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Abstract: No-reference (NR) image quality assessment (IQA) objectively measures the image quality
consistently with subjective evaluations by using only the distorted image. In this paper, we focus
on the problem of NR IQA for blurred images and propose a new no-reference structural similarity
(NSSIM) metric based on re-blur theory and structural similarity index (SSIM). We extract blurriness
features and define image blurriness by grayscale distribution. NSSIM scores an image quality
by calculating image luminance, contrast, structure and blurriness. The proposed NSSIM metric
can evaluate image quality immediately without prior training or learning. Experimental results
on four popular datasets show that the proposed metric outperforms SSIM and well-matched to
state-of-the-art NR IQA models. Furthermore, we apply NSSIM with known IQA approaches to
blurred image restoration and demonstrate that NSSIM is statistically superior to peak signal-to-noise
ratio (PSNR), SSIM and consistent with the state-of-the-art NR IQA models.

Keywords: no-reference; re-blur; structural similarity; image quality assessment

1. Introduction

Advances in digital techniques enable people to capture, store and send a large amount of digital
images easily, which sharply accelerates the rate of information transfer. Images captured by cameras
in the real world are usually subject to distortions during acquisition, compression, transmission,
processing, and reproduction. The information that an image conveys is related to image quality, thus
image quality is very significant for image acquisition and processing systems. If the quality of an
image is bad, its processing result is usually bad as well. Therefore, image acquisition and processing
systems in real applications need image quality assessment (IQA) to objectively and automatically
identify and quantify these image quality degradations. In recent decades, many IQA methods
have been proposed to solve this problem. IQA methods can be classified as full-reference (FR),
no-reference (NR) and reduced-reference (RR) methods. FR methods, such as the mean squared error
(MSE), the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [1], require the
original undistorted images as the references. In addition, RR methods need prior information about
the original images, but either the original undistorted images or their prior information are rarely
obtained in practice. NR methods can assess the quality of the distorted images only using themselves,
thus are more suitable for actual applications. In this paper, we confine our work to NR methods and
focus on the degradation of blur.

The popular FR metric SSIM [1] takes advantage of mathematical convenience and matching to
known characteristics of the human visual system (HVS) but suffers from a lack of pristine reference
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images. Recent general NR models, such as [2–4], perform well when adapting with HVS, but lose
computation convenience when training with distorted images in advance. In this paper, we propose
an NR IQA method for blurred images. Our proposed metric, called no-reference structural similarity
(NSSIM), is based on re-blur theory and SSIM, and can be regarded as an improvement of SSIM
from FR to NR. The first part is the re-blur process, i.e., blurring the distorted images by a Gaussian
low-pass filter. The second is to quantify the blurriness of the image by grayscale distribution. Finally
we combine luminance, contrast, structure and blurriness to a quality score. Our NSSIM can be
easily computed using the input image and its re-blurred image, and no previous training is needed.
Experimental results from four popular datasets validate the better performance of NSSIM than the
compared FR and NR methods. In addition, we apply NSSIM to evaluate the performance of the
blurred image restoration. The results demonstrate that NSSIM performs as well as the state-of-the-art
NR IQA metrics and can get better image quality evaluation than the existing FR IQA metrics PSNR
and SSIM. The contribution of the paper is two-fold. One is that we propose a novel definition of image
blurriness based on the grayscale distribution of the image, and verify its effectiveness of blurriness
measurement and fitness with the subjective quality sense of a human. The other is that we extend the
famous FR IQA metric SSIM to a no-reference manner, achieving state-of-the-art IQA performance
without previous training.

The rest of this paper is organized as follows. In Section 2, we review previous works in IQA.
In Section 3, we describe the blurriness definition and computation, and procedure of our model.
In Section 4, we evaluate the performance of the proposed approach by comparing it with the state of
the art and applying for blurred image restoration. Section 5 concludes the paper.

2. Related Works

FR IQA methods are usually used to get quantitative evaluation of image quality. For example,
PSNR is a classical FR IQA that measures the difference between the maximum and minimum
grayscale of the image, which is simple to achieve but cannot accurately simulate the HVS. Another
popular FR metric SSIM [1] takes the advantage of mathematical convenience and matching to known
characteristics of the HVS but suffers from a lack of pristine reference images. To avoid the requirement
of the referred undistorted images, NR IQA algorithms are researched for applications when the
referred undistorted images are unavailable. According to their capability, NR IQA algorithms can be
divided into distortion-specific and holistic models. In the following, we survey NR IQA algorithms
that target blur, compression, and several holistically operated models.

