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Featured Application: The proposed fuzzy state-of-charge (SOC) estimation algorithm,
combining ampere-hour and an extended Kalman filter, can be utilized as an effective SOC
estimation algorithm, with high accuracy and robustness, in the whole SOC area. The proposed
algorithm helps to overcome the shortcomings of commonly used SOC estimation methods,
which are based on ideal conditions of no or very small model and sensor errors, and thus
encounter problems in practical applications where such errors are significant, especially due
to the ageing of the battery or its subjection to adverse temperatures.

Abstract: The popular and widely reported lithium-ion battery model is the equivalent circuit model
(ECM). The suitable ECM structure and matched model parameters are equally important for the
state-of-charge (SOC) estimation algorithm. This paper focuses on high-accuracy models and the
estimation algorithm with high robustness and accuracy in practical application. Firstly, five ECMs and
five parameter identification approaches are compared under the New European Driving Cycle (NEDC)
working condition in the whole SOC area, and the most appropriate model structure and its parameters
are determined to improve model accuracy. Based on this, a multi-model and multi-algorithm (MM-MA)
method, considering the SOC distribution area, is proposed. The experimental results show that this
method can effectively improve the model accuracy. Secondly, a fuzzy fusion SOC estimation algorithm,
based on the extended Kalman filter (EKF) and ampere-hour counting (AH) method, is proposed.
The fuzzy fusion algorithm takes advantage of the advantages of EKF, and AH avoids the weaknesses.
Six case studies show that the SOC estimation result can hold the satisfactory accuracy even when large
sensor and model errors exist.

Keywords: state-of-charge; equivalent circuit model; parameter identification; fuzzy fusion;
multi-model combination

1. Introduction

Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion
of fossil fuels, electric vehicles (EVs) have gained massive popularity due to their performances and
efficiencies in recent decades [1–3]. Lithium-ion batteries (LIBs) are widely used in EVs for their
high-energy density, long service life, and environmental friendliness [4–6]. In actual practice, LIBs
need to be well monitored, diagnosed, and controlled by the battery management system (BMS).
The accurate state estimation of a battery is one of the most fundamental functions of the BMS.
The states of the battery include state-of-charge (SOC), state-of-health (SOH), and state-of-function
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(SOF) etc. [7,8]. Among these states, SOC in BMS is considered as one of the critical and important
factors [9,10], which have been researched in recent decades. Accurate battery state estimation can
contribute to reasonable management of batteries to fully exploit them and prolong their lifespan.
However, the battery states are non-measurable variables, which can only be indirectly estimated via
measurable external characteristic parameters (e.g., voltage, current, and temperature). Owing to the
high nonlinearity of the battery system itself, accurate estimation of the battery state is fairly difficult.

1.1. Literature Review

With the development of BMS, a large number of SOC estimation methods have been proposed
and each one has its own merits and limitations [4,11]. The commonly used methods in the literature
can be listed as follows [12,13]: (1) ampere-hour (AH) counting method; (2) open-circuit voltage (OCV)
method; (3) model-based method; and (4) neural-network model method. Among these methods,
the AH method is most extensively used owing to its ease of implementation. However, it suffers
from the drawbacks of accumulated errors. Another classic method is the model-based method, where
the Kalman filter (KF) algorithm is generally used [1,14]. Due to its high applicability and accuracy,
various forms of the KF algorithm, such as the linear KF (LKF), single KF (SKF), unscented KF (UKF),
sigma point KF (SPKF), and extended KF (EKF), have been intensively investigated in recent years [15].

In the practical application of SOC estimation, many factors affect its accuracy. These factors
mainly include model and sensor errors [16]. The sensor errors include the voltage and current sensor
errors in the BMS, while the model errors include the battery capacity, coulombic efficiency, and ECM
errors. The model errors increase with LIB ageing and exposure to adverse temperatures. These errors
increase the SOC estimation error. Therefore, the influence of these factors on SOC must be considered
to improve the robustness of the SOC estimation algorithm in the actual BMS.

