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Abstract: The SiC micro/nano-scale structure has advantages for enhancing nonreciprocal
absorptance for photovoltaic use due to the magneto optical effect. In this work, we demonstrate the
near-field radiative transfer between two aligned SiC nanowires/plates under different magnetic
field intensities, in which Lorentz-Drude equations of the dielectric constant tensor are proposed to
describe the dielectric constant as a magnetic field applied on the SiC structure. The magnetic field
strength is qualified in this study. Using local effective medium theory and the fluctuation-dissipation
theorem, we evaluate the near-field radiation between SiC nanowires with different filling ratios
and gap distances under an external magnetic field. Compared to the near-field heat flux between
two SiC plates, the one between SiC nanowires can be enhanced with magnetic field intensity,
a high filling ratio, and a small gap distance. The electric field intensity is also presented for
understanding light coupling, propagation, and absorption nature of SiC grating under variable
incidence angles and magnetic field strengths. This relative study is useful for thermal radiative
design in optical instruments.
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1. Introduction

When the distance between two materials is less than the thermal characteristic wavelength, also
known as the characteristic wavelength of thermal radiation, evanescent waves play a dominant role
in radiative heat transfer. The energy transfer can be further enhanced and Plank’s theory of thermal
radiation is no longer valid, which is called near-field radiative heat transfer [1–4]. At nanometer
distances, near-field radiative heat transfer can be several orders of magnitude greater than that
between two far field blackbodies, especially when surface plasmon polaritons (SPPs) or surface
phonon polaritons (SPhPs) are excited [5–9]. Due to the advent of near field radiative heat transfer
and its wide potential applications in micro- and nano-scale thermophotovoltaic (TPV) cells, thermal
imaging and local thermal management, near-field radiative heat transfer had attracted significant
attention [10–17].

Some researchers have found that applying an external magnetic field to a semiconductor causes
some changes in its optical properties. Under the action of a magnetic field, the atoms, or ions within the
intrinsic magnetic moment material, produce magnetic induction phenomenon, resulting in the orderly
arrangement of the magnetic moment, which affects the transmission of light in its internal features,
called the magneto-optical effect. This effect can break the time reversal invariance of the quantum
mechanics of materials, and the Kirchhoff’s law is no longer valid [18–20]. Wu et al. [21] discovered
the near-field radiative characteristics of magneto dielectric uniaxial anisotropic media (MDUAM)
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that have both magnetic and electric anisotropy. However, the above works all focused on near-field
radiative heat transfer (NFRHT) for homogeneous isotropic media. Then, Song et al. [22] studied the
NFRHT between graphene and anisoropic magneto-dielectric hyperbolic metamaterials (AMDHMs)
according to the fluctuational dissipation theorem. They found that extraordinary propagating modes
enable the total NFRHT flux to exceed that between graphene and SiC nanowires by several fold.
Although the above research considered the impact of magnetic permeability, the effect of the magnetic
field was lacking the MDUAM and AMDHMs were all ideal models, and the magnetic field strength
was not quantified.

SiC is a widely used semiconductor that can be manufactured as optical control elements, such as
wavelength-selective photodetectors, photovoltaic cells, and absorbers. Few studies of NFRHT for
SiC have been conducted, and most studies investigated the SPhP coupling of SiC . Basu et al. [23]
theoretically investigated the improvement of near-field radiative transfer between SiC plates due to
strong SPhPs coupling. Yue et al. [24] studied the effect of magnetic polaritons (MPs) inside the SiC
grating microstructures on near-field radiative transfer. The presented MPs greatly affected the spectral
heat flux beside the SPhPs. However, the above works all focused on near-field radiative transfer for
reciprocal materials, lacking studies on effect of non-reciprocal materials as magneto-optical materials.
Hence, we investigated the non-reciprocal effect between magneto-optical materials under near-field
in order to explore new phenomena.

