional three-step evaluation
chain genotype-phenotype-fitness was replaced by the four-step genotype-phenotype-behavior-fitness
chain [29].

Moreover, evaluating the behavior of the solution in real-world systems presents another problem
due to the need for long-term calculations. Therefore, a so-called surrogate model [29] was used to
employ computationally cheaper models in place of full fitness function evaluations. As a result, in our
study the behavior of the solution is predicted using ANN-simulation.

In what follows, the fundamentals of ES are discussed, after which the proposed (1+1)-DES
algorithm is illustrated in detail.

3.2.1. Theory of ES

ES are especially suitable for solving global optimization, high-dimensional problems because
of their insensitivity to becoming stuck in local optima. Normally, each individual in a population of
solutions is represented as a real-valued vector:

x(t)i = (x(t)i,1 , . . . , x(t)i,n )
T , for i = 1, . . . , µ, (1)

where µ denotes the population size and n is a dimension of the problem to be solved.
The classical ES operates with a mutation only. As a mutation operator, a Gaussian perturbation

is implemented. However, an uncorrelated mutation with one step size [38] was used in our study.
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This mutation requires expansion of the original representation of an individual x(t)i with an additional

control parameter σ
(t)
i , as follows:

x(t)i = (x(t)i,1 , . . . , x(t)i,n , σ
(t)
i )T , (2)

where σ
(t)
i designates the mutation step size (also mutation strength). Actually, the individual is

modified according to the following equations:

σ
(t+1)
i = σ

(t)
i · e

τ·N(0,1),

x(t+1)
i,j = x(t)i,j + σ

(t+1)
i · Ni(0, 1),

(3)

where τ ∝ 1√
n represents a learning rate and N(0, 1) is the random number drawn from the Gaussian

distribution with mean zero and standard deviation one. To avoid σ
(t+1)
i falling too close to zero, the

following boundary rule is used:

σ
(t+1)
i < ε0 ⇒ σ

(t+1)
i = ε0, (4)

where ε0 is some predefined small value.
The mutation scheme represented in Equation (3) allows the process of self-adaptation, where the

control parameters are included in the representation of individuals in Equation (2) and undergo the
consequences of operating the mutation operator together with problem variables.

Normally, uniform random parent selection is used in ES, while two population models are
typicaly employed, i.e., (µ, λ)-ES and (µ + λ)-ES. The first model generates λ offspring from a
population of µ parents, from which the best µ offspring are preserved in the next population. In the
second model, the λ offspring are generated from the population of µ parents that compete with their
parents for a place in the next generation. A ratio between the number of generated offspring and
parents of approximately λ/µ ≈ 7, as found throughout most experimental work [34], is a prerequisite
for successful self-adaptation.

Additionally, the evolutionary process can operate correctly in ESs only when a proper initial
mutation step size σ0 is used. The proper range of step size values within which the search process can
take place is called the evolution window. This, however, depends on the problem in question and
must be determined during experimentation.

3.2.2. The Proposed (1+1)-DES

A characteristic of the feedback control system is that it responds to the desired input value (cause)
with a measured output value (effect) such that the error tracking value becomes as small as possible.
Thus, the response of the system must be instantaneous if we wish to build a purely reactive system.
This assumption requires that the decision feedback response takes less than 5 ms. In our study,
the decision-making process governing this response is entrusted to the single membered (1+1)-DES.
Because we are dealing with a non-linear, single-degree-of-freedom robotic mechanism, we must solve
the 1-dimensional optimization problem. Although the question may arise as to why EAs were used
for solving such a seemingly trivial problem, it can be asserted that an increase in problem dimension
would not have had a crucial influence on the performance of the proposed algorithm.

In each generation g, the proposed algorithm maintains two individuals x(g)
orig = (x(g)

orig, σ(g))T and

x(g)
init = (x(g)

init, σ0)
T . The first individual x(g)

orig denotes an evolution of the original solution, where the

regular mutation step size σ(g) normally decreases in each generation due to the multiplicative process
in Equation (3), and thus allows smaller and smaller modifications of the problem variable x(g)

orig.

The second individual x(g)
init starts the evolution process using initial mutation step size σ0 in each
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generation anew, and thus allows for larger modifications of the problem variable x(g)
init. However,

the better of the two individuals according to the fitness function is preserved in the new best solution
x(g)

best = (x(g)
best, σ

(g)
best)

T .
The effect of using two different individuals in the (1+1)-DES is depicted in Figure 6, from which

reactions of the algorithm to the hypothetical step signal can be viewed. Practically speaking,
the modifiable regular step sizes σ(g) are used to retain the current level (horizontal step signal)
and to move the constant larger, initial ones σ0 to a higher/lower signal level (vertical step signal).

