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Abstract: This paper proposes a total crop-diagnosis platform (TCP) based on deep learning models
in a natural nutrient environment, which collects the weather information based on a farm’s location
information, diagnoses the collected weather information and the crop soil sensor data with a deep
learning technique, and notifies a farm manager of the diagnosed result. The proposed TCP is
composed of 1 gateway and 2 modules as follows. First, the optimized farm sensor gateway (OFSG)
collects data by internetworking sensor nodes which use Zigbee, Wi-Fi and Bluetooth protocol and
reduces the number of sensor data fragmentation times through the compression of a fragment header.
Second, the data storage module (DSM) stores the collected farm data and weather data in a farm
central server. Third, the crop self-diagnosis module (CSM) works in the cloud server and diagnoses
by deep learning whether or not the status of a farm is in good condition for growing crops according
to current weather and soil information. The TCP performance shows that the data processing rate of
the OFSG is increased by about 7% compared with existing sensor gateways. The learning time of the
CSM is shorter than that of the long short-term memory models (LSTM) by 0.43 s, and the success
rate of the CSM is higher than that of the LSTM by about 7%. Therefore, the TCP based on deep
learning interconnects the communication protocols of various sensors, solves the maximum data
size that sensor can transfer, predicts in advance crop disease occurrence in an external environment,
and helps to make an optimized environment in which to grow crops.
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1. Introduction

A recent report by UN’s Intergovernmental Panel on Climate Change (IPCG) says that there
will be a number of effects of climate change on agriculture. Climate change can also bring about
environmental consequences, such as changes to seasonal events in the life cycle of plants and
animals [1]. In addition, Food and Agriculture Organization (FAO) predicts that agricultural output
should rise by more than 70% by 2050. To produce high-quality food and feed a growing world
population with a given amount of arable land in a sustainable manner, we must develop new
methods of sustainable farming that increase yield while minimizing chemical inputs such as fertilizers,
herbicides, and pesticides [2].

In order to increase food production efficiently, farms have been becoming more like factories.
Agricultural farmers use the technology of the Internet of Things (IoT) and artificial intelligence (AI)
to remotely manipulate agricultural machines such as drones and tractors and to forecast the yields.
The agriculture farmers prepare for sudden climate changes (e.g., flood, storm, drought, etc.) and
control the state of the farm. Farms using this technology are called “smart farms” [3].
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In the smart farm, ongoing developments in information and communication technology (ICT)
offer significant potential to manage information at the farm level. Sensing technologies, at least in
principle, offer farmers the ability to monitor their farms with an unprecedented level of detail, in a
multiplicity of dimensions and in near real time. This offers an intriguing possibility of developing
farm-specific models that the individual farmer can use to plan their activities in response to changing
circumstances, thus enabling the exploration of the various trade-offs inherent in any decision-making
process whilst managing the information overload problem [4].

In order to prepare for the rapid changes in the environment, a sensor has been developed through
recent studies that can confirm the situation of the farm in real time and inform farmers of the state of
the farm [5]. Agricultural machines autonomously manage the smart farm by analyzing the collected
sensor data. Another study of smart farms is as follows. In reference [6], they show the effectiveness
of the combined use of numerical weather predictions and hydrological modeling to forecast soil
moisture and crop water requirements in order to optimize irrigation scheduling.

Recently, a number of studies on smart farms diagnosing specific elements necessary to a farm
by using sensors or transferring the big data collected from sensors to an agriculture machine and
analyzing the farm status in the machine were proposed. However, contrary to these, this paper
focuses on collecting the big data from sensors, transferring the collected sensor data to a cloud server
and diagnosing the crop status by using deep learning in the cloud server.