2.1. Distortion-Specific NR IQA Algorithms

Distortion-specific NR IQA algorithms assume that the distortion medium is known. Popular
blur IQA algorithms model edge spreads and relate these spreads to perceived quality. Sang [5]
proposes a blur IQA model by using singular value decomposition (SVD) to evaluate image structural
similarity. Caviedes [6] computes sharpness using the average 2D kurtosis of the 8 × 8 DCT blocks
and spatial edge extent information. Ferzli [2] evaluates image quality by Just Notice Blur (JNB).
Joshi [7] presents an NR IQA method based on continuous wavelet transform. Similarly, the general
approach to NR JPEG IQA is to measure edge strength at block boundaries and relates this strength as
well as possibly some measure of image activity to perceived quality. Feng [8] measures the visual
impact of ringing artifacts for JPEG images. Meesters [9] detects the low-amplitude edges that result
from blocking and estimating the edge amplitudes. Wang [10] evaluates image quality by designing
a computationally inexpensive and memory-efficient feature extraction method and estimating the
activity of the image signal. JPEG2000 ringing artifacts in an image are normally modeled by measuring
edge-spread using an edge-detection-based approach. For example, Sazzad [11] computes simple
features in the spatial domain, Sheikh [12] assesses image quality by natural scene statistics (NSS)
models, and Marziliano [13] calculates edge width by finding the start and end positions of the edge
of each corresponding edge in the processed image.
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2.2. Holistic NR IQA Algorithms

Holistic IQA algorithms are designed for measuring distortion of unknown type. Holistic models
extract common features of various distortions or establish various models for different distortions.
BIQI [14] assumes an image is subjected to a wavelet transform over three scales and three orientations
using the Daubechies 9/7 wavelet basis [15], and assesses image quality with a two-step framework
which estimates the presence of a set of distortions and evaluated the quality of the image along each
of these distortions. BLIIND-II [3] is a multiscale but single-stage algorithm through machine learning
that operates in the DCT domain, where a number of features, i.e., scale and orientation selective
statistics, correlations across scales, spatial correlation and across orientation statistics, are computed
from a natural scene statistics (NSS) model of block DCT coefficients. BRISQUE [4] details the statistical
of locally normalized luminance coefficients in the spatial domain. Considering images are naturally
multiscale, BRISQUE captures 36 features from two grayscales to identify image distortions and
activate distortion-specific quality assessment. A support vector regressor (SVR) [16] is used to build a
regression module to perceive quality score. NIQE [17] is founded on perceptually relevant spatial
domain NSS features extracted from local image patches that capture the essential low-order statistics
of natural images. NIQE takes the distance between the quality-aware NSS feature model and the
MVG fit to the features extracted from the distorted image as quality score.

The up-to-date NR IQA algorithm NR-CSR [18] applies convolutional sparse representation (CSR)
to simulate the entire image as a sum over a set of convolutions of coefficient maps, which has the same
size as the image. NR-CSR uses a low-pass filter to obtain the sparse coefficient and calculating the
gradient value to score the sharpness. Meanwhile, artificial neural network method has already been
used by novel NR IQA algorithms. For example, Fan [19] proposed an NR IQA algorithm based on
multi-expert convolutional neural networks (MCNN) and Li [20] proposed an IQA model for realistic
blur image-based semantic feature aggregation (SFA).

It should be noticed that the state-of-the-art NR IQA algorithms like BRISQUE and BLIIND-II
perform well at adapting HVS but lose computation convenience due to the training by distorted
images in advance. Moreover, deep learning methods like MCNN suffer heavy time cost and high-level
hardware requirements.

3. The Proposed IQA Metric

Our proposed NR IQA metric for blurred images aims to be applied without advance training
using distorted/undistorted images. It can be regarded as an improvement of SSIM from FR to NR by
using re-blur theory, thus we call it NSSIM. In this section, we describe the detail of NSSIM in four
parts. Firstly, we revisit the FR structural similarity index (SSIM), and then introduce re-blur, which
gives the twice-blurred image. The following part describes feature extraction, where we define image
blurriness d from image grayscale histogram distribution. Finally, we compare luminance, contrast,
structure and blurriness between the original image and its re-blurred image to land a quality score,
i.e., our NSSIM.

3.1. Structural Similarity

The FR metric SSIM [1] compares luminance, contrast and structure of distorted image x and
pristine reference image y, i.e.,

SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ (1)

where l(x, y), c(x, y) and s(x, y) respectively represent luminance, contrast and structure comparison
functions. α > 0, β > 0 and γ > 0, which are parameters to adjust the relative weight of the
three components.
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Weber’s Law [21] indicates that the magnitude of a just-noticeable luminance change 4I is
approximately proportional to the background luminance I for a wide range of luminance values.
Thus the luminance comparison function is defined as

l(x, y) = l
(

µx, µy

)
=

2µxµy + C1

µ2
x + µ2

y + C1
(2)

where µx = 1
N ∑N

i=1 xi and µy = 1
N ∑N

i=1 yi (N is the total number of image pixels. xi and yi are single
pixels in x and y) represent the mean intensity of image x and image y respectively. C1 is a positive
constant to avoid instability when µ2

x + µ2
y is very close to zero. C1 = (K1L)2, K1 � 1 is a small

constant, and L is the dynamic range of the pixel values (e.g., 255 for 8-bit grayscale images).
Similarly, the contrast comparison function is

c(x, y) = c
(
σx, σy

)
=

2σxσy + C2

σ2
x + σ2

y + C2
(3)

where C2 = (K2L)2, K2 � 1, and σx =
(

1
N−1 ∑N

i=1 (xi − µx)
2
)1/2

and σy =

(
1

N−1 ∑N
i=1

(
yi − µy

)2
)1/2

are standard deviations of x and y, respectively.
The definition of structure correlation function is

s(x, y) = s
(

x− µx
σx

,
y− µy

σy

)
=

σxy + C3

σxσy + C3
(4)

where C3 is a small positive constant to avoid instability when σxσy closes to zero,

and σxy = 1
N−1 ∑N

i=1 (xi − µx)
(

yi − µy

)
.