In a previous study, the optical characteristics of the magneto-optical materials, such as SiC, InSb,
and HgCdTe, was examined as an external magnetic field was applied, and a detailed description of
the dielectric constant was verified and provided [25,26]. In this work, we theoretically calculate the
near field radiative transfer based on SiC nanowires with different filling ratios and gap distances
under an external magnetic field by using fluctuation-dissipation theorem and local effective medium
theory (EMT), in which Lorentz-Drude equations of dielectric constant tensor are proposed to describe
the dielectric constant as a magnetic field is applied toon the SiC. The influence of magnetic field
intensity on the near field thermal radiation for SiC nanowires and plates is quantified discussed in
detail. We also analyzed the influence of magnetic field intensity on the near field thermal radiation of
SiC nanowires/plates.

2. Theoretical Formulation

2.1. Geometry and Radiative Properties of SiC Nanowires

The emitter and receiver temperatures were respectively set as T1 = 300 K and T2 = 299 K in this
work. From Figure 1, we can see that the vacuum gap distance is denoted as d. Note that the maximum
f for aligned SiC nanowires is 0.3 due to using the approximation Maxwell Garnet method, which is
suitable for a dilute system. The dielectric constant of SiC is described by the Lorentz-Drude model
as: [27]

ε(ω) = ε∞

(
1 +

ω2
p

ω2
T −ω2 − iγω

)
(1)

where ε∞ is the high-frequency limit permittivity (ε∞ = 6.38), ωT is the angular frequency of the
incident wave (ωT = 1.50 × 1014 rad/s), γ is the collision frequency of free electrons (γ = 1/τ, τ is
relaxation time) and γ = 4 × 1011 rad/s, and ωp =

√
Ne2/ε0m∗ is the plasma frequency in rad/s.

In this paper, only the magnetization vector M parallel to the Z axis is considered. When the
magnetic field H is perpendicular to the plane of incidence (i.e., p-polarized or Transverse Magnetic
(TM) waves), medium 2 cannot be simply treated as an isotropic medium because the electric field and



Appl. Sci. 2018, 8, 2023 3 of 10

the optical axis form an acute angle. Hence, for anisotropic materials, the permittivity tensor under a
magnetic field can be expressed as:

ε =

 εxx εxy 0
−εxy εyy 0

0 0 εzz

 (2)

To simplify the complexity of the computation, a unitary matrix transformation U is used to
diagonalize the permittivity, as shown below, by treating the anisotropic dielectric tensor as being
plane symmetric. The approximate dielectric constant can be expressed as:

εD= U∗ · ε ·U =

 εxx 0 0
0 εyy 0
0 0 εzz

 =

 n2
xx 0 0
0 n2

yy 0
0 0 n2

zz

 (3)

So, the dielectric constant tensor of SiC can be expressed as [24]:

ε =



ε∞

(
1− ω2

p(ω+γi)

ω[(ω+γi)2−ω2
c ]−ω2

T(ω+γi)

)
iω2

pωc

ω[(ω+γi)2−ω2
c ]−ω2

T(ω+γi)
0

− iω2
pωc

ω[(ω+γi)2−ω2
c ]−ω2

T(ω+γi)
ε∞

(
1− ω2

p(ω+γi)

ω[(ω+γi)2−ω2
c ]−ω2

T(ω+γi)

)
0

0 0 ε∞

(
1− ω2

p

ω2
T−ω2−iγω

)


(4)

The doping concentration can be expressed as N = aT3/2 exp
(
−Eg/2kT

)
, a is a coefficient related

material, the Boltzmann constant k = 8.625 × 10−5 eV/k, Eg = 2.2 eV is the energy gap in eV,
T is the temperature which the structure operates, e = 1.6 × 1019 C is the elementary charge,
and ε0 = 8.85 × 10−12 is the free-space permittivity in c2/m2N. The cyclotron frequency follows
ωc = eB/m*, where B refers to the applied field intensity. So the doping concentration was calculated
as N = 3.7 × 1023 m−3.
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Figure 1. Schematic of radiative heat transfer between two-infinite SiC nanowires separated by a 
vacuum gap d. 