Because an existing smart farm diagnoses only a specific area of a farm or prepares agricultural
robots by function according to the environment of farms and the kinds of crops, it costs a lot to
use and manage them. To solve these problems, this paper proposes a total crop-diagnosis platform
(TCP) which collects the weather information based on a farm’s location information, analyzes the
collected weather information and the crop soil sensor data with a deep learning technique and notifies
a farm manager of the fully analyzed result. The TCP based on a cloud server does not depend on the
environment of farms and the kinds of crops. Since the TCP is not required to buy and manage various
agricultural robots, contrary to an existing farm, the cost is drastically reduced. If the environment
of farms and the kinds of crops are changed, the TCP has only to customize its software. In addition,
the TCP based on deep learning interconnects the communication protocols of various sensors, solves
the maximum data size that the sensor can transfer, predicts in advance crop disease occurrence in the
external environment, and helps to make optimized environment in which to grow crops.

The rest of the paper is structured as follows. The related work is described in Section 2. Section 3
details a TCP design. In Section 4, the performance of TCP is analyzed. Finally, Section 5 shows the
conclusion of this paper.

2. Related Works

2.1. IoT Protocol

IoT requires low-power, high-speed communication. Existing communication protocols such as
IP, HTTP, and TCP are not suitable for IoT. The following paragraphs describe current studies of the
protocols and gateways for IoT communication.

Zigbee is for low-data rate, low-power applications and is an open standard. This, theoretically,
enables the mixing of implementations from different manufacturers, but in practice, Zigbee products
have been extended and customized by vendors and are thus plagued by interoperability issues.
In contrast to Wi-Fi networks, used to connect endpoints to high-speed networks, Zigbee supports
much lower data rates and uses a mesh networking protocol to avoid hub devices and create a
self-healing architecture [7].

In the [8], this study aims to integrate named data networking (NDN) with Zigbee to give NDN a
better support for IoT applications that are known to require wireless sensing/actuating abilities, mobility
support and low power consumption. They propose to leverage the strengths of NDN and Zigbee,
combining them to make a new step towards IoT application development. In real terms, they propose an
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implementation that allows NDN communication over the Zigbee protocol acting as a layer 2 support for
NDN. Since our implementation can run on any Linux distribution with an NDN module, we believe
that it will allow NDN to target a larger set of devices and gateways, and cover more IoT applications.

In reference [9], they present a mobile matrix (µMatrix), a routing protocol that uses hierarchical
IPv6 address allocation to perform any-to-any routing and mobility management without changing
a node’s address. In this way, device mobility is transparent to the application level favoring the
Internet of Medical Things (IoMT) and the Social Internet of Things (SIoT) implementation and broader
adoption. The protocol has a low memory footprint, adjustable control message overhead, and achieves
optimal routing path distortion. Moreover, it does not rely on any particular hardware for mobility
detection (a key open issue), such as an accelerometer.

2.2. Deep Learning

In reference [10], they perform a survey of 40 research efforts that employ deep learning techniques,
applied to various agricultural and food production challenges. They examine the particular
agricultural problems under study, the specific models and frameworks employed, the sources,
nature and pre-processing of data used, and the overall performance achieved according to the metrics
used at each work under study. Their findings indicate that deep learning provides high accuracy,
outperforming the existing commonly used image processing techniques.

The deep neural network based meta regression and transfer learning (DNN-MRT) technique is
expressed by comparing statistical performance measures in terms of root mean squared error (RMSE),
mean absolute error (MAE), and standard deviation error (SDE) with other existing techniques [11].

In reference [12], convolutional neural network models were developed to perform plant disease
detection and diagnosis using simple leaf images of healthy and diseased plants, through deep
learning methodologies. The training of the models was performed with the use of an open database
of 87,848 images, containing 25 different plants in a set of 58 distinct classes of [plant, disease]
combinations, including healthy plants.

A novel deep-learning-based traffic flow prediction method is proposed, which considers the
spatial and temporal correlations inherently. A stacked auto-encoder model is used to learn generic
traffic flow features, and it is trained in a greedy layer-wise fashion. To the best of knowledge, this is
the first time that a deep architecture model is applied using auto-encoders as building blocks to
represent traffic flow features for prediction [13].