The model-based estimator is widely used in the existing SOC estimation. Therefore, an accurate
battery model is the prerequisite for precise SOC estimation. The equivalent circuit model (ECM) has
the advantages of simple structure, small number of identification parameters, and high accuracy,
which have made it become the most popular battery model for existing BMSs [17]. At present,
the ECMs mainly include the resistance-capacitance model with different orders (nRC, n = 0, 1, 2,
etc.), GNL (general nonlinear) model, and PNGV (the Partnership for a New Generation of Vehicle)
model, etc., and the most commonly used model is nRC [18,19]. The characteristics and accuracy of
the ECM are affected by the structure and parameters of the model. Therefore, a reasonable model
structure and matched model parameters are indispensable for the accurate SOC estimation. It is
inappropriate to apply simple parameter identification algorithms to complex models nor complex
parameter identification algorithms to simple models. In other words, high model accuracy can only
be achieved by using a suitable battery model and matched model parameters at the same time. In this
regard, the parameter identification approach and the model structure are equally important. To the
best of our knowledge, the parameter identification of ECMs is an optimization problem, and there
are many identification algorithms to determine the battery model parameters in the literature, such
as the genetic algorithm [20], the particle swarm optimization algorithm [21], and the least-squares
method [22]. Previous studies on LIB models have not paid much attention to whether a parameter
identification approach is suitable for a certain model. In this paper, we investigated the accuracy of
various models in various identification algorithms to determine the most appropriate model structure
and parameter identification algorithm for the whole SOC area.

1.2. Main Contributions

In order to improve the accuracy and robustness of the SOC estimation algorithm, based on ECMs
in the whole SOC area, this paper aims to make three contributions:

(1) By comparing and analyzing nine models and five commonly used parameter identification
algorithms, the most suitable ECM and parameter identification algorithm are decided.
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(2) The whole SOC area is divided into the high SOC area and low SOC area. Different ECMs
and parameter identification algorithms are adopted considering SOC distribution. Based on
this, a multi-model and multi-algorithm method is developed to fit the battery model.
Experimental results show that the proposed composite model has higher model accuracy
compared with a single model.

(3) According to the error characteristics of EKF and AH, a fuzzy fusion SOC estimation algorithm,
combining AH and EKF in the whole SOC area, is proposed, and the accuracy and robustness of
the proposed algorithm are verified by six cases.

1.3. Organization of the Paper

The remainder of this paper is organized as follows. Section 2 describes the experimental
equipment and the curves of current and voltage variation under the New European Driving Cycle
(NEDC) working condition in the whole SOC area. Section 3 introduces five ECMs and five parameter
identification approaches in five categories. The most suitable model and parameter identification
algorithm are selected through comparative study. In Section 4, a fuzzy fusion algorithm, based on
the EKF and AH, is proposed. In Section 5, the results of SOC estimation are analyzed and discussed.
Finally, Section 6 states the conclusions.

2. Experiments

A commercial prismatic pouch lithium-ion cell was tested in this study. The cathode material
of the cell was LiNixCoyMn1−x−yO2 (NMC). The basic parameters of the cell are listed in Table 1.
The experiments were conducted in a test bench made by DIGATRON, which had a current range of
−100 to +100 A and a voltage range of 0 to 20 V. The tested cell was put into a temperature chamber to
keep the ambient temperature. The temperature chamber was made by Dongguan Bell Company and
the type was TEMI580.

Firstly, the capacity test was designed to find the standard capacity of the test cell (Cell#1).
The capacity test process was as follows: Cell#1 was placed in the temperature chamber at 25 ◦C for
3 h. Then, Cell#1 was discharged at a constant discharge current (1/3 C) to 2.5 V. After waiting for
1 h, Cell#1 was fully charged using the constant current-constant voltage method. This process was
repeated three times, and the average value of the test capacity was taken as the standard capacity of
the test cell. Secondly, the hybrid pulse power characterization (HPPC) test was carried out to find the
open circuit voltage (OCV). The test steps can be found in References. [2,6], specific steps are not listed
here for brevity.

Finally, Cell#1 was fully charged at 1/3 C. Then, the discharge process was performed under the
NEDC cycles. PC software (BTS-600) was used to record the voltage and current of the cell in real
time. Figure 1b,c show these test data, which were used for the model parameter identification and the
SOC estimation.

Table 1. Main parameters of the test cell (Cell#1).

Nominal
Capacity (Ah)

Nominal
Voltage (V)

Lower Cut-Off
Voltage (V)

Upper Cut-Off
Voltage (V)

Maximum Charge
Current (A)

32.5 3.75 2.5 4.15 65
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Figure 1. Battery test bench and experimental results under the New European Driving Cycle (NEDC)
working cycles. (a) Schematic of the test bench; (b) current profile; and (c) voltage profile.