In Figure 2, the dielectric constants of SiC are plotted as a real part and imaginary part, 
respectively for B = 0 T and B = 3 T. From Figure 2, the results of the Lorentz-Drude model for both 
real and imaginary parts agree well with data reported by Palik [27]. The real part increases as the 
angular frequency increases, which shows the usual dispersion characteristics, and decreases as the 
angular frequency increases, showing a unusual dispersion characteristics. The imaginary part 
showed a similar trend. Hence, the Lorentz-Drude model is suitable to calculate the dielectric 
constant of SiC. As the magnetic field was applied, the real and imaginary part had obvious 
oscillation as shown in Figure 2b, as the magnetic field affected the optical constant of SiC. 
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Figure 1. Schematic of radiative heat transfer between two-infinite SiC nanowires separated by a
vacuum gap d.

In Figure 2, the dielectric constants of SiC are plotted as a real part and imaginary part, respectively
for B = 0 T and B = 3 T. From Figure 2, the results of the Lorentz-Drude model for both real and
imaginary parts agree well with data reported by Palik [27]. The real part increases as the angular
frequency increases, which shows the usual dispersion characteristics, and decreases as the angular
frequency increases, showing a unusual dispersion characteristics. The imaginary part showed a
similar trend. Hence, the Lorentz-Drude model is suitable to calculate the dielectric constant of SiC.
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As the magnetic field was applied, the real and imaginary part had obvious oscillation as shown in
Figure 2b, as the magnetic field affected the optical constant of SiC.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 10 

 
(a) (b) 

Figure.2 Equivalent refractive index n of SiC under magnetic field (a) B = 0 T, (b) B = 3 T. 

In general, the application of a magnetic field somewhat affects the optical constant of SiC, 
especially in the x and y directions. 

2.2. Effective Medium Theory 

Local effective medium theory (EMT) was used to obtain the anisotropic dielectric function and 
was combined with fluctuation electrodynamics to calculate the near-field radiative heat transfer 
coefficient due to its simplicity and low computational demand. In the Maxwell-Garnett 
approximation, the effective properties of a composite medium are obtained by treating one 
constituent of the composite as the host and all other constituents as embedded fillers that are not in 
contact with one another [28]. 

For SiC nanowire arrays, we set the optical axis of the structure along the Z axis, and obtained 
the effective dielectric functions: 

( ) ( )
( ) ( )

,
,

,

1 1

1 1
x y

x y
x y

f f

f f

ε
ε

ε
+ + −

=
− + +

 (5) 

1z z f fε ε= + −  (6) 

EMT is a homogenization method for characterizing the optical properties of an 
inhomogeneous medium with different material constituents based on the field average method. In 
Equations (5) and (6), f means the volume filling ratio, which has been previously explained in detail 
[27]. 

Form Figure 3, the hyperbolic dispersions of SiC nanowires under magnetic field B = 3 T were 
supported in two narrow bands between 1.50 × 1014 rad/s and 1.69 × 1014 rad/s (blue shaded region, 
Type I), and between 1.79 × 1014 rad/s and 1.83 × 1014 rad/s (yellow shaded region, Type II). The heat 
transfer coefficient at temperature T between two semi-infinite plates can be expressed as: 

( ) ( )2

3 0 0 0

1
, , ,

8
H T d d d

π
ω ω ξ ω β φ β β φ

π
∞ ∞

= Θ    (7) 

where ( ) ( )( ), (exp 1)BT k T
T

ω ω ω∂Θ = −
∂

   is the average energy of a Planck’s oscillator,   is the 

reduced Planck constant, β  is the transverse wavevector (the magnitude of the wavevector 

Figure 2. Equivalent refractive index n of SiC under magnetic field (a) B = 0 T, (b) B = 3 T.

In general, the application of a magnetic field somewhat affects the optical constant of SiC,
especially in the x and y directions.

2.2. Effective Medium Theory

Local effective medium theory (EMT) was used to obtain the anisotropic dielectric function
and was combined with fluctuation electrodynamics to calculate the near-field radiative heat transfer
coefficient due to its simplicity and low computational demand. In the Maxwell-Garnett approximation,
the effective properties of a composite medium are obtained by treating one constituent of the
composite as the host and all other constituents as embedded fillers that are not in contact with
one another [28].