There is an increasing amount of unstructured text data produced in cross-enterprise social
interaction media, forming a social interaction context that contains massive manufacturing
relationships, which can be potentially used as decision support information for cross-enterprise
manufacturing demand-capability matchmaking. How to enable decision-makers to capture these
relationships remains a challenge. The text-based context contains high levels of noise and irrelevant
information, causing both high complexity and sparsity. Under this circumstance, instead of exploiting
man-made features which were carefully optimized for the relationship extraction task, a deep learning
model based on an improved stacked denoising auto-encoder on sentence-level features is proposed
to extract manufacturing relationships among various named entities (e.g., enterprises, products,
demands, and capabilities) underlying the text-based context [14].

In reference [15], they present an approach to learning several specialist models using deep learning
techniques, each focusing on one modality. Among these are a convolutional neural network, focusing
on capturing visual information in detected faces, a deep belief net focusing on the representation of the
audio stream, a K-means-based “bag-of-mouths” model, which extracts visual features around the mouth
region, and a relational auto-encoder, which addresses spatio-temporal aspects of videos.

The utilization of a deep learning network (DLN) helps to the discover unknown feature correlation
between input signals that is crucial for the learning task. The DLN is implemented with a stacked
auto-encoder (SAE) using a hierarchical feature learning approach. The input features of the network are
power spectral densities of 32-channel electroencephalograph (EEG) signals from 32 subjects. To alleviate
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the over-fitting problem, principal component analysis (PCA) is applied to extract the most important
components of the initial input features. Furthermore, a covariate shift adaptation of the principal
components is implemented to minimize the non-stationary effect of EEG signals [16].

An improved stack auto-encoder based on the deep learning techniques is proposed to learn
the driving characteristics of an autonomous car. These techniques realize the input data adjustment
and solve the diffusion gradient problem. A Raspberry Pi and a camera module are mounted on
the top of the car. The camera module provides the images needed for training the DNN. There are
two stages in the training. In the pre-training process, an improved auto-encoder is trained by the
unsupervised learning mechanism, and the characterization of the track is extracted. In the fine-tuning
stage, the whole network is trained according to the labeled data, and then this model learns the
driving characteristics better according to the samples. In the experimental stage, the car will predict
the action of the car by the trained model in the autonomous mode [17].

In [18], they proposed a spatially constrained convolutional neural network (SC-CNN) to perform
nucleus detection. SC-CNN regresses the likelihood of a pixel being the center of a nucleus, where
high probability values are spatially constrained to locate in the vicinity of the center of nuclei. For the
classification of nuclei, they propose a novel neighboring ensemble predictor (NEP) coupled with
CNN to more accurately predict the class label of the detected cell nuclei. Figure 1 shows the structure
of the SC-CNN.
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In reference [19], they propose a new deep architecture that uses support vector machines (SVMs)
with class probability output networks (CPONs) to provide better generalization power for pattern
classification problems. As a result, deep features are extracted without additional feature engineering
steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely
approaches the ideal Bayes classifier as the number of layers increases.

In reference [20], a novel approach is proposed for training deep convolutional neural networks
(DCNNs) that allows us to trade-off complexity and accuracy to learn lightweight models suitable for
robotic platforms such as AgBot II (which performs automated weed management). Their approach
consists of three stages. The first is to adapt a pre-trained model to the task at hand. This provides
state-of-the-art performance but at the cost of high computational complexity, resulting in a low frame
rate of just 0.12 frames per second (fps). The second is to use the adapted model and employ model
compression techniques to learn a lightweight DCNN that is less accurate but has two orders of
magnitude fewer parameters. The third is to combine K lightweight models as a mixture model to
further enhance the performance of the lightweight models.

In reference [21], two implementations of the multiple-expert color feature extreme learning
machine (MEC-ELM) are presented. The MEC-ELM is a cascading algorithm that has been
implemented alongside a summed area table (SAT) for fast feature extraction and object classification,
for a fully functioning object detection algorithm. The MEC-ELM is an implementation of the color
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feature extreme learning machine (CF-ELM), which is an extreme learning machine (ELM) with a
partially connected hidden layer, taking three color bands as inputs.