In summary, the pseudocode of the proposed (1+1)-DES is illustrated in Algorithm 1, from which
it can be seen that the proposed algorithm is launched at every sampling time Tsv ∈ [1, 5] ms
using the following parameters: desired (reference) velocity ωr(k), measured velocity ωa(k − 1),
regular reference current ir(k) and mutation step size σ, respectively. Actually, the last two parameters
represent the starting point for the evolutionary search process. In each generation, two individuals
xorig and xinit using different search strategies (i.e., different starting mutation step sizes) compete with
each other to become the current best solution xbest. Finally, the (1+1)-DES algorithm returns this best
solution consisting of the best reference current ibest

r (k + 1) and σ as optimized by the (1+1)-DES,
and the best velocity ω̂

(g+1)
best (k) as predicted by the ANN. Moreover, the best reference current

is put on the control plant, and thus controls the velocity controller. Interestingly, the algorithm
consists of two functions: (1) the ’evaluation’ implementing Equation (5) and (2) the ’mutation’
implementing Equation (3). We should emphasize that two fitness function evaluations are launched
in each generation.

Algorithm 1 Pseudocode of (1+1)-DES
Input: Reference ωr(k), measured ωa(k− 1), reference ir(k) and σ.

Local: x(g)
orig = (x(g)

orig, σ
(g)
orig)

T , x(g)
init = (x(g)

init, σ
(g)
init)

T , and x(g)
best = (x(g)

best, σ
(g)
best)

T

Output: The best reference ibest
r (k + 1), σ and ω̂(k).

1: x(0)orig = 〈ir(k), σ〉; {initialization of an original solution}

2: x(0)init = 〈ir(k), σ0〉; {initialization of an initial solution}

3: x(0)best = x(0)orig; {initialization of the best solution}

4: 〈 f (0)best, ω̂
(0)
best(k)〉 = evaluate(ωr(k), ωa(k− 1), x(0)best); {current fitness}

5: for g = 0 to MAX_GEN− 1 do

6: x(g+1)
orig = mutate(x(g)

orig); {uncorrelated mutation according to Equation (3)}

7: 〈 f (g+1)
orig , ω̂

(g+1)
orig (k)〉 = evaluate(ωr(k), ωa(k− 1), x(g+1)

orig );

8: x(g+1)
init = mutate(x(g)

init); {uncorrelated mutation according to Equation (3)}

9: 〈 f (g+1)
init , ω̂

(g+1)
init (k)〉 = evaluate(ωr(k), ωa(k− 1), x(g+1)

init );

10: if f (g+1)
init < f (g+1)

orig then

11: x(g+1)
orig = x(g+1)

init ; f (g+1)
orig = f (g+1)

init ; ω̂
(g+1)
orig (k) = ω̂

(g+1)
init (k);

12: end if {long-step search prevailed?}

13: if f (g+1)
orig < f (g+1)

best then

14: x(g+1)
best = x(g+1)

orig ; f (g+1)
best = f (g+1)

orig ; ω̂
(g+1)
best (k) = ω̂

(g+1)
orig (k);

15: end if {best solution found}

16: end for

17: return 〈x(g+1)
best , ω̂

(g+1)
best (k)〉; {the final solution: x(g+1)

best = 〈ibest
r (k + 1), σ〉}
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Figure 6. Effect of the different mutation step sizes on optimization results.

3.3. ANN-Simulation

Fitness function evaluation is the most complex task in the (1+1)-DES, because the quality of
the solution cannot be calculated directly, but must be determined by evaluating its behavior in
real environmental conditions. Due to the time complexity of this estimation, the fitness evaluation
is instead performed using ANN-simulation, which presents the surrogate model. In our study,
the behavior of each solution is actually predicted using ANN-simulation as depicted in Figure 7,
from which it can be seen that the same two inputs used in ANN-learning also enter into the
ANN-simulation. The former is obtained from the non-linear robotic mechanism and denotes the
measured velocity ωa(k− 1), while the latter shows the output from the (1+1)-DES and denotes the
trial solution reference current itrial

r (k + 1) (actually x(g)
trial), where trial = {orig, init} determines whether

either the original or the initial solution is evaluated, respectively. The output from the ANN-simulation
presents the predicted velocity ω̂