3. Model and Parameter Identification

3.1. Equivalent Circuit Models

In this study, we chose the popular and widely reported nRC, nRCH, and PNGV models as battery
models. The schematics of the three models is shown in Figure 2. In these models, UOCV denotes
battery voltage source, UL is the terminal voltage, R0 denotes equivalent ohmic resistance, and Ri and
Ci denote diffusion resistance and diffusion capacitance, respectively. uh,k is the hysteresis voltage,
kp is a decaying factor, and M is the maximum amount of hysteresis voltage. Cb in the PNGV model
is an equivalent capacitance, which describes the changes in the OCV caused by time accumulation.
The equations of ECMs are presented in Table 2.
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Table 2. Equations of the ECMs.

Models Equations

nRC


UL(k) = UOCV(k) + I(k)R0 +

n
∑

i=1
Ui(k)

Ui(k + 1) = Ui(k)e
− Ts

τi + I(k)Ri

(
1− e−

Ts
τi

)

nRCH



UL(k) = UOCV(k) + I(k)R0 +
n
∑

i=1
Ui(k) + uh,k

Ui(k + 1) = Ui(k)e
− Ts

τi + I(k)Ri

(
1− e−

Ts
τi

)
uh,k = H

(
1− e−|kp I(k)t|

)
, H =

{
−M I(k) ≤ 0
M I(k) > 0

PNGV


UL(k) = UOCV(k) + I(k)R0 + U1(k) + Ucb(k)

U1(k + 1) = U1(k)e
− Ts

τ1 + I(k)R1

(
1− e−

Ts
τ1

)
Ucb(k + 1) = Ucb(k) + 1

Cb
I(k)

(
1− e−

Ts
τ1

)

3.2. Optimization Variables and the Objective Function for ECMs

In the nRC, nRCH, and PNGV, the model parameters should be identified optimally. The model
parameters to be determined by optimization algorithm can be expressed as:

Vj



[
R+

0 R−0 τ1 R1︸ ︷︷ ︸
1st RC

τ2 R2︸ ︷︷ ︸
2nd RC

· · · τn Rn︸ ︷︷ ︸
n−th RC

]
(if the model is nRC) R+

0 R−0 τ1 R1︸ ︷︷ ︸
1st RC

τ2 R2︸ ︷︷ ︸
2nd RC

· · · τn Rn︸ ︷︷ ︸
n−th RC

kp M︸ ︷︷ ︸
hysteresis

 (if the model is nHRC)[
R+

0 R−0 τ1 R1 Cb

]
(if the model is PNGV)

(1)

where R+
0 and R−0 represent the ohmic resistance of charging and discharging, respectively.

From (1), it was seen that the number of parameters to be identified increased with the order of
ECM. For the 4RC model, the number of parameters to be identified can reach up to 10. In this study,
the root-mean-square error (RMSE) between the model terminal voltage and the measured terminal
voltage was used to evaluate the fitness of model parameters. Correspondingly, the fitness function
can be expressed as:

MEMSE(θ) =

√
1
n

n

∑
k=1

(ui,k(θ)− ûi,k(θ))
2 (2)

where MRMSE represents the RMSE of the ECM, ui,k represents the voltage of ECM, and ûi,k represents
the test voltage.

3.3. Moth-Flame Optimization Algorithm

The moth-flame optimization (MFO) algorithm is a nature-inspired optimization proposed by
Seyedali Mirjalili in 2015 [23]. Many examples show that the MFO algorithm has the advantages of
strong convergence, fast convergence, and wide application, and it is suitable for solving the problem
of high dimensional optimization. In the MFO algorithm, it was assumed that the candidate solutions
were moths and the problem’s variables were the position of moths in the space. Other key components
in the MFO were flames. The set of moths and flames are represented in the following matrices:
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M =


M1,1 M1,2 · · · M1,d
M2,1 M2,2 · · · M2,d

...
... · · ·

...
Mn,1 Mn,2 · · · Mn,d

, F =


F1,1 F1,2 · · · F1,d
F2,1 F2,2 · · · F2,d

...
... · · ·

...
Fn,1 Fn,2 · · · Fn,d

 (3)

where n is the number of moths and flames, and d is the number of variables.
For all the moths and flames, we assumed that there were two arrays for storing the corresponding

fitness values, as follows:

OM =


OM1

OM2
...

OMn

, OF =


OF1

OF2
...