In reference [22], research developments conducted within the last 15 years on machine learning
based techniques for accurate crop yield prediction and nitrogen status estimation are discussed.
They conclude that the rapid advances in sensing technologies and ML techniques will provide
cost-effective and comprehensive solutions for better crop and environment state estimation and
decision making.

In [23], an integrated self-diagnosis system (ISS) is proposed for an autonomous vehicle based on
an IoT gateway and deep learning that collects information from the sensors of an autonomous vehicle,
diagnoses itself and the influence between its parts by using deep learning, and informs the driver of
the result. ISS reduces loss of life and overall cost by transferring the self-diagnosis information and by
managing the time to replace the car parts of an autonomously driven vehicle safely.

3. A Total Crop-Diagnosis Platform (TCP) Based on Deep Learning Models in a Natural
Nutrient Environment

3.1. Overview

The proposed TCP collects the weather information based on a farm’s location information,
diagnoses the collected weather information and the crop soil sensor data with a deep learning
technique, and informs a farm manager of the diagnosed result. Figure 2 shows the structure of TCP.
The proposed TCP is composed of 1 gateway and 2 modules as follows. First, the optimized farm
sensor gateway (OFSG) collects soil data by internetworking sensor nodes which use Zigbee, Wi-Fi and
Bluetooth protocol, reduces the number of sensor data fragmentation times through the compression
of a fragment header and transfers the collected soil data to the DSM. Second, the data storage module
(DSM) receives the collected soil data from the OFSG and stores it and the weather data from the
weather center in a farm central server. The DSM transfers the stored data to the CSM. Third, the crop
self-diagnosis module (CSM) works in the cloud server and diagnoses by deep learning whether
or not the status of a farm is in good condition for growing crops with the soil data and weather
data transferred from the DSM. The CSM transfers the diagnosed result to the farm central server of
the DSM.
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Figure 2. The structure of the total crop-diagnosis platform (TCP). CSM: the crop self-diagnosis module;
DSM: the data storage module; OFSG: the optimized farm sensor gateway; IPS: an interconnection
protocol sub-module; SDFS: a sensor data fragment sub-module.
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3.2. A Design of an Optimized Farm Sensor Gateway (OFSG) Based on Wireless Sensor Network

The proposed OFSG consists of an application layer, a network layer, an adaptation layer, and a
media access control/physical (MAC/PHY) layer as shown in Figure 3. Because the application layer,
the network layer, and the MAC/PHY layer among these are based on IPv6 protocol, this paper
covers just the adaptation layer. A farm central server requests data collection to the application layer.
The application layer delivers the request to a network layer and the network layer delivers the request
to an adaptation layer by turns. Finally, the adaptation layer delivers the request to a MAC/PHY
layer. The MAC/PHY layer collects the sensor data from the sensors of diverse environments and
delivers the collected data to the farm central server through the adaptation layer by using compression
and fragmentation.
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Here, the adaptation layer is composed of two sub-modules as follows. First, an interconnection
protocol sub-module (IPS) collects data by interconnecting sensor nodes which uses Zigbee, Wi-Fi and
Bluetooth in diverse communication environments. Second, because the maximum data size that
sensor nodes can transmit is 127 bytes, they have to transfer the fragments by data fragmentation.
A sensor data fragment sub-module (SDFS) reduces the number of sensor data fragmentation times
through the compression of this fragment header. The fragment’s payload size is increased to a
maximum of 101 bytes.