(g)
trial(k) that enters into the fitness function calculation. This predicted

value is then subtracted from a reference velocity ωr(k) (i.e., desired value), and the difference is
squared to obtain the fitness function value. In other words, the fitness function is defined as:

f (x(g)
trial) = (ωr(k)− ω̂

(g)
trial(k))

2, (5)

where the square of the difference between the reference ωr(k) and predicted velocity ω̂
(g)
trial(k) ensures

that the difference is always positive. The task of the (1+1)-DES is to minimize the value of the fitness
function, with actual ωa(k− 1) and reference velocities ωr(k) held constant during the single sample
time interval.

evaluate

(1+1)-DES

ω  (k)r

ω  (k-1)a

ω (k)r

+

-

best
i (k+1)r

Inputs Hidden layer Output layer

 (g)
ω (k)trial 

Surrogate model

ω (k-1)a

triali r (k+1)

(g)x )trial 

 (g)
xtrial

+

-

f (

Figure 7. The fitness function evaluation in OAC-DES.
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4. Experiments and Results

The purpose of our experimental work was to show that the results of the proposed OAC-DES
are comparable with (if not better than) the results of the linear PI-controller on the non-linear control
plant. In line with this, several experiments were performed:

• proof of concept,
• real-time test,
• step response tests,
• influence of the spring constant.

In the first test, the OAC-DES and the linear PI-controller were compared according to the error
between the desired and actual values of the rotational velocity in order to show that the former is
capable of adapting, in contrast to the latter. The purpose of the real-time test was to show that the time
complexities of the OAC-DES components allow for its online response (i.e., reacting in less than 5 ms).
In the next experiment, step responses of the OAC-DES, obtained in different tests, were compared
to the responses of the linear PI-controller on the same step function. The last experiment highlights
the influence of the spring constant k. Indeed, the step response tests were measured at two reference
velocities: ωr = 10 rad/s and ωr = 30 rad/s.

For all tests, initialization of the OAC-DES was performed using weights as found after the
introductory ANN-learning phase. However, these alone do not guarantee controller stability,
and therefore, a reduced introductory ANN-learning was conducted on input/output pairs obtained
by the linear PI-controller with a duration of T = 0.5 s before each OAC-DES startup. The purpose of
this procedure was twofold: (1) to avoid the need for ANN-learning from scratch, which lasts about
12–15 min, and (2) to ensure that ANN-learning is adapted to current control loop demands prior
OAC-DES operation.

During the experiments, the same velocity and current feedback loops were used in order to
compare both observed velocity controllers as fairly as possible. The linear current PI- and velocity
PI-controllers were tuned manually using the Ziegler-Nichols method [39], which is a popular
method of tuning the parameters of linear PI-controllers with a linear control plant. The PI-controller
parameters thus obtained were then changed slightly to adapt them to the non-linear plant. On the
other hand, the proposed OAC-DES controls the velocity controller automatically [23].

The current controller constants as presented in Table 2 were set equally for both of the velocity
controllers in the tests.

Table 2. Linear current PI- and linear velocity PI-controllers constants.

Controller Constant Meaning Constant Value

Current proportional gain Kp−current 0.6
Current integral gain Ki−current 0.8
Velocity proportional gain Kp−velocity 1
Velocity integral gain Ki−velocity 0.1
Velocity sampling time Tsv 3 ms
Current sampling time Tsc 25 µs

Table 3 specifies the topology of the ANN used by the OAC-DES.

Table 3. Topology of the ANN.

Inputs and Layers Variable Value

Inputs ir, ωa 2
Hidden layer n/a 10
Output layer ω̂ 1



Appl. Sci. 2018, 8, 2076 14 of 25

We should mention that the proper topology was obtained after extensive testing. Moreover,
the BPG algorithm was run at exactly nBPG = 20 epochs, while both the learning rates were set as
εJ = εL = 0.06 during the control process.

The parameter setup of the (1+1)-DES used during the experiments is presented in Table 4,
from which it can be seen that the initial reference current value was set to x0 = 0 A and the maximum
reference current to ir = ±1 A. For a short time, actual current may exceed maximum reference current.
The (1+1)-DES terminates, when the maximum number of generations MAX_GEN = 10 is reached.

Table 4. Parameter setup of (1+1)-DES.

Variable Variable Name Value

Initial mutation step size σ0 30
Minimum mutation step size ε0 0.0001
Learning rate τ 0.1
Number of generations MAX_GEN 10
Initial reference value x0 0 A
Maximum reference current ir ±1.5 A

In the remainder of the paper, the experiments are described in detail.