OFn

 (4)

In the MFO, a random initial solution to calculate the objective function values can be described
as follows:

Mi,j = (ubi − lbi)rand( ) + lbi (5)

where ubi and lbi are the upper and lower bounds of the variables. rand( ) is a random function.
The position of each moth was updated with respect to a flame using the following equation:

Mi = S
(

Mi, Fj
)
=
∣∣Fj −Mi

∣∣ebt cos(2t) + Fj (6)

where b is a constant, and t is a random number in [−1, 1]. S is the spiral function.
Figure 3 shows the flow chart of the MFO algorithm. The terminating conditions included the

maximum iteration times and the solution accuracy to meet the setup requirements.
In order to verify the performance of the MFO algorithm and select the most suitable identification

algorithm, five well-known algorithms in five categories, as shown in Table 3, were chosen to identify
the parameters of the ECMs shown in Table 2. For concise description, the other algorithms are not
described here.
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Table 3. Optimization algorithms.

Method Type Algorithm Name Inspiration Year of Proposal

Nonlinear programming Find minimum of constrained nonlinear (FMIN) N/A 1951
Evolution-based Genetic Algorithm (GA) [20,24] Biological evolution 1992

Physics-based Simulated annealing algorithm (SA) [25] Solid annealing 1983
Swarm-based Particle Swarm optimization (PSO) [26] Bird flock 1995

Nature-inspired Moth-flame optimization (MFO) [23] Moth 2015

Moreover, the whole SOC (0–100%) was divided into 10 subarea, and the parameters in each
subarea were identified by the above optimization algorithms, respectively. Therefore, 10 groups of
model parameters, which vary with SOC, were obtained as the model parameters of ECM.

3.4. Comparative Study of Optimization Methods

In this study, the above five optimization methods were used to identify the nine ECMs,
respectively, then the appropriate models and algorithms were selected by comparing the identification
accuracy and time cost.

Figure 4a shows the RMSE of model error in the entire SOC area. It can be seen that the PNGV
had a great accuracy advantage. For the nRC model, the model accuracy of the MFO increased with
the increase of n, and the accuracy of the other optimization algorithms did not increase or even
decrease when the order was greater than the second. Moreover, MFO had an obvious accuracy
advantage for the high-order RC model. The model error distribution in the low SOC area (0–20%) is
shown in Figure 4b, indicated that the PNGV model had obvious advantages in the low SOC area,
and the FMIN, PSO, and MFO had almost the same identification accuracy. The error distribution
comparison between the PNGV model and the 2RC model in the low SOC area is shown in Figure 5.
It is clear that the PNGV model had a good accuracy in the low SOC area. The error distribution in
the high SOC area (20–100%) is shown in Figure 4c. It can be seen that the second- and higher-order
RC models had high accuracy using PSO and MFO, and the accuracy of MFO was slightly higher.
The identification time of each identification algorithm is shown in Figure 6. It can be seen that
the FMIN had the shortest identification time, and PSO had the second shortest identification time
(approximately one-sixth of the time taken by the other algorithms). Therefore, these two algorithms
are suitable for on-line identification.

Based on the above analysis, we could see that the PNGV model was the best choice, and the
matched identification algorithm was FMIN in the low SOC area. In the high SOC area, if it was on-line
identification, 2RC plus PSO was the best choice for the balance between accuracy and time cost. If it
was off-line identification, 4RC plus MFO was the best choice for the highest accuracy.
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3.5. Multi-Model and Multi-Algorithm Combination

Based on the above analysis, a multi-model and multi-algorithm combination (MM-MA) method,
considering SOC distribution, was developed to improve the global accuracy of the ECM. As shown in
Figure 7, the whole SOC area was divided into low SOC area and high SOC area, and different ECMs
and optimization algorithms were used in different SOC areas. In the SOC estimation, different ECMs
and corresponding model parameters were selected.
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Figure 8 shows the identification results of the MM-MA method, which indicated that this method
had obvious advantages compared with 2RC, especially in the low SOC area. Moreover, the accuracy
of off-line identification was higher than that of on-line identification. It was shown that the MM-MA
method could effectively improve the accuracy of the model, and could lay the foundation for accurate
SOC estimation.
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4. SOC Estimation Method

4.1. EKF Method

For the second-order RC model, the state variables (x) can be written as:

x = [SOCEKF, U1, U2]
T (7)
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From Table 2, the following expressions can be obtained:

f (xk, uk) =

 1 0 0
0 exp(−∆t/τ1) 0
0 0 exp(−∆t/τ2)


 SOCEKF,k

U1,k
U2,k



+

 −η∆t/Cn

R1(1− exp(−∆t/τ1))

R2(1− exp(−∆t/τ2))

Ik

(8)

g(xk, uk) = Uoc(SOCEKF,k)− IkR0 −U1,k −U2,k (9)

where ∆t is the sample period.
The form of the state-space expression of the fourth-order RC and PNGV models was similar to

(7)–(9), which is not given here for brevity. According to the reference [27], the standard EKF equations
for the battery system are listed in Algorithm 1.