3.2.1. A Design of an Interconnection Protocol Sub-Module (IPS)

The IPS consists of three sub-layers as shown in Figure 4. The first application support sub-layer
acts as an interface when a farm central server delivers a request message to sensor nodes, and the
sensor nodes delivers the response data to the farm central server. The application framework sub-layer
manages the applications about Zigbee, Wi-Fi, and Bluetooth equipped on the sensor nodes. The device
sub-layer analyzes the Zigbee, Bluetooth and Wi-Fi protocol to internetwork sensor nodes. For example,
the device sub-layer receives a frame from a Wi-Fi device as shown in Figure 4, extracts a payload from
it and stores the payload in a cache. Zigbee and Bluetooth extract physical service data unit (PSDU)
(or payload) in the same way and write the PSDU and identification information in a cache.
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The payload stored in the cache is fragmented in the SDFS and the fragments are delivered to the
farm central server through the application framework sub-layer and the application support sub-layer.

3.2.2. A Design of a Sensor Data Fragmentation Sub-Module (SDFS)

Because the size of the sensor data to be transferred one at a time is limited in a wireless sensor
node, the sensor node generates messages of 127 bytes as shown in Figure 5. Figure 5a represents
the data format used for wireless communication and Figure 5b represents the changed data format
of Figure 5a when the basic compressed method of IPv6 over Low power Wireless Personal Area
Network (6LoWPAN) was applied to Figure 5a. The SDFS works in the following steps.
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(6LoWPAN).

First, the SDFS fragments them to transfer the messages received from the sensor nodes to the
farm central server. Figure 5a shows the received message format.

Second, the SFDS compresses the headers of fragments by using the compression technique provided
by 6LoWPAN. The uncompressed header IPv6 header (40 bytes) and User Datagram Protocol (UDP)
(8 bytes) of Figure 5a are compressed to header compression 1(HC1) (1 byte), header compression 2 (HC2)
(1 byte), IPv6 (1 byte), and UDP (3 bytes) of Figure 5b. Figure 5b shows the compressed message format.

Third, in Figure 6b,c, the SDFS expands the maximum transmission size by integrating the fields
of the compressed headers and compressing them again.
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Therefore, the SDFS reduces the transmission cost of sensor data and makes the transmitted
payload size larger at the same time.

The SDFS improves the fragmentation process to solve the problem that the data size transmitted
at one time is limited in the wireless sensor network. The size of each fragment by fragmentation is
127 bytes, and a header and payload are included in the fragment. However, fragmentation happens
frequently because the transmitted payload size is reduced as the header size gets larger.

To solve this problem, the SDFS minimizes the header size and maximizes the payload size. All the
fields except the hop limit field are compressed in the existing 6LoWPAN and only the header—except
version, source/destination address, payload length, traffic class, flow label, next header fields—is
compressed in the SDFS. The compression shows that the payload size is a maximum of 97 bytes.
The DSP, HC1, HC2, IPv6, and UDP field in the compressed header in the wireless sensor network
is 1~3 bytes long. Because the 5 fields cannot be compressed or fragmented further, the size of the
payload transmitted at one time is limited to 97 bytes. Figure 6a,b shows that the DSP, HC1, HC2, IPv6
and UDP fields of the header are integrated into one integrated field (IF).

In Figure 6c, if the IF is compressed, the header becomes smaller and the payload becomes
bigger. The payload becomes a maximum of 101 bytes long. Here, if the payload size becomes bigger,
the number of data fragmentation times is smaller.

3.3. A Design of a Data Storage Module (DSM)

The DSM collects the weather data from the weather forecast service on the basis of the location
of a farm and the soil data from the OFSG in real time and stores them in the inner buffer. Figure 7
shows the structure of the DSM. It works as follows.
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First, the DSM collects its own location information through GPS. Second, the DSM collects the
weather data, such as the temperature, humidity, sunshine amount, wind amount, wind speed, etc.,
by transferring the location of a farm central server to the weather forecast service and stores it in the
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internal data buffer. Third, the DSM collects the data of multiple elements in real time from the sensor
in the soil where crops are planted and stores it in the buffer. Fourth, the DSM transfers the weather
and soil information stored in the buffer to a cloud server.