For SiC nanowire arrays, we set the optical axis of the structure along the Z axis, and obtained the
effective dielectric functions:

εx,y =
εx,y(1 + f ) + (1− f )
εx,y(1− f ) + (1 + f )

(5)

εz = εz f + 1− f (6)

EMT is a homogenization method for characterizing the optical properties of an inhomogeneous
medium with different material constituents based on the field average method. In Equations (5) and
(6), f means the volume filling ratio, which has been previously explained in detail [27].

Form Figure 3, the hyperbolic dispersions of SiC nanowires under magnetic field B = 3 T were
supported in two narrow bands between 1.50 × 1014 rad/s and 1.69 × 1014 rad/s (blue shaded region,
Type I), and between 1.79 × 1014 rad/s and 1.83 × 1014 rad/s (yellow shaded region, Type II). The heat
transfer coefficient at temperature T between two semi-infinite plates can be expressed as:

H =
1

8π3

∫ ∞

0
Θ(ω, T)dω

∫ 2π

0

∫ ∞

0
ξ(ω, β, φ)βdβdφ (7)

where Θ(ω, T) = ∂
∂T (}ω/(exp(}ω/kBT)− 1)) is the average energy of a Planck’s oscillator, } is the

reduced Planck constant, β is the transverse wavevector (the magnitude of the wavevector component
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in the x − y plane), φ is the Azimuth of a wavevector, and ξ(ω, β, φ) is the energy transmission
coefficient, which can be defined as:

ξ(ω, β, φ) =

{
Tr[(I− R∗2R2)D(I− R1R∗1)D

∗],
Tr[(R∗2−R2)D(R1−R∗1)D

∗]e−2|ky0|d,
β < k0

β > k0
(8)

Here, the matrix D is expressed as D =
(

I− R1R2e2iky0d
)−1

, I is a 2× 2 unit matrix, R is the matrix
related to Fresnel’s reflection coefficients and

R1,2 =

[
r(1,2)

ss r(1,2)
sp

r(1,2)
ps r(1,2)

pp

]
(9)

where j is for s or p polarization, and γ is Fresnel coefficient, which can be expressed as follows:

rj =


ky0−
√

k2
0εx−β2

ky0+
√

k2
0εx−β2

, j = s

εxky0−
√

k2
0εx−β2εx/εy

εxky0+
√

k2
0εx−β2εx/εy

, j = p
(10)
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Figure 3. The effective dielectric function for (a) SiC plates and (b) SiC nanowires at f = 0.2. 

In order to check the reliability of the above model for near-thermal radiation, the heat transfer 
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and nanoholes, which is shown in Figure 4. The doping concentration was set to N = 1020 cm−3. 

From Figure 4, the results for the two nanostructures agree well. Hence, we assumed that the 
above model in this work is reliable. Note that no magnetic field was applied in this case. The 
calculated heat transfer coefficient between doped Si nanowires with f = 0.05 was 6.25 W/m2K and 
that between doped Si nanoholes with f = 0.3 was 3.83 W/m2K, which are basically the same values 
reported in the literature. 

Figure 3. The effective dielectric function for (a) SiC plates and (b) SiC nanowires at f = 0.2.

In order to check the reliability of the above model for near-thermal radiation, the heat transfer
coefficient was calculated and compared to that obtained by Liu et al. [29] for doped Si nanowires and
nanoholes, which is shown in Figure 4. The doping concentration was set to N = 1020 cm−3.

From Figure 4, the results for the two nanostructures agree well. Hence, we assumed that the
above model in this work is reliable. Note that no magnetic field was applied in this case. The calculated
heat transfer coefficient between doped Si nanowires with f = 0.05 was 6.25 W/m2K and that between
doped Si nanoholes with f = 0.3 was 3.83 W/m2K, which are basically the same values reported in
the literature.
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= 0.2 at d = 10 nm. 