Many studies have confirmed that the EKF method produces a good convergence and satisfactory
estimation accuracy for small model and sensor errors [14,16,28–30]. However, in actual EV
operation, the ECM model error increased with battery ageing, temperature, and other adverse
factors. Moreover, the sensor measurement error existed objectively, and the random error of the
statistical characteristics of the noise is unknown. Under these circumstances, the accuracy of the SOC
estimation error determined by the EKF method would decrease. Therefore, model and sensor errors
must be considered for designing SOC estimation algorithm to improve the robustness.

Algorithm 1. Summary of the extended Kalman filter (EKF) method for SOC estimation.

The nonlinear state-space model:{
xk+1 = f (xk, uk) + wk
yk = f (xk, uk) + vk

where the first equation is the state equation, the second one is the output equation. f (xk, uk) is a state
transition function and g(xk, uk) is a measurement function; wk and vk are independent zero-mean white
Gaussian stochastic processes with covariance matrices ∑w and ∑v respectively.
Step 1. Initialization.
For k = 0, set
x̂+0 = E[x̂0], ∑+

x,0 = E
[(

x0 − x̂+0
)(

x0 − x̂+0
)T
]
.

Step 2. Computation.
For k = 1, 2, · · · , compute:

(a) Time update: x̂−k = f
(

x̂+k−1, uk−1

)
+ wk−1; ∑−x,k = Ak−1∑+

x,k−1 AT
k−1 + ∑ w.

(b) Measurement update:

Error innovation: ek = yk − ŷk = yk − g
(
x̂−k , uk

)
.

Kalman gain matrix: Lx
k = ∑−x,k

(
Cx

k
)T
[
Cx

k Xx
k ∑−x,k

(
Cx

k
)T

+ ∑v

]−1

Measurement update: x̂+k = x̂−k + Lx
k [yk − ŷk]

Error covariance measurement update: ∑+
x,k =

(
I− Lx

k Cx
k
)

∑−x,k where Ak =
∂ f (xk ,uk)

∂x

∣∣∣
x=x̂+

k

,

Ck =
∂g(xk ,uk)

∂x

∣∣∣
x=x̂−k
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4.2. Ampere-Hour Counting Method

The AH method can be expressed as follows [31]:

SOCAH(t) = SOC(t0) +
ηc
∫ t

t0
i(ξ)dξ

CN
(10)

where SOCAH(t) is the SOC value at time t, SOC(t0) is the SOC value at the initial time t0, CN is the
nominal capacity, i(ξ) denotes the current at time ξ (positive for charging and negative for discharging),
and ηc denotes the columbic efficiency.

Although the AH method is very simple and quite useful, it is an open-loop prediction method,
thus it suffers from accumulated errors caused by initial SOC value errors, and noise and measurement
errors. Moreover, the battery capacity might change in applications, which can lead to SOC error.

4.3. Fuzzy Fusion Algorithm

From the above analysis, we can see that the EKF method had high accuracy, but it was easy to
be influenced by ECM model parameters and voltage sensor errors. The AH method had relatively
low accuracy, but the estimation results were relatively stable because relatively few parameters were
affected. Based on the characteristics of the above two algorithms, a fuzzy fusion method, combining
AH and EKF, was developed to calculate SOC in this paper. In our algorithm, the SOC was estimated
by the AH and EKF methods, respectively. Then, the SOC increments were calculated using the
following equations:

∆SOCAH(k) = SOCAH(k)− SOCAH(k− 1) (11)

∆SOCEKF(k) = SOCEKF(k)− SOCEKF(k− 1) (12)

where ∆SOCAH(k) and ∆SOCEKF(k) are the SOC increments for the AH and EKF
methods, respectively.

Then, EKF and AH methods can be fused through the following incremental form:

SOC f (k) = SOC f (k− 1) + kFLC∆SOCEKF(k) + (1− kFLC)∆SOCAH(k) (13)

where SOC f (k) is the SOC value determined by the fusion algorithm, kFLC is ratio coefficient
(0 ≤ kFLC ≤ 1).