3.4. A Design of a Crop Self-Diagnosis Module (CSM) Based on Deep Learning

The CSM works in the cloud server. The CSM diagnoses whether the state of a farm is in a good
condition for growing crops according to the current weather and soil information and informs a
farmer of the diagnosed result. The CSM is composed of two sub-modules. First, the agricultural
partial diagnosis sub-module (APDS) diagnoses each part of a farm environment by using sensor data
from sensors. Second, the total environment diagnosis sub-module (TEDS) diagnoses the total status
of a farm environment based on each partial diagnosis which was analyzed by the APDS.

The APDS classifies the sensor data into primary nutrient, secondary nutrient, micro nutrient,
weather, soil, and water. The classified data is used as an input data for six neural network models,
and an output value between 0 and 1 is generated from six neural network models as shown in Figure 8.
The output value of the APDS represents the status of each partial diagnosis and is used as an input of
the TEDS. For example, Figure 8 shows the output value of the APDS. The output value becomes the
input value of the TEDS. If the output of the TEDS is decided, the TCP informs a farmer of only the
“danger” or the “warning” necessary to check among the results of the TEDS and the APDS.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 22 

3.4. A Design of a Crop Self-Diagnosis Module (CSM) Based on Deep Learning 

The CSM works in the cloud server. The CSM diagnoses whether the state of a farm is in a good 
condition for growing crops according to the current weather and soil information and informs a 
farmer of the diagnosed result. The CSM is composed of two sub-modules. First, the agricultural 
partial diagnosis sub-module (APDS) diagnoses each part of a farm environment by using sensor data 
from sensors. Second, the total environment diagnosis sub-module (TEDS) diagnoses the total status 
of a farm environment based on each partial diagnosis which was analyzed by the APDS. 

The APDS classifies the sensor data into primary nutrient, secondary nutrient, micro nutrient, 
weather, soil, and water. The classified data is used as an input data for six neural network models, 
and an output value between 0 and 1 is generated from six neural network models as shown in Figure 
8. The output value of the APDS represents the status of each partial diagnosis and is used as an input 
of the TEDS. For example, Figure 8 shows the output value of the APDS. The output value becomes the 
input value of the TEDS. If the output of the TEDS is decided, the TCP informs a farmer of only the 
“danger” or the “warning” necessary to check among the results of the TEDS and the APDS. 

 
Figure 8. The structure of the agricultural partial diagnosis sub-module (APDS). 

3.4.1. A Design of the APDS 

The APDS has the multi-layered neural network models which use back-propagation learning. In 
Figure 8, the APDS consists of the six neural network models which diagnose the parts affecting 
farming. For example, each part means the primary and secondary nutrient of soil, micro nutrient, 
weather and soil condition separately. Sensor data is used as an input of a neural network model 
suitable for each diagnosis. The APDS uses the sensor data (see Figure 6c) transferred from the DSM 
as an input. In order for the APDS to be able to use the sensor data normally, the cloud server extracts 
payloads by removing the header and trailer from the sensor data (see step 1 of Figure 8). Then, the 
cloud server transfers the extracted payloads to the APDS (see step 2 of Figure 8). Because the OFSG 
transforms different formats into one format, the APDS processes only the payloads with one format. 

Figure 8. The structure of the agricultural partial diagnosis sub-module (APDS).

3.4.1. A Design of the APDS

The APDS has the multi-layered neural network models which use back-propagation learning.
In Figure 8, the APDS consists of the six neural network models which diagnose the parts affecting
farming. For example, each part means the primary and secondary nutrient of soil, micro nutrient,
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weather and soil condition separately. Sensor data is used as an input of a neural network model
suitable for each diagnosis. The APDS uses the sensor data (see Figure 6c) transferred from the
DSM as an input. In order for the APDS to be able to use the sensor data normally, the cloud server
extracts payloads by removing the header and trailer from the sensor data (see step 1 of Figure 8).
Then, the cloud server transfers the extracted payloads to the APDS (see step 2 of Figure 8). Because
the OFSG transforms different formats into one format, the APDS processes only the payloads with
one format. Also, because the payloads have the same size, the APDS has no problem in processing
them. If the number of sensors is n, the input of the APDS is represented as the following Formula (1).