Figure 5 shows that compared to hyperbolic dispersion type II, SiC nanowires exhibit large heat 
transfer flux in the hyperbolic dispersion type I region. Compared to the SiC plates, the spectral heat 
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3. Results and Discussion

3.1. Spectral Heat Fluxes and Transmission Coefficient

From Figure 5, for the plate case, two peaks were observed at frequencies around 1.50 × 1014 rad/s
and 1.81 × 1014 rad/s under B = 3 T. Compared to the plate case, a significantly enhanced spectral heat
flux between 1.50 × 1014 rad/s and 1.70 × 1014 rad/s was observed, which is known as hyperbolic
dispersion (Type I, blue region). Between 1.70 × 1014 rad/s and 1.90 × 1014 rad/s, the peak of spectral
heat flux blueshifted toward increasing angular frequency, because the optical constants change due to
different material structures. The linear shape of the spectral heat flux of the nanowires was obviously
higher than that of the plates, producing violent shocks under the external magnetic field (Type II,
yellow region).
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Figure 5 shows that compared to hyperbolic dispersion type II, SiC nanowires exhibit large heat
transfer flux in the hyperbolic dispersion type I region. Compared to the SiC plates, the spectral heat
flux of the nanowires structure is more intense, especially in the hyperbolic dispersion regions.
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Figure 6 displays the contour plots of the transmission coefficient for both SiC nanowires and
SiC plates under the magnetic field B = 3 T at d = 10 nm. Compared to SiC plates, the transmission
coefficient of SiC nanowires is higher at very large β values and in the hyperbolic band. This can allow
photons on the surface of SiC nanowires to tunnel through the vacuum gap, which is why the heat
fluxes of SiC nanowires is obviously higher than that of the plates in the hyperbolic band. Evanescent
waves are the main surface mode of structure in this case. For SiC nanowires, because of their dielectric
anisotropy, they support the hyperbolic band for p polarization. Therefore, in the hyperbolic regions,
the nanowires can have a larger transmission coefficient than that of SiC plates.
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3.2. Effect of Structure Parameters

3.2.1. Filling Ratio

The filling ratio f is defined based on the volume fraction of SiC. The heat transfer coefficients
for SiC nanowires under different magnetic field intensities at d = 10 nm were simulated as plotted in
Figure 7. Note that the maximum filling ratio for the nanowires was 0.3.
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From Figure 7, we found that the heat transfer coefficient of the nanowire structure obviously
increased with increasing magnetic field. This is because the magnetic field leads to a significant
increase in the photon tunneling phenomenon of the material structure. The SiC plates are not
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shown here because they remained constant and slightly changed as the external magnetic field
strength increased.

3.2.2. Gap Distance

Figure 8 shows the heat transfer coefficient between SiC nanowires at several different vacuum
gap distances. For SiC plates, the heat transfer coefficient of the plate under different magnetic field
intensities did not change significantly at all gap distances. Hence, it is not shown here. This occurred
because the dielectric constant of the SiC plates under the action of an external magnetic field had no
obvious change, as shown in Figure 3.

For f = 0.2, SiC nanowires can yield a super-Planckian behavior when the gap distance is below
3 µm, whereas the heat transfer coefficient decreases with increasing gap distance. The heat transfer
coefficient of the structure under a magnetic field was significantly higher than that of non-magnetic
field when d was below 100 nm. The enhanced amplitude increased with increasing magnetic field
intensity and decreasing gap distance. Evanescent waves were the main surface mode of the structure
in this case. Therefore, the external magnetic field can significantly enhance evanescent waves in near
field thermal radiation.
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4. Conclusions

In this paper, we determined the radiative transfer properties of SiC nanowires under different
external magnetic field intensities, such as spectral heat fluxes, transmission coefficient, and heat
transfer coefficient, and theoretically investigated the effect of an external magnetic field on the SiC
nanowires on near field thermal radiative transfer. Compared to SiC plates, the transmission coefficient
of SiC nanowires was higher at very large lateral wavevector values and in the hyperbolic band.
In general, the external magnetic field tunes the near field radiation properties of the subwavelength
magneto-optical materials. Under the appropriate parameters, external magnetic fields obviously
enhance the evanescent waves in near field thermal radiation. In summary, the external magnetic field’s
effect on SiC nanowires in near field heat radiation has important applications like thermophotovoltaic
energy conversion and radiation-based thermal management.
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