The most critical step of the fusion algorithm is the determination of the more credible SOC
increments between ∆SOCAH(k) and ∆SOCEKF(k). In other words, the key to SOC estimation in (13)
is to select suitable kFLC based on the relationship between ∆SOCAH(k) and ∆SOCEKF(k). We assume
that the incremental ratio of SOC estimated by the two methods at time k is ∆KSOC(k), and it can be
expressed as follows:

∆KSOC(k) =
|∆SOCEKF(k)|
|∆SOCAH(k)|

(14)

In this study, the fuzzy logic control was used to determine the appropriate kFLC based on
∆KSOC(k). The range of ∆KSOC(k) was set as 0 to 3 in this paper. In the fuzzy logic control, the input
and output were divided into fuzzy subsections and expressed by a linguistic variable.

As shown in Figure 9, we chose ∆KSOC(k) and its derivative ∆KSOC
′(k) as input variables and

kFLC as output variables. The fuzzy variable of ∆KSOC(k) was divided into very large (VL), large
(L), medium (M), small (S), and very small (VS). ∆KSOC

′(k) was divided into positive (P), zero (Z),
and negative (N). The fuzzy variable of output with respect to kFLC was divided into VL, L, M, S,
and VS. The triangular fuzzy membership function was chosen in this paper because the triangular
membership function has the characteristics of simplified calculation and good control performance.
The membership function of FLC is shown in Figure 10.
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Considering the sensor and model errors, the AH method may not be very accurate, but it had
higher reliability increments due to less affected parameters. The EKF method had good accuracy,
but it may not be stable. Therefore, we can choose the SOC increment with high reliability and
accuracy based on the relative relationship between ∆SOCAH(k) and ∆SOCEKF(k) to calculate SOC
according to the value of ∆KSOC(k). Based on the above characteristics, the following rules were
proposed for determining the higher credibility SOC increment between the two methods: (1) If
∆KSOC(k) ≤ 1, then ∆SOCEKF(k) is considered to be more credible (large kFLC should be chosen); (2) if
∆KSOC(k) > 1, then ∆SOCAH(k) is considered to be more credible (small kFLC should be chosen); and
(3) if ∆K′SOC(k) < 0, it means that ∆KSOC(k) has a decreasing trend, otherwise there is an increasing
trend. Therefore, the fuzzy rule of the fuzzy fusion algorithm can be expressed as follows:

• When ∆KSOC(k) is relatively small and ∆KSOC
′(k) is negative, very large kFLC should be chosen

to ensure that ∆SOCEKF(k) is more credible in the fuzzy fusion algorithm.
• When ∆KSOC(k) is relatively large and ∆KSOC

′(k) is positive, very small kFLC should be chosen
to ensure that ∆SOCAH(k) is more credible in the fuzzy fusion algorithm.

• When ∆KSOC(k) is relatively large and ∆KSOC
′(k) is negative, small kFLC should be chosen.

• When ∆KSOC(k) is relatively small and ∆KSOC
′(k) is positive, medium kFLC should be chosen to

improve the stability of the control system.

Based on the above four rules, 15 control rules for linguistic variables were obtained, shown
in Table 4. The fuzzy linguistic output is an unavailable signal for the SOC estimation system.
Therefore, the defuzzification is necessary, which is the process of relating the output membership
function to a value. The centroid defuzzification method was utilized in this paper, and it can be
expressed as follows:

kFLC =

∫
zµ(z)dz∫
µ(z)dz

(15)
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The proposed fuzzy fusion algorithm uses the incremental features of EKF and AH to design
fuzzy characteristics, which effectively avoids the shortcomings of the two algorithms and takes
advantage of their advantages.

Table 4. Rules of the fuzzy logic control for linguistic variable.

kFLC
∆KSOC(k)

VS S M L VL

∆KSOC
′(k)

N VL L M S VS

Z L M S VS VS

P M S S VS VS

5. Results and Discussion

5.1. Estimation Results Based on EKF

The SOC estimation error based on EKF is shown in Figure 11. It can be seen that the SOC
accuracy based on the PNGV model in the low SOC area was higher than that based on the 2RC model,
and that SOC estimation accuracy based on off-line identification was higher than that based on on-line
identification. The results indicate that the proposed MM-MA method can improve the accuracy of the
model and the SOC estimation significantly.
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The reason why the accuracy of off-line identification was higher than that of on-line identification
is that the more complex model and more suitable identification algorithm (4RC plus MFO) were used
for off-line identification. However, greater computing burden and more identification time were
needed for off-line identification, which is shown in Figure 6.