3.2. Re-Blur

It is known that sharp images contain more high-frequency components, thus grayscale variations
between adjacent pixels in sharp images are more distinct than those in blurred images. The re-blur
theory [17] explains that the variation of quality of sharp images would be larger than that of blurred
images after blur processing, which is also demonstrated in Figure 1. Considering the input image x,
we can take re-blurred image y as the reference, and the image quality can be assessed by the quantity
of high frequency components measured between x and y.

Figure 1. A sharp image (left) possesses conspicuous quality decline than a blurred image (middle)
after blur processing (right).

The re-blur procedure is shown in Figure 2. Considering Gaussian blur as the distortion type in
this paper, we apply a Gaussian kernel kg (i.e., a Gaussian low-pass filter) to the distorted image x to
obtain a re-blurred image y, which is formulated as

y = x ∗ kg (5)

where ∗ is the convolution operator, and the Gaussian kernel kg is sampled from a two-dimensional
Gaussian function
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G(u, v) =
1

2πσ2 e−(u
2+v2)/(2σ2) (6)

It should be noted that kg is parameterized by the kernel size and the standard deviation σ.
The impact of these parameters will be discussed in Section 4.

We decompose an M × N × 3 image into the high-frequency part IH and the low-frequency
part IL. IH represents the drastic part while IL represents the mild part. Thus the image grayscale
variation would be sharper in drastic-change area. In order to focus on the main part that contributes to
image quality and reduce the time cost, a down-sampling process for the inputted multi-dimensional
image by a simple low-pass filter f = max(1, round(min(M, N)/256)) is applied. If f > 1, we define

f = 1
f× f × lp f , where lp f =

1 · · · 1
...

. . .
...

1 · · · 1


f× f

. Values outside the bounds of the image are computed

by mirror-reflecting the image across the border. The filtered image should have the same size of
the original image by restricting the points of filtering template in the original image. In addition,
we convert both the multi-dimensional original image and the filtered, i.e., the re-blurred image into
two-dimensional mode.

x y

Figure 2. Re-blur Process.

3.3. Feature Extraction

Considering the abundant information that images possess, the complexity of images can be
represented based on their structure, noise and diversity [22] or based on fuzzy measures of entropy [23]
or based on discrete wavelet transform decomposition [24], etc. In this paper, to represent the inputted
image and the re-blurred image, we extract luminance, contrast, structure and blurriness of both
the down-sampled 2D images, respectively. Then, we ameliorate the traditional structural similarity
by combining the blurriness with luminance, contrast and structure in Figure 3. We would like to
emphasize image blurriness in this subsection.

Image histogram reports grayscale distribution. As seen in Figure 4, we find that sharp images
have a broader grayscale range. In contrast, grayscale distributions of blurred images are narrower and
tend to approach the mean value according to their histograms. As is shown in Figure 4, grayscales
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close to the mean value µ of the blurred image (e.g., pixels whose grayscale close to the 132.92 in
the right histogram in Figure 4) take the most proportion in the histogram. Thus we describe image
blurriness by distributing different weights to different pixel values. We assign heavy weights to the
pixels those close to image mean grayscale value and fewer weights to those away from that. Thus we
define the image blurriness as

d =
L

∑
gi=0

p (gi)w (gi) (7)

where d represents image blurriness, gi is gray value whose range varies from 0 to the dynamic range L
(e.g., L = 255 for 8-bit image), p(gi) is the proportion of gi on the whole image, and w(gi) represents
the weight of gi, which can be calculated as

w(gi) =


gi
µ , gi < µ

L−gi
L−µ , gi > µ

(8)

According to the proposed image blurriness index, we test images in Figure 1 to verify the impact
of re-blur process. Using SSIM and image blurriness as image quality indexes, the results are shown
in Table 1. It is shown that the quality of a sharp image has a more drastic decline than that of a
blurred image. Then we analyze the image quality trend activated by re-blur, i.e., we blur the sharp
image of Figure 1 with blur times varying from 0 to 11. Experimental results are shown in Figure 5.
The proposed blurriness index has an approximate linear growth while the SSIM index gradually
declined slower with the increase of blur times. This demonstrated that a high-quality image has a
relatively small SSIM index when taking its blurred image as reference.

In order to verify the consistency between the proposed image blurriness metric and natural blur
images, we selected five Gaussian blur images from each of the four datasets, including CSIQ [25],
Live II [26], IVC [27] and TID2013 [28], shown in Figure 6. Table 2 indicates that the proposed
image blurriness metric has positive correlation with the difference mean opinion scores (DMOS),
i.e., the subjective quality scores in CSIQ and LIVE II datasets, and negative correlation with DMOS
those belong to IVC and TID2013 datasets. It can be concluded that our blurriness metric can precisely
represent the blurriness of natural images and fit the subjective quality assessment of the HVS.