4.1. Proof of Concept

In this verification test (also called proof of concept), we compare the performances of both
controllers used in our study, i.e., the OAC-DES and linear PI-controller, according to a Root Mean
Squared Error (RMSE) indicator. The RMSE indicator is frequently used in control theory for measuring
the quality of a control system, where the difference between desired and actual values is observed.
The lower the RMSE value, the better the response of the control system. Using this test, we would
like to reveal the adaptive nature of the OAC-DES during online control that is its major advance over
the linear PI-controller.

The RMSE indicator is expressed as follows:

RMSE =

√
∑N

i=1 (ωri −ωai )
2

N
, (6)

where N represents the number of samples (every velocity sampling time Tsv = 3 ms) in one cycle of
duration Tcycle = 4.5 s.

Using the RMSE indicator, the test was conducted similarly for both controllers. At first,
the reference generator for velocity control for duration Tcycle = 4.5 s acts as a repeatable driving
cycle. For each velocity sampling time Tsv = 3 ms, the squared difference between reference and
actual velocity (ωri −ωai )

2 is calculated. The differences are then summed up for the duration of the
whole cycle Tcycle = 4.5 s. For instance, there are approximately N = (3 ms)−1 = 333.33 samples,
when Tcycle = 1 s, and N = 1500 samples, when Tcycle = 4.5 s. The driving cycle is depicted in detail in
Section 4.3.1.

The results of the comparison between OAC-DES and linear PI-controller during the proof
of concept test are shown in Figure 8, where the behavior of the OAC-DES with ANN-learning is
compared with the behavior of the linear PI-controller without learning. The figure shows that at the
beginning, the linear PI-controller controls the non-linear robotic mechanism more effectively. However,
the RMSE indicator for the linear PI-controller remains constant, while it decreases significantly for the
OAC-DES during online control, and in fact becomes equal to the linear PI-controller after 5 cycles
(i.e., 22.5 s). Furthermore, when the introductory ANN-learning continues, the RMSE indicator
decreases steeply for the OAC-DES up to the 11-th cycle, when it starts to decrease gradually.
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Figure 8. Online control RMSE comparison between linear PI-controller and OAC-DES.

According to Figure 8, the behavior of the linear PI-controller is much better than that of the
OAC-DES during earlier cycles, but falls very far behind after. Obviously, for optimal control,
the OAC-DES requires some time to recognize the non-linearity of the system more precisely. This is
the crucial limitation, and should be taken into account for the tests that follow.

4.2. Real-Time Test

The purpose of this experiment was to show that the real-time complexity of the proposed
OAC-DES is less than the requested velocity sampling time Tsv = 3 ms. Indeed, three program routines
running consecutively one after another increased the response time of the adaptive controller. The first
routine was dedicated to measuring the rotational velocity ωa(k− 1), the second to ANN-learning,
and the third to executing the (1+1)-DES optimization algorithm.

The partial time complexity of each routine was measured using a Tektronix TBS1052B
digital oscilloscope. Obviously, the total time complexity of the proposed controller was obtained
simply by adding together the individual time complexities of all three program routines. In fact,
the velocity sampling time Tsv was determined on the basis of the measured total time complexity,
which consequently ensured there would be enough time for the successful execution of all three
routines. On the other hand, the OAC-DES responds in real-time when the velocity sampling time is
drawn from the interval Tsv ∈ [1, 5] ms.

The results of the real-time test are illustrated in Figure 9, where the real-time execution of the
OAC-DES is presented.

k+1

Velocity
measurement

Tsv

650 μs560 μs10 μs

ω  (k-2)a ω  (k-1)a ω  (k)a

best
ω (k)

besti (k+1)r
best

ω (k-1)
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ANN-
learning
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ANN-simulation,

(1+1)-DES
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ANN-simulation,

(1+1)-DES
optimization

Figure 9. Real-time complexity estimation.
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As can be seen in the figure, ANN-learning took 560 µs on average. The online learning and
evaluation never took the same amount of time. More precisely, the minimum ANN-learning time
was 540 µs, while the maximum was 600 µs. On the other hand, the execution of the (1+1)-DES
using 10 generations (21 evaluations of ANN-simulation) lasted 650 µs on average, where the single
evaluation of the fitness function using the ANN-simulation went on for 8.3 µs. More precisely,
the minimal time complexity of the (1+1)-DES was 640 µs, while the maximum was 690 µs. As a
result, ANN-learning and (1+1)-DES optimization together took 1.21 ms on average, which means that
enough time was left for applying more complex nature-inspired algorithms in the future.