X = {x1, x2, x3, . . . , xn} (1)

Because the output results of the six parts are not classified linearly, each neural network model
has only one hidden layer. The number of hidden layer nodes is the same as that of input layer nodes.
The hidden layer is represented as the following Formula (2).

H = {h1, h2, h3, . . . , xn} (2)

The output of the APDS is represented as one node, y which means the status of each part.
The weight W between an input layer and a hidden layer is represented as the following Formula (3).

W = {w1, w2, w3, . . . , wn} (3)

The weight V between a hidden layer and an output layer is represented as the following Formula (4).

V = {v1, v2, v3, . . . , vn} (4)

Because the number of hidden layers is the same as that of input layers, the number of weights W
is n × n. Figure 9 shows one example of the six neural network models in the APDS.
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The output y of each neural network models is between 0 and 1, and the items entered in the
current neural network models are used as the value to judge whether farming is in a good condition.
For example, in Figure 8, the first case shows that the analysis result of the primary nutrient is 0.948
and it is normal numeric is as much as 94.8%. The results of the six neural network models in the
APDS are entered in the TEDS.
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The APDS is learned by using the back-propagation. Algorithm 1 shows the learning method of a
neural network models in the APDS.

Algorithm 1 works as follows.

• First, the set of sensor data Xi and the result of Xi, di are entered into a neural network model;
• Second, the APDS initializes input layer size n, weight w, learning rate α and limitation value of

error Emax;
• Third, the APDS computes the value of the hidden layer nodes by using Formulas (5) and (6);

NETH = XiWT (5)

H =
1

1 + e−NETH
(6)

• Fourth, the APDS computes the values of the output layer node by using Formulas (7) and (8):

NETY = HVT (7)

Y =
1

1 + e−NETY
; (8)

• Fifth, the APDS computes the error E and the error signal δy by using the value of the output
layer node and current trained result value, di. Formulas (9)–(11) are used to compute E and δy,
δh separately:

E =
1
2
(d− y)2 + E; (9)

δµ = (d− y)y(1− y); (10)

δh = h(1− h)δµu; (11)

• Sixth, the APDS modifies the weight V and W of a neural network model by using Formulas (12)
and (13). The V represents the weight between the output layer and the hidden layer and W the
weight between the input layer and the hidden layer:

V = V + αδY H; (12)

W = W + αδhX. (13)

If the process from the 3rd to the 6th is repeated as many times as the number of trained samples,
the current error E and Emax are compared. If the E is less than Emax, the APDS learning is closed.
If the Emax is less, the APDS converts E to 0 again and the APDS learning proceeds repeatedly.

3.4.2. A Design of the TEDS

The TEDS performs deep learning based on the multi-layered deep belief network model (DBN).
If the number of input layer nodes in the DBN is the same as that of the output layer nodes,
unsupervised learning is possible. However, because the number of input layer nodes in the TEDS is
different from that of the output layer nodes, unsupervised learning based on the restricted Boltzmann
machine (RBM) is done from the input layer to the last hidden layer and supervised learning based
on back-propagation is done between the last hidden layer and the output layer. Figure 10 shows the
example of the integrated model in the TEDS.
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Algorithm 1 APDS learning method

Input = Training samples {X1, d1}, . . . , {XN, dN};
(Xi is set of sensor data, di is result of Xi)
Run: Initialize sample weight w; n is the number of input layers and hidden layer nodes;
Set learning rate α and Emax;

while (E < Emax)
E = 0;
for (int j = 1; j <= N; j++)

Classify sensors of Xj;
Compute output of hidden layer

NETH = XiWT ;
H = 1

1+e−NETH
;

Compute output;
NETY = HVT ;
Y = 1

1+e−NETY
;

Compute output error
E = 1

2 (d− y)2 + E;
Compute error signal of output layer

δµ = (d− y)y(1− y);
Compute error signal of hidden layer
δh = h(1− h)δµu;

Update weights
V = V + αδY H;
W = W + αδhX;

j++;
end for;

end while;
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The six outputs of the APDS are used for the six inputs of the TEDS. This is represented in
Formula (14).