5.2. Case Studies for the Fuzzy Fusion Algorithm

To verify and evaluate the effectiveness of the proposed fuzzy fusion algorithm, six simulated
cases of real LIBs, considering sensor and model errors, were set, as shown in Table 5. The fuzzy fusion
algorithm was carried out based on these cases. In addition, the AH and EKF methods were applied to
the same cases for comparison. In Table 5, eSOC0 is the initial SOC error, ECMdri f t is the ECM error,
Idri f t is the drift current of the current sensor, Udri f t is the drift voltage of the voltage sensor, and eOCV
is the SOC–OCV curve error. In this study, SOH is expressed as Equation (16), where SOHi means the
SOH value in the ith cycle, Ci represents the capacity at the ith cycle, C0 represents the initial capacity.
With aging of the cell, the cell capacity shows a downward trend.

SOHi =
Ci
C0
× 100% (16)

To evaluate the performance of different SOC estimation methods, the root-mean-square errors
(RMSE) of SOC were calculated as follows:

RMSE =

√
1
m

m

∑
k=1

(SOCrel(k)− SOCEstimated(k))
2 (17)

where SOCrel and SOCEstimated denote the real and estimated values of the SOC, respectively.
Figure 12 shows the SOC estimation results for Case A. It indicated the influence of initial SOC

error (eSOC0) on the AH, EKF, and fuzzy fusion algorithm (fuzzy). It was clear that eSOC0 had no effect
on the EKF method, but significantly affected the AH and the fuzzy methods. Figure 12a,c show that
the fuzzy fusion algorithm had a higher estimation accuracy when the initial SOC error was more
accurate (|eSOC0| < 3%). When eSOC0 was large, the fuzzy fusion algorithm had a larger estimation
error than the other algorithms (Figure 12b). However, the initial SOC correction methods, such as
the full-charge calibration method or the OCV method (e.g., with a 3 h rest for the LIBs), were used
in the practical EV applications. Therefore, an accurate initial SOC could be ensured, improving the
feasibility of the fuzzy fusion method for real EVs.

Moreover, Figure 12c shows that the SOC estimation accuracy based on the MM-MA method was
higher than that based on the 2RC model, which validates the effectiveness of the proposed MM-MA
method to improve the SOC estimation accuracy by improving the model accuracy.

Table 5. Case and parameter setting.

Case Name Describe Parameters Setting

Case A The influence of initial SOC error (eSOC0)
on fuzzy algorithm

SOH = 90%, Idri f t = −0.1A, Udri f t = 5 mV,
ECMdri f t = −3 mV, eOCV = 5 mV

Case B The influence of model error (ECMdri f t)
on fuzzy algorithm

eSOC0 = 0.3%, SOH = 95%, Idri f t = −0.08A,
Udri f t = 5 mV, eOCV = −5 mV;

Case C
The influence of voltage measurement

error (Udri f t) on fuzzy algorithm
eSOC0 = 0.3%, SOH = 90%, Idri f t = −0.1A,

ECMdri f t = 3 mV, eOCV = 5 mV

Case D
The influence of current measurement

error (Idri f t) on fuzzy algorithm
eSOC0 = 0.5%, SOH = 95%, Udri f t = −5 mV,

ECMdri f t = 5 mV, eOCV = 5 mV

Case E The influence of the SOH on fuzzy
algorithm.

eSOC0 = 0.3%, Idri f t = −0.1A, Udri f t = 5 mV,
ECMdri f t = 5 mV, eOCV = 5 mV

Case F The influence of SOC–OCV curve error
(eOCV) on fuzzy algorithm.

eSOC0 = 0.3%, SOH = 95%, Idri f t = −0.1A,
ECMdri f t = −5 mVUdri f t = 5 mV
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Figure 12. SOC estimation results for Case A. (a) eSOC0 = 0.5%; (b) eSOC0 = 5.0%; and (c)
root-mean-square error (RMSE) of SOC in different initial SOC errors.

Figure 13 shows the SOC estimation results for Case B, including the relationship between the
model error and the SOC error, for the three methods. Figure 13a shows that the SOC accuracy of
the fuzzy fusion algorithm exceeded that of the EKF when the model error was large. As shown
in Figure 13b, the SOC accuracy of the fuzzy fusion algorithm was lower than the EKF when the
model error was very small. Figure 13c shows the relationship between the SOC errors based on three
algorithms and model errors of ECM. It was obvious that the accuracy of the fuzzy fusion algorithm
was higher than that of both the EKF and AH methods for most conditions, except when the model
error was very small

(
ECMdri f t < 10 mV

)
. However, even for a very small ECMdri f t, the estimation

accuracy of the fuzzy fusion algorithm was acceptable. Moreover, the accuracy of the SOC estimation
based on the MM-MA method was better than that of the 2RC model in the whole model error area.