In contrast, we neglected the time complexity of linear PI-controllers due to their simplicity and
rapid execution on the CLA coprocessor. Furthermore, the program routine for this controller was
written in the assembly language, which ensures that execution takes less than 10 µs.

4.3. Step Response Tests

The performance of the proposed OAC-DES was evaluated by extensive empirical testing. For the
non-linear robotic mechanism, we specified a sequence of desired signals (driving cycle), which act
as velocity control references ωr. In line with this, the non-linear robotic mechanism’s reactions were
recorded according to the actual velocity ωa on the oscilloscope. These reactions are known as velocity
control responses. The closer the step response to velocity control reference, the better the controller.

In our study, we were actually interested in the results of three step response tests:

1. the reaction of the actual velocity ωa to the changing reference velocity ωr (velocity
control response),

2. the difference between the actual and reference velocities ωr − ωa obtained by changing the
output of the velocity controller,

3. the output from the particular velocity controller in the form of a reference current signal ir.

We should mention that the first step response primarily estimates the performance of
the controller.

As such, two separate tests were conducted. The purpose of the first was to test robotic behavior
on the control plant using the reference velocity ωr = 10 rad/s, while the second used the higher
reference velocity ωr = 30 rad/s. During experimentation, the actual velocity control response,
velocity error, and reference current (i.e., output of OAC-DES) were measured.

Normally, the response of the feedback system to the step function consists of overshoot and
consequential settling. Additionally, in our case, periodic disturbances were experienced by the system
due to the load torque caused by spring. In control theory, both signals present so-called peak errors,
which are divided into two types:

• transient peaks: error peaks due to transient responses immediately after overshooting,
• disturbance peaks: steady state error peaks due to load torque perturbations.

In the remainder of the paper, these step response tests are described in detail.

4.3.1. Step Response Tests at Reference Velocity 10 rad/s

In the first experiment, a comparison between the linear velocity PI-controller and proposed
OAC-DES controller was conducted according to the three previously mentioned step responses.
These responses are depicted in Figure 10, which is divided into two diagrams denoted as Figure 10a,b.
The former presents the step responses of the linear PI-controller, the latter those of the OAC-DES.
Each diagram consists of three graphs depicting the corresponding step responses numbered from
1 to 3, respectively.

The graphs for the step response 1 show improvements of the OAC-DES compared to the linear
PI-controller according to the velocity feedback loop. As can be seen in Figure 10, the overshoot,
denoted as a transient peak in the figure representing the linear PI-controller, is much higher than for
the OAC-DES. The former amounts to 40% of the whole step signal, while the latter is only 10%.
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(a) Step response using linear PI-controller.

(b) Step response using OAC-DES.

Figure 10. Step response at reference velocity ωr = 10 rad/s.

The graphs for the step response 2 show much higher disturbance peaks for the linear PI-controller
than for the OAC-DES. This means that the linear PI-controller initiates a periodic perturbations cannot
be eliminated, while the OAC-DES adapts to the oscillations and eliminates the steady state errors
almost perfectly.

Interestingly, neither controller had any problem controlling steady state error when the reference
value was ωr = 0, although the response of the OAC-DES was a bit more restless.

The graphs illustrating step response 3 are very important, as they directly react to velocity error
ωr −ωa and therefore dictate the actual velocity ωa. When promptness of the reactions is compared,
we find that the linear PI-controller reacts more quickly and intensively, and consequently obtains
a higher overshoot. The current ripples ir for this controller are almost twice as high as those of
the OAC-DES. On the other hand, the OAC-DES reacts more prudently and therefore causes less
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stress on the non-linear robotic mechanism. This is reflected in the reduced reference current ripples
ir and reduced transient peaks. Although the OAC-DES does have advantages compared to the
linear PI-controller, the high-frequency noise has been caused by reference current ir when using the
OAC-DES, especially at ωr = 0.

4.3.2. Step Response Tests at Reference Velocity 30 rad/s

In this experiment, we compared the linear velocity PI-controller and the OAC-DES at reference
velocity ωr = 30 rad/s. The results of the comparison are illustrated in Figure 11, which is organized
in the same way as in the last subsection. Therefore, we focus our discussion here on the results
according to the three step responses presented in the corresponding graphs.

(a) Step response using linear PI-controller.