Figure 3. Feature extraction and structural similarity measurement. We extract four features, i.e.,
luminance, contrast, structural and blurriness, of the down-sampled 2D mode images and score
structural similarity index by computing four features together.
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SHARP IMAGE BLURRED IMAGE

Figure 4. Sharp (left) and Gaussian blurred (right) images with their grayscale histograms.
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Figure 5. Trend of image quality and blurriness with Gaussian blur times that varies from 0 to 11.

Figure 6. Sample images in the four datasets together with their subjective DMOS scores. Each set of
images contains five Gaussian blur images those have gradient DMOS scores.
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Table 1. Relationship between SSIM and image blurriness of Figure 1.

Image SSIM Blurriness

Sharp 1.0000 1016.6353
Blur 0.8442 1025.8226

Re-blur 0.7839 1034.1684

Table 2. Blurriness of four sets of images shown in Figure 6, demonstrating the consistency between
the proposed image blurriness metric and DMOS, i.e., the subjective scores given by the datasets.

CSIQ LIVE II IVC TID2013

DMOS Blurriness DMOS Blurriness DMOS Blurriness DMOS Blurriness

0.043 1899.433 0.562467 4047.479 4.4 2574.040 5.18919 2142.768
0.142 1916.220 0.963510 4061.419 3.3 2612.444 4.27222 2171.592
0.341 1939.591 1.450490 4073.350 2.6 2636.649 3.48649 2209.623
0.471 1976.500 2.510388 4092.591 1.9 2658.148 3.00000 2250.459
0.750 2044.500 3.541641 4107.935 1.4 2671.689 2.11111 2285.712

3.4. NSSIM Index

Similar to the definitions of luminance, contrast and structure in SSIM, we define blurriness
comparison function as

h(x, y) =
2dxdy + C4

d2
x + d2

y + C4
(9)

where dx and dy respectively represent blurriness of distorted image x and its re-blurred image y. C4 is
to avoid instability when d2

x + d2
y closes to zero. Thus, we can calculate luminance, contrast, structure

and blurriness to get a new metrics SSIMr as

SSIMr(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ [h(x, y)]λ (10)

where λ is the exponent coefficient of h(x, y). To better capture the blurriness in local areas of an image,
we partition an image into P× P patches of the same size and compute the mean SSIMr as

MSSIMr(x, y) =
1
M

M

∑
i=1

SSIMr

(
xi, yi

)
(11)

where M = P × P, and xi and yi are the i-th patches in x and y respectively. Finally, to make the
quality score in accordance with the subjective impression, i.e., high-quality image gets high IQA score,
we define our proposed NSSIM index as

NSSIM(x, y) = 1−MSSIMr(x, y) (12)

4. Performance Evaluation

4.1. Datasets

We tested the proposed NSSIM on four popular datasets for IQA, including CSIQ [25], LIVE II [26],
IVC [27] and TID2013 [28]. All datasets consist of several subsets of different distortion types. In this
paper, we used Gaussian blur distortion for experiments. In particular, the CSIQ dataset contains
30 reference images and 150 Gaussian blur images, the LIVE II dataset contains 29 reference images and
145 Gaussian blur images, the IVC dataset contains four reference images and 20 Gaussian blur images,
and the TID2013 dataset contains 25 reference images and 125 Gaussian blur images. All blur images
in these datasets were used together with their DMOS as subjective quality scores. Some samples of
Gaussian blur images for experiments are shown in Figure 6 together with their DMOS. It should
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be noted that DMOS scores provided by CSIQ [25] and LIVE II [26] have positive correlation with
blurriness scores, while DMOS scores provided by IVC [27] and TID2013 [28] change in the opposite
direction. As shown in Figure 6, the datasets used for performance evaluation contain blur images
with different kinds of nature scenes which are generally distributed, thus are suitable for statistical
analysis of evaluation results.

4.2. Indexes for Evaluation

In order to provide quantitative measurement of the performance of our proposed model,
we follow the performance evaluation procedures employed in the video quality experts group
(VQEG) [29]. We test the proposed IQA metrics using Spearman’s rank order correlation coefficient
(SROCC), Pearson linear correlation coefficient (PLCC) and root mean square error (RMSE) as
evaluation indexes. SROCC, PLCC and RMSE are respectively defined as

SROCC = 1−
6 ∑N

i=1
(

Rsi − Rpi

)2

N (N2 − 1)
(13)

PLCC =
∑N

i=1 (si − s) (pi − p)√
∑N

i=1 (si − s)2 (pi − p)2
(14)

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − si)
2 (15)

where N is the number of images, si and pi represent the i-th scores given by subjective evaluation
and objective evaluation, s and p represent mean subjective quality score and mean objective
predicted score, and Rsi and Rpi represent the rank order number of s and p, respectively. SROCC
is a nonparametric measure of rank correlation to statistically assess how well the relationship
between the subjective quality score and the objective predicted score can be monotonically described,
while PLCC is a measure of the linear correlation between them. RMSE represents the square root
of the quadratic mean of the differences between the subjective quality scores and the objective
predicted scores, and is a frequently used measure. By using these three statistical measures, we can
easily analyze the consistency between the subjective quality score and the objective predicted score,
which indicates the capability of IQA methods.