In actual EVs, battery aging and adverse environmental temperatures adversely affect the ECM’s
accurate reflection of the LIB characteristics, resulting in increased model error. From the above
results, we can see that the proposed fuzzy fusion algorithm significantly outperformed the EKF and
AH methods.

Figure 14 compares the SOC estimation results of the three algorithms for Case C. Figure 14a,b
show the SOC errors of the three algorithms with small and large voltage sensor error (Udri f t).
Figure 14c shows the relationship between SOC error based three algorithms and the Udri f t. It can be
seen that the SOC estimation accuracy of the fuzzy fusion algorithm was better than that of the EKF
method, except for very small Udri f t values. Moreover, the superiority of the fuzzy fusion algorithm
increased with the increase of Udri f t. However, even for small Udri f t values, the accuracy of the fuzzy
fusion algorithm was within the acceptable range.
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Figure 14. SOC estimation results for Case C. (a) Udri f t = 3 mV; (b) Udri f t = 50 mV; and (c) RMSE of
SOC in different drift voltages.

Figure 15a depicts the relationship between the RMSE of SOC estimation and the error of the
current sensor. We can see that the fuzzy fusion algorithm was better than others in considering the
sensor error. Figure 15b shows the relationship between the RMSE of SOC estimation and the SOH.
It is clear that the SOC estimation accuracy of the fuzzy fusion algorithm exceeded that of the EKF
when the SOH fell from 100% to 80%. Thus, it is deduced that the Comb algorithm is highly adaptable
to the capacity decay of an LIB. Figure 15c shows the RMSE of SOC estimation for eOCV values of
−100 to 100 mV. We can see that the fuzzy fusion algorithm was better than the EKF when model and
sensor errors were considered. When the current sensor error existed, the SOC obtained by the AH
had a larger cumulative error. Therefore, our proposed method was better than that of the EKF and
AH in cases D, E, and F.
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curve errors.

The above case study indicated that the EKF was slightly better than the fuzzy fusion algorithm
under ideal conditions of no or very small model and sensor errors. However, the results of the
fuzzy fusion algorithm were also within the acceptable range for these conditions. Under practical
conditions involving significant model, sensor, and SOC–OCV curve errors, the fuzzy fusion algorithm
significantly outperformed the EKF and AH. Moreover, the proposed MM-MA method not only
improved the accuracy of the model, but also improved the accuracy of the SOC estimation.

In an actual BMS, the computation time of the SOC estimation is as important as the estimation
accuracy. The computation time of various SOC estimation algorithms was performed in MATLAB
2016a on a computer with INTEL Core i5-4440 CPU (3.1 GHz) and 8 GB RAM. Table 6 lists the
calculation results under NEDC in the entire SOC area (0–100%). It is noted that the computation time
was the time of SOC estimation in the entire SOC area (0–100%) using our proposed algorithm, based
on the current and voltage curves obtained from experiments and the identified model parameters.
It can be seen that the computation time of the fuzzy fusion algorithm was only slightly larger than the
computation time of EKF. Therefore, the proposed algorithm greatly improved the estimation accuracy,
without increasing the complexity, in the case of large model and sensor errors, and it was highly
suitable for practical EV applications.
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Table 6. Computing time (s) of various SOC estimation algorithms in the entire SOC area.

SOC Estimation Algorithm Time (s)

AH 0.0479
EKF 65.8570

Fuzzy fusion 65.8793

6. Conclusions

In this study, nine ECMs and five commonly used model parameter identification algorithms were
compared in the whole SOC area, and the most suitable ECM and matched parameter identification
algorithm, in the high and low SOC area, were obtained, respectively. Based on this, a MM-MA
method was proposed. To improve the robustness and accuracy of SOC estimation based on MM-MA
in practical application, a fuzzy fusion SOC estimation algorithm based on EKF and AH was proposed.
The experimental results show that the satisfactory estimation accuracy can still be maintained even
when large model errors and sensor errors exist, and that the accuracy and robustness of the fuzzy
fusion algorithm is better than that of EKF and AH.

The proposed method did not consider the aging of the battery, and the calculations were carried
out using the MATLAB software on a computer. Further works include: (1) Verification and application
of the MM-MA method and the fuzzy SOC estimation algorithm in actual BMS; (2) building a new
battery model that considers battery aging; (3) verification of the effectiveness of the proposed method
under other working conditions.
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