(b) Step response using OAC-DES.

Figure 11. Step response at reference velocity ωr = 30 rad/s.
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Step response 1 graphs show similar transient reactions of the linear PI-controller and the
OAC-DES. Since velocities are higher, overshoots are recognized by both of them. However,
transient peaks, just like the disturbance peaks, are a bit higher in the case of the OAC-DES.
More precisely, these range up to 6 rad/s for the OAC-DEC, compared to 4 rad/s for the linear
PI-controller. It is important to note that the disturbance peaks of OAC-DES lower due to adaptation,
while these remain constant in the case of the linear PI-controller. The reason for the raised disturbance
peaks lies in the increased velocity, which increases the number of disturbances per time unit. Thus,
the OAC-DES reacts a bit slower and additionally becomes more restless when reference velocity
ωr = 0.

Despite those facts, it seems that the OAC-DES is the better controller even in this case, because it
can adapt to arbitrary disturbances. The more disturbances there are, the more ”experienced” the
OAC-DES becomes. As the graph for step response 2 shows, soon after the transient peak emerged
during the change from ωr = 0 rad/s to ωr = 30 rad/s, the disturbance hit the non-linear robotic
mechanism, resulting in the disturbance peak. The velocity error of the actual velocity ωa according
to reference velocity ωr becomes noticeable. The first disturbance peak is usually the highest of all
peaks in the series. The OAC-DES sequentially adapts to those peaks, and each subsequent error is
slightly reduced. The sixth disturbance in the series unexpectedly diverges slightly from the OAC-DES,
and the adaptation process repeats.

Another example of adaptation can be seen in the transient response when the reference velocity
is changed from ωr = 0 rad/s to ωr = −30 rad/s. The transient peak is the highest in the series.
Then, a bit lower, the first disturbance peak follows, after which all subsequent disturbance peaks are
progressively lower. Indeed, we conclude from this that the proposed OAC-DES controller is capable
of reducing periodic disturbances in both directions.

In the graph of step response 3, the output variable ir for the linear PI-controller indicates
equivalent reactions to each disturbance. On the other hand, the OAC-DES does not react to each
disturbance in the same way, but rather changes both the shape and the magnitude of the reactions.
This further supports its adaptation to disturbances. However, reactions to transients are one of the
bottlenecks associated with the proposed OAC-DES, since the reference current ir becomes uncertain
within these regions.

4.4. Influence of the Spring Constant

In the last experiment, an influence of a spring constant k was taken into consideration.
According to the Hook’s law, the spring constant determines the size of deformation by force loading.
The higher the force, the higher the deformation of the elastic body (e.g., spring). Thus, it is expected
that the higher spring constants would deteriorate the performance of both used controllers. In line
with this, the responses of the controllers by controlling the non-linear robotic mechanism loaded with
springs of three various constants were applied in our experiments: k = 420 N/m, k = 500 N/m,
and k = 570 N/m. However, in the previous experiment, where the step responses at reference
velocity ωr = 10 rad/s and ωr = 30 rad/s were observed, the spring with constant k = 420 N/m was
used. As a result, in this test, these results need to be supplemented with the results obtained by both
controllers when the non-linear robotic mechanism was loaded with springs of constants k = 500 N/m
and k = 570 N/m.

As can be shown in Figure 12, it becomes more difficult for a DC-motor to overcome the load by
tightening springs, or increasing the spring constant. Hence, reference current ir significantly increases
and occasionally hits the maximum reference current (±1.5 A). This means, transient peaks increase
for linear PI-controller, while the same decrease for OAC-DES. The same finding applies also for
disturbance peaks: these increase for the linear PI-controller and the same ones roughly decrease,
or stay unchanged for the OAC-DES. The quality of the proposed controller and its benefit thus
come into play at higher loads. However, a significant deterioration is observed for the OAC-DES in
case of reference velocity ωr = 0. Compared to Figure 10, the OAC-DES restlessness undoubtedly



Appl. Sci. 2018, 8, 2076 20 of 25

increases. Restlessness most clearly becomes observable at current reference ir step response and it
is expected, that it will even worsen by further tightening the load. Linear PI-controller on the other
hand constitutes smooth current reference ir, which treats the DC-motor more generously—does not
cause instantaneous changes, and thus lower the restlessness. Despite this fact, linear PI-controller
velocity step responses become unacceptable for a decent use in practice.

(a) Step response using linear PI-controller.

(b) Step response using OAC-DES.