X = {x1, x2, x3, x4, x5, x6|0 < x < 1} (14)

y is the output of the TEDS and represents how suitable the current environmental state is for the
growing crops. The size of y is between 0 and 1 and the threshold values of y are 0.4 and 0.6. If the output
of y is equal to or greater than 0.6, it means that the current environmental state is in a good condition for
farming. If the output of y is between 0.6 and 0.4, it means that the current environmental state should be
checked. If the output of y is less than 0.4, the current environmental state is not in a good condition for
farming. Figure 11 shows the structure of the TEDS. The number of hidden layers is set as 4. Because the
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number of input and output layer nodes is smaller, the correlation between parts is computed with the
four hidden layers by the TEDS. The hidden layers of the TEDS are represented in the Formula (15).

Ha = {ha
1, ha

2, ha
3, ha

4, . . . , ha
k|1 ≤ a ≤ 4} (15)

where k means the number of hidden layer nodes and a means the number of hidden layers.
For example, the 1st hidden layer and the nodes of the 1st hidden layer are represented as
H1 =

{
h1

1, h1
2, h1

3, h1
4, . . . , h1

k } and the 2nd hidden layer and the nodes of the 2nd hidden layer are
represented as H2 =

{
h2

1, h2
2, h2

3, h2
4, . . . , h2

k }.
Algorithm 2 shows the learning procedure of the TEDS.

Algorithm 2 TDS learning algorithm

Input = Training data {X1, d1}, . . . , {XN, dN};
(Xn is set of sensor data, dn is result of Xn)
Run: Initialize sample weight w;

n is the number of input layer nodes
m[4] is set of the number of hidden layer nodes

for (int k = 1; k <= m[0]; k++)
Compute P

(
h1

k

∣∣x);
end for
for (int n = 1; n <= 6; n++)

Compute P
(
xn
∣∣h1);

end for
compute

〈
xnh1

k
〉

0;
for (int k = 1; k <= m[0]; k++)

Compute P
(
h1

k

∣∣P(xn
∣∣h1));

end for
Compute

〈
xnh1

k
〉

1;

∆w1
nk = α

(〈
xnh1

k
〉

0 −
〈

xnh1
k
〉

1

)
;

new_w1
nk = old_w1

nk + ∆w1
nk;

for (int j = 2; j <= 4; j++)
for (int k = 1; k <= m[j]; k++)

calculator P(hi+1
k

∣∣∣hi) ;

end for
for (int k = 1; k <= m[j]; k++)

Compute P(hi
k

∣∣∣h(i+1)) ;

end for

Compute
〈

hi
khi+1

k

〉
0
;

for (int k = 1; k <= m[j]; k++)

Compute P
(

hi+1
k

∣∣∣P(hi
k

∣∣∣h(i+1)
))

;

end for

Compute
〈

hi
kh(i+1)

k

〉
1
;

∆wi
kk = α

(〈
hi

khi+1
k

〉
0
−
〈

hi
kh(i+1)

k

〉
1

)
;

new− wi
kk = old− wi

kk + ∆wi
kk;

end for
while (E > Emax)

ŷ = P(y
∣∣h4) ;

E = 1
2 (dn − ŷ)2;

if (E > Emax)
δŷ = (dn − ŷ)

∣∣ŷ(1− ŷ) ;
new− w5

k = old− w5
k + αδyh4

k ;
else

brake;
end if

end while
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Each neuron’s computation method is similar to that of a perceptron. That is, the weight sum net
of input layer values is applied to the Sigmoid function. For example, in