4.3. Parameter Setting

In this subsection, the re-blur method including blur type and filter parameters are discussed.
We also discuss the exponent coefficients of luminance, contrast, structural and blurriness, i.e., α, β, γ

and λ in Equation (10), to achieve the best performance of our proposed metric.

4.3.1. Filter Type and Parameter for Re-Blur

As mentioned in Section 3.2, we apply a Gaussian low-pass filter to get the re-blurred image of
the input image. It should be noted that we compared three types of filters for re-blur, i.e., Gaussian
blur, motion blur and defocus blur. The results on LIVE II dataset are illustrated in Table 3. We can
see that Gaussian blur leads to the highest SROCC. It is easy to understand such results, noting that
the filter for re-blur is of the same type as the distortion of the image in LIVE II dataset. Thus we
chose Gaussian filter for re-blur in the experiments. Furthermore, the size and deviation of Gaussian
filter will impact running time. According to the experimental results shown in Table 4, we take the
Gaussian filter of 11 × 11 with deviation 1.5.
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Table 3. SROCC of three blur distortion types tested on LIVE II dataset. The best SROCC score is
marked in boldface.

Type Motion Blur Gaussian Blur Defocus Blur

SROCC 0.9031 0.9464 0.8848

Table 4. The impact of size and deviation of the Gaussian low-pass filter on running time (seconds),
which is tested on LIVE II dataset. The minimum running time is marked in boldface.

deviation\Size(Pixels) 5 7 9 11 13 15

0.5 2.2956 2.2740 2.2875 2.3679 2.3840 2.3569
1.0 2.2553 2.3779 2.2955 2.2769 2.3800 2.3440
1.5 2.2537 2.3232 2.2743 2.2495 2.3779 2.3457
2.0 2.2560 2.4236 2.2846 2.2967 2.4144 2.3379
2.5 2.2574 2.4542 2.3055 2.3547 2.4531 2.4553

4.3.2. Patch Quantity

Since we partitioned an image into P× P patches when calculating NSSIM, the size and amount
of the patches have impact on processing time. In Table 5, we list the running time taken (in seconds)
to compute each quality on an image of resolution 768 × 512 and 24-bit deep color from LIVE II
dataset on a 2.6 GHz single-core PC with 4 GB of RAM. When P = 16, each patch is 48 × 32 × 3 and it
takes average 2.4373 seconds to evaluate, which is the least running time. Thus, we set P = 16 in the
experiments in this paper.

Table 5. Comparison of running time in LIVE II dataset with different patch quantity from 4 × 4
to 64 × 64. The minimum running time is marked in boldface.

Patch Quantity 4 × 4 8 × 8 12 × 12 16 × 16 20 × 20 32 × 32 64 × 64

Running Time (seconds) 3.4769 3.8733 3.6547 2.4373 4.5235 5.4144 18.3218

4.3.3. Exponent Coefficient of Blurriness Comparison Function

In this section, we evaluate the contribution of λ, which is the exponent coefficient of blurriness
comparison function h(x, y). The impact of λ tested on LIVE II [26] dataset is shown in Figure 7 with
other parameters the same as SSIM [1]. SROCC, PLCC and RMSE come to the best performance
when λ = 1, and when λ = 0 our NSSIM degrades to the traditional SSIM [1]. To achieve the best
performance and simplify the expression, we set α = β = γ = λ = 1, C1 = 0.01, C2 = 0.03, C3 = C2/2,
C4 = C2.

4.4. Comparison with the State-of-the-Arts

We compared the performance of NSSIM against PSNR, original SSIM [1], and several state-of-
the-art NR IQA models such as BRISQUE [4], BLIIND-II [3], MCNN [19], IQA-CWT [7], SFA [20], etc.
In order to evaluate the statistically significant difference between the proposed metric and the existing
IQA algorithms, we performed statistical analysis by paired-sample t-tests and reporting the p-values.
The null hypothesis in our t-tests is that the pairwise difference between the proposed metric and
others has a mean equal to zero, i.e., the differences in performances presented in the results are
not statistically significant. p-values < 0.05 indicates the rejection of the null hypothesis at the 5%
significance level, meaning that the differences are statistically significant. It should be noticed that
results of some IQA algorithms, such as NR-CSR [18], MCNN [19], IQA-CWT [7], and SFA [20], are
collected from the corresponding references, thus their p-values are not shown in the result tables.
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Impact of on Performance

Figure 7. Analysis of performance of SROCC, PLCC and RMSE with λ varying from 0 to 5 on
LIVE II dataset (145 Gaussian blur images), where λ represents the exponent coefficient of blurriness
comparison function in Equation (10).

As seen from Table 6, NSSIM achieves 0.8971 of PLCC and 0.1266 of RMSE on CSIQ [25] dataset,
better than SSIM and MCNN metrics. We randomly sampled 100 images from CSIQ dataset by 10 times
for the t-test, so that 10 samples of SROCC, PLCCs and RMSE were achieved for each algorithm in
comparison. p-values in Table 6 show that t-tests reject the null hypothesis at 5% significance level,
i.e., the alternative hypothesis is accepted that the pairwise difference between NSSIM and the other
metrics does not have a mean equal to zero. This ascertains the differences of various metrics are the
statistically significant.

Table 6. Comparison with ten existing IQA algorithms on CSIQ dataset (150 Gaussian blur images).
We take Spearman’s rank order correlation coefficient (SROCC), Pearson linear correlation coefficient
(PLCC) and root mean square error (RMSE) as evaluation indexes. In each column, the best performance
value is marked in boldface.

Algorithm SROCC (p-Values) PLCC (p-Values) RMSE (p-Values)

PSNR 0.9366 (0.000068) 0.9249 (0.002634) 0.1090 (0.001652)
SSIM [1] 0.9089 (0.003128) 0.8861 (0.014146) 0.1328 (0.007789)
BIQI [14] 0.9182 (0.001193) 0.8974 (0.000621) 0.2851 (0.006433)

BRISQUE [4] 0.9033 (0.015126) 0.9279 (0.004072) 0.1068 (0.000032)
TIP [2] 0.8996 (0.007822) 0.9014 (0.018125) 0.2678 (0.005821)

NIQE [17] 0.8951 (0.005408) 0.9222 (0.009684) 0.1108 (0.000019)
BLIIND-II [3] 0.8915 (0.000362) 0.9011 (0.000067) 0.1243 (0.005118)
NR-CSR [18] 0.8822 (-) 0.8492 (-) 0.1513 (-)
MCNN [19] 0.8751 (-) 0.8882 (-) 0.1317 (-)

IQA-CWT [7] 0.8010 (-) - (-) 0.1626 (-)
NSSIM 0.8546 0.8971 0.1266

Table 7 shows that NSSIM achieves 0.9689 of PLCC which performs better than the other ten
algorithms on LIVE II [26] dataset, and 0.9464 of SROCC holds the third position among the 11 metrics.
A paired-sample t-test was also applied the same as we done on CSIQ [25] dataset. The p-values
demonstrate the statistically significant improvement of the proposed metric in terms of PLCC.

Table 8 indicates that NSSIM achieves 0.9239 of PLCC and 0.4367 of RMSE, which are the best
among all nine algorithms tested on IVC [27] dataset. We also run a paired-sample t-test via randomly
sampling 15 images from IVC dataset by 10 times. The p-values proves the statistically significant
improvement of the proposed metric in terms of PLCC and RMSE.
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Table 7. Comparison with ten existing IQA algorithms on LIVE II dataset (145 Gaussian blur images).
We take Spearman’s rank order correlation coefficient (SROCC), Pearson linear correlation coefficient
(PLCC) and root mean square error (RMSE) as evaluation indexes. In each column, the best performance
value is marked in boldface.

Algorithm SROCC (p-Values) PLCC (p-Values) RMSE (p-Values)

PSNR 0.7180 (0.000031) 0.6427 (0.000004) 1.6266 (0.000001)
SSIM [1] 0.8727 (0.005351) 0.8570 (0.000026) 1.8174 (0.000522)
BIQI [14] 0.9119 (0.004789) 0.7144 (0.000756) 2.0347 (0.000011)

BRISQUE [4] 0.9710 (0.010362) 0.9680 (0.004423) 1.5331 (0.001605)
TIP [2] 0.9011 (0.009542) 0.8811 (0.007826) 1.4768 (0.001412)

NIQE [17] 0.9721 (0.017612) 0.9561 (0.010149) 0.1884 (0.005590)
BLIIND-II [3] 0.9177 (0.001637) 0.9111 (0.000488) 0.8750 (0.007369)
MCNN [19] 0.9358 (-) 0.9459 (-) 6.4538 (-)

IQA-CWT [7] 0.9169 (-) - (-) 7.8650 (-)
SFA [20] 0.9166 (-) 0.8305 (-) 0.7055 (-)
NSSIM 0.9464 0.9689 0.8669

Table 8. Comparison with eight existing IQA algorithms on IVC dataset (20 Gaussian blur images).
We take Spearman’s rank order correlation coefficient (SROCC), Pearson linear correlation coefficient
(PLCC) and root mean square error (RMSE) as evaluation indexes. In each column, the best performance
value is marked in boldface.

Algorithm SROCC (p-Values) PLCC (p-Values) RMSE (p-Values)

PSNR 0.7893 (0.000959) 0.8938 (0.001219) 0.5119 (0.005339)
SSIM [1] 0.8080 (0.000672) 0.7821 (0.000021) 0.8348 (0.000059)
BIQI [14] 0.8600 (0.015124) 0.6603 (0.000482) 1.0738 (0.000041)

BRISQUE [4] 0.8239 (0.005389) 0.9009 (0.009336) 0.4960 (0.010058)
TIP [2] 0.8847 (0.012782) 0.8847 (0.007216) 1.1021 (0.001250)

NIQE [17] 0.8638 (0.010644) 0.8994 (0.008812) 0.4990 (0.001229)
BLIIND-II [3] 0.8715 (0.000956) 0.8246 (0.000372) 0.6458 (0.006883)
NR-CSR [18] 0.9239 (-) 0.8775 (-) 0.5478 (-)

NSSIM 0.8886 0.9239 0.4367

As seen from Table 9, the SROCC of NSSIM is 0.8995, which beats other FR or NR IQA algorithms
on TID2013 [28] dataset. A paired-sample t-test was performed as we done on CSIQ and LIVE II
dataset. The p-values give the demonstration of the robust superior SROCC performance of NSSIM
than those of the other algorithms.

Table 9. Comparison with eight existing IQA algorithms on TID2013 dataset (125 Gaussian blur
images). We take Spearman’s rank order correlation coefficient (SROCC), Pearson linear correlation
coefficient (PLCC) and root mean square error (RMSE) as evaluation indexes. In each column, the best
performance value is marked in boldface.

Algorithm SROCC (p-Values) PLCC (p-Values) RMSE (p-Values)

PSNR 0.8406 (0.000027) 0.9609 (0.000003) 0.3448 (0.000203)
SSIM [1] 0.8646 (0.012710) 0.8737 (0.001305) 0.6071 (0.000518)
BIQI [14] 0.8065 (0.010284) 0.8352 (0.000208) 1.0273 (0.009078)

BRISQUE [4] 0.8505 (0.001421) 0.8630 (0.000932) 0.6287 (0.000455)
TIP [2] 0.8531 (0.002316) 0.8352 (0.005613) 1.5324 (0.000062)

NIQE [17] 0.8325 (0.009727) 0.8639 (0.000686) 0.6267 (0.000188)
BLIIND-II [3] 0.8555 (0.008715) 0.8577 (0.000384) 0.6415 (0.000512)
NR-CSR [18] 0.8520 (-) 0.8339 (-) 0.6476 (-)

NSSIM 0.8995 0.7357 1.0471

Furthermore, Table 10 gives means and standard deviations of SROCC, PLCC, and RMSE of
tested IQA algorithms on four datasets. Only IQA algorithms tested on all the four datasets are
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collected. It can be seen from Table 10 that our NSSIM metric achieves the highest mean SROCC
and the third best of mean PLCC and RMSE. Meanwhile the t-test results shown in Table 10 led to
the acceptance of the null hypothesis at the 5% significance level, indicating that the differences of
average performance between NSSIM and the other metrics are not statistically significant on various
datasets. This is understandable since our NSSIM cannot achieve significant improvement on every
dataset in terms of all indexes. However, considering the differences of image complexity in different
datasets, such as image size, contrast and diversity, the experimental results validate that the proposed
NSSIM can be adapted to different image categories. Noticing that [3,4,17] all need prior training
procedure, our NSSIM performs the best to maintain the balance of IQA and time-efficiency.

Table 10. Average IQA performance (mean± standard deviation) on four datasets. We take Spearman’s
rank order correlation coefficient (SROCC), Pearson linear correlation coefficient (PLCC) and root mean
square error (RMSE) as evaluation indexes. In each column, the best performance value is marked
in boldface.

Algorithm SROCC (p-Values) PLCC (p-Values) RMSE (p-Values)

PSNR 0.8211 ± 0.0796 (0.319167) 0.8556 ± 0.1252 (0.835436) 0.6481 ± 0.5828 (0.929265)
SSIM [1] 0.8636 ± 0.0361 (0.356459) 0.8497 ± 0.0404 (0.650212) 0.8480 ± 0.6143 (0.493018)
BIQI [14] 0.8742 ± 0.0451 (0.526389) 0.7768 ± 0.0354 (0.335915) 1.1052 ± 0.3834 (0.164435)

BRISQUE [4] 0.8872 ± 0.0538 (0.738890) 0.9150 ± 0.0383 (0.385953) 0.6912 ± 0.5226 (0.766324)
TIP [2] 0.8847 ± 0.0193 (0.412921) 0.8756 ± 0.0246 (0.310203) 1.0948 ± 0.5053 (0.309981)

NIQE [17] 0.8909 ± 0.0519 (0.811307) 0.9104 ± 0.0336 (0.464863) 0.3562 ± 0.2133 (0.230560)
BLIIND-II [3] 0.8841 ± 0.0232 (0.296689) 0.8736 ± 0.0347 (0.882062) 0.5717 ± 0.2750 (0.741406)

NSSIM 0.8973 ± 0.0328 0.8814 ± 0.0879 0.6193 ± 0.3621

These test results also validate that NSSIM is a demonstration of the relationship between
quantified image naturalness and perceptual image quality. NSSIM establishes a simple method
to identify image quality without reference or prior training on human judgments of blurred images.
Besides, compared with up-to-date NR IQA metrics NR-CSR [18], MCNN [19] and SFA [20], NSSIM is
less time costly since the needless of training or learning procedure.

4.5. Consistency with Subjective DMOS Scores

We analyzed the consistency between NSSIM scores and the subjective DMOS scores on four
datasets. Scatter plots of NSSIM and DMOS are shown in Figure 8. For CSIQ and LIVE II datasets,
our NSSIM has negative correlation with DMOS because NSSIM has positive correlation with image
blurriness while DMOS has negative correlation with image blurriness. For IVC and TID2013 datasets,
NSSIM and DMOS both have positive correlation with image blurriness. The experimental results
demonstrate that our NSSIM has good consistent to HVS, thus can be used for IQA effectively.

4.6. IQA for Blurred Image Restoration

The purpose of image restoration is to reduce or erase image degeneration during acquisition,
compression, transmission, processing, and reproduction. IQA can be used to evaluate image
restoration algorithm by assessing qualities of distorted image and restoration image. Sroubek [30]
presented a deconvolution algorithm for decomposition and approximation of space-variant blur using
the alternating direction method of multipliers. Kotera [31] proposed a blind deconvolution algorithm
using the variational Bayesian approximation with the automatic relevance determination model on
likelihood and image and blur priors. In this section, we use the proposed NSSIM to evaluate the
performance of image restoration. Two groups of images including original image, blurred image
and restorations are evaluated by the proposed IQA algorithm NSSIM and PSNR, SSIM and several
state-of-the-art NR IQA algorithms. The experimental results are shown in Figures 9 and 10 and
Tables 11 and 12.
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Figure 8. Scatter plots of DMOS vs NSSIM predicted scores on four datasets.

Figure 9. Group 1 restorations: The original image is 480 × 720 × 3 which is provided by LIVE II
dataset while the blurred image is produced by a Gaussian low-pass filter of 11 × 11 with deviation 1.5.
The restorations are produced by Sroubek [30] and Kotera [31], respectively.

Figure 10. Group 2 restorations: The original image is 512 × 512 × 3 which is provided by IVC
dataset while the blurred image is produced by a Gaussian low-pass filter of 11× 11 with deviation 1.5.
The restorations are produced by Sroubek [30] and Kotera [31], respectively.
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Table 11. IQA algorithms performance on Group 1 restorations. Original image is the reference (sharp)
image given by LIVE II [26] dataset. NSSIM represents the quality score given by the proposed metric.

IQA Algorithm Original Image Blurred Image Sroubek Kotera

PSNR \ 23.4926 18.5741 16.7602
SSIM [1] 1.0000 0.7255 0.6571 0.5106
BIQI [14] 66.2057 34.4890 79.9299 79.7829

BRISQUE [4] 84.5863 112.1240 87.1534 84.8248
NIQE [17] 18.8170 19.7543 14.9457 14.9441

BLIIND-II [3] 73.5000 54.0000 93.0000 88.5000
SFA [20] 3.2221 2.4976 2.4577 2.6608

NSSIM(×10−4) 38.9533 0.0709 34.1906 39.0565

Table 12. IQA algorithms performance on Group 2 restorations. Original image is the reference (sharp)
image given by IVC [27] dataset. NSSIM represents the quality score given by the proposed metric.

IQA Algorithm Original Image Blurred Image Sroubek Kotera

PSNR \ 23.3116 25.1542 25.0633
SSIM [1] 1.0000 0.8132 0.8904 0.8951
BIQI [14] 46.8936 23.1284 49.8244 49.2987

BRISQUE [4] 32.3916 41.5441 36.6743 35.2054
NIQE [17] 21.5543 27.3656 19.2333 19.1788

BLIIND-II [3] 45.8900 30.5677 51.4986 51.6889
SFA [20] 12.8285 6.2353 6.9934 11.0588

NSSIM(×10−4) 50.0684 16.7567 39.5872 42.2391

It can be seen from Figure 9 and Table 11 that PSNR and SSIM [1] fail to evaluate the quality of
both restorations since the quality scores are smaller than that of the blurred image. BIQI [14] and
NIQE [17] succeed to identity the restoration images but the difference between the two restorations is
slight. While BRISQUE [4], BLIIND-II [3], SFA [20] and the proposed metrics NSSIM achieve better
precision and the differences between two restorations are distinct. Moreover, the NSSIM-predicted
score of blurred image is 0.0709 × 10−4, showing obvious variance between the blurred image and the
original image. This demonstrates that NSSIM is extremely sensitive to blur. Similarly, Figure 10 and
Table 12 also demonstrate that NSSIM is suitable for blur IQA.

5. Conclusions

IQA is important and useful for image acquisition and processing systems in many applications.
In this paper, we focus on blurred IQA. We have proposed a novel NR IQA metric called NSSIM
based on SSIM and re-blur theory. The proposed NSSIM takes the advantage of SSIM in mathematical
convenience and expanded it from FR to NR. We blur the distorted image and take the re-blurred
image as a reference. The definition of image blurriness is given by evaluating grayscale distribution.
We score image quality by taking four parts of image features into consideration, including luminance,
contrast, structural and blurriness. We discussed the impact of parameters of our algorithm on the
performance. We tested the proposed NSSIM metric on four datasets. The experimental results show
that NSSIM achieves promising performance and has good consistency of HVS. Compared to existing
IQA models, NSSIM does not need reference or prior training or learning procedure, which makes it
more time-efficient and convenient to apply. We also expanded the proposed metric to IQA for image
restoration, which proves our metric is practically useful. We believe that NSSIM has a great potential
to be applied in unconstrained environments.
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