Figure 12. Step response at reference velocity ωr = 10 rad/s, spring constant k = 500 N/m.

Figure 13 depicts controllers step responses, when the spring constant is set at k = 570 N/m,
which makes the DC-motor difficult to overcome the load. Therefore, the reference current ir becomes
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regularly saturated at maximum actual current (±1.5 A). This fact causes the following phenomenon:
when the spring is loaded at its peak, actual velocity ωa automatically drops and cannot attain the
reference velocity ωr. Phenomenon is not caused by controller itself and thus cannot be eliminated
easily; the limited actual current should be increased to avoid it, but this might harm existing DC-motor,
which should be replaced with a larger one in that case.

(a) Step response using linear PI-controller.

(b) Step response using OAC-DES.

Figure 13. Step response at reference velocity ωr = 10 rad/s, spring constant k = 570 N/m.
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As expected, by introducing the heaviest load, disturbance peaks for linear PI-controller become
even worse, while transient peaks become partially eliminated. For the OAC-DES, velocity step
response becomes occasionally biased due to the reference current saturation, but it exhibits a reliable
performance otherwise. Again, reference current ir restlessness becomes noticeable for the OAC-DES.

4.5. Discussion

Using the laboratory setup, we successfully implemented a real-time online controller that uses
ANN for modeling and ES for optimization. We have offered the real-time analysis and proved the
convergence of the proposed controller. Additionally, we have shown that under certain conditions,
the OAC-DES undoubtedly exceeds the capacities of the linear PI-controller.

In general, we conclude from the results of the step response tests that the OAC-DES reacts to
the changes of the step function comparable, or better than the linear PI-controller does. At lower
velocities, it achieves lower transient peaks (overshoots). Since it can adapt to disturbance peaks,
the OAC-DES also reduces them during the adaptation and over time may even eliminate them
altogether. Unfortunately, problems occur due to the noisy reference current ir and actual velocity ωa.
Thus, the OAC-DES increases steady state error, since it appears that the ANN needs constant velocity
excitements to work properly.

At higher velocities, the OAC-DES slightly under-performs the linear PI-controller.
Transient peaks increase and promptness declines. However, it adapts to disturbances of the non-linear
robotic mechanism, resulting in a reduction in a steady state error. This indicates that the OAC-DES
has not yet adapted optimally to control plant and requires additional learning time. Indeed, we have
discovered that, as long as the step reference is below ωr = 20 rad/s, the OAC-DES produces negligible
disturbance peaks which start to rise only when the step reference exceeds ωr = 20 rad/s. Nevertheless,
for common robotic applications, actual velocities on the secondary axis of up ωa = 10 rad/s are
easily sufficient.

We observed, that spring load heavily affects the linear PI-controller as follows: it becomes less
and less manageable by increasing the load. Step responses might be acceptable for a wider practice
only at the lowest spring constant k = 420 N/m. Performance of the OAC-DES, on the other hand,
does not deteriorate much by increasing the spring load (not taking the reference current ir saturation
into account), but restlessness becomes very disturbing.

During testing, there were two periodic occasions: periodic disturbances and periodic control
cycle. Therefore, two types of adaptation appeared: (1) adaptation to the periodic disturbances,
or short-term adaptation, and (2) adaptation to the periodic control cycle, or long-term adaptation.

The first is valid for a single reference velocity, e.g., for one series ωr = 30 rad/s, while the second
comes into play when adaptations from the previous cycle are carried over to the next one. However,
the OAC-DES requires time to adapt, and the longer the adaptation time the better the step response
(Figure 8). This means that, given sufficient time, the OAC-DES will control the non-linear robotic
mechanism optimally.

5. Conclusions

In general, EAs are stochastic, population-based, nature-inspired algorithms that have long been
considered too time complex for solving dynamic problems. This paper tries to refute this myth
by proposing an online adaptive controller based on the (1+1)-DES algorithm. The (1+1)-DES uses
single-membered population that reduces time complexity on the one hand, while exploiting an
inherent feature of ES, i.e., the self-adaptation, on the other. This feature allows the proposed algorithm
to track the continuous changes in the input variable of the controlled system precisely, due to the
mutation operator’s likely preference for smaller changes over larger ones.

The experimental results of the proposed OAC-DES show fairly better properties in comparison
with a linear PI-controller for the same highly non-linear plant and sampling time Tsv ∈ [1, 5] ms.
The ability to lower transient and disturbance peaks, reduce steady state error in the step responses of
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the velocity feedback control loop, and to offer online adaptation capability to load torque changes
and unexpected torque disturbances, makes the OAC-DES an excellent candidate to control of fast
mechatronic devices such as a non-linear, single-degree-of-freedom robotic mechanism. The rapid
response time of the proposed OAC-DES in adapting to torque disturbances could also be further
increased simply by adding more evaluations in the (1+1)-DES algorithm.

The unique advantages of using the (1+1)-DES algorithm in the OAC-DES include:

• It is simple to perform complete optimization within 10 generations within the sampling time of
the feedback-controlled system Tsv = 3 ms.

• It can avoid being stuck at into local minimum in the way comparable adaptive online control
methods based on gradient learning algorithms (e.g., ANN or classical least square methods)
often are. A detailed proof of global convergence for (1+1)-ES with constant mutation strength is
found in [40].

These results suggest that properly developed and tuned EAs could also be used in online
environments, where robustness and rapid response are the most important requirements. From this
we conclude that this controller has great potential for future development. This development could
take several directions, but in general this type of controller would be most suitable for constantly
changeable and unpredictable control plants, as for instance: (1) a direct-drive robotic mechanism with
more degrees of freedom could be used, or (2) the same algorithm could be applied in other feedback
control systems (e.g., for adaptive cruise control in automotive industry, or control of hydraulic
cylinders and motors). Nevertheless, other population-based, nature-inspired algorithms could be
incorporated into the OAC-DES and tested on the non-linear robotic mechanism. Also, a theoretic
analysis of the OAC-DES rigorous system’s stability is an important task left for the future.

In our opinion, the proposed approach could be generalized from a single order dynamic system
to higher order dynamic systems. However, serious problems with initial introductory learning may
be encountered during the start-up, and thus a step-by-step process should be employed. In line with
this, step wise learning is proposed here, where controlling the simplest axis would be learned first,
followed by the next axis, and so on. For the purposes of higher order dynamic systems, a faster
computer configuration would be needed, and the program code of the (1+1)-DES algorithm would
need to be time-optimized. Nevertheless, restlessness of OAC-DES should be taken into account and
proper remediation should be implemented.
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25. Šafarič, R.; Jezernik, K.; Pec, M. Neural network control for direct-drive robot mechanisms. Eng. Appl.
Artif. Intell. 1998, 6, 735–745. [CrossRef]

26. Rechenberg, I. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution;
Problemata Frommann-Holzboog: Stuttgart, Germany, 1973.

http://dx.doi.org/10.1109/ICEC.1998.699839
http://dx.doi.org/10.1145/1569901.1570022
http://dx.doi.org/10.1109/TCYB.2013.2278188
http://www.ncbi.nlm.nih.gov/pubmed/23996590
http://dx.doi.org/10.1016/j.ifacol.2017.08.2164
http://dx.doi.org/10.3390/e20100781
http://dx.doi.org/10.1007/s00500-010-0681-0
http://dx.doi.org/10.1016/j.swevo.2012.05.001
http://dx.doi.org/10.1109/TNET.2014.2317911
http://dx.doi.org/10.1109/TWC.2018.2864734
http://dx.doi.org/10.1016/j.robot.2016.07.005
http://dx.doi.org/10.1017/S0263574797000040
http://dx.doi.org/10.1016/S0952-1976(98)00020-7


Appl. Sci. 2018, 8, 2076 25 of 25

27. Schwefel, H.P. Numerische Optimierung von Computer-Modellen Mittels der Evolutionsstrategie: Mit Einer
Vergleichenden Einführung in die Hill-Climbing- und Zufallsstrategie; Interdisciplinary Systems Research,
Birkhäuser Basel: Basel, Switzerland, 1976.

28. Doncieux, S.; Mouret, J.B. Beyond black-box optimization: A review of selective pressures for evolutionary
robotics. Evol. Intell. 2014, 7, 71–93. [CrossRef]

29. Eiben, A.E.; Smith, J.E. From evolutionary computation to the evolution of things. Nature 2015, 521, 476–482.
[CrossRef] [PubMed]

30. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall: Upper Saddle River, NJ,
USA, 2009.

31. Lopez-Garcia, P.; Onieva, E.; Osaba, E.; Masegosa, A.D.; Perallos, A. A hybrid method for short-term traffic
congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 2016,
17, 557–569. [CrossRef]

32. Texas, I. TMS320F2837xS Delfino Microcontrollers; Texas Instruments: Dallas, TX, USA, 2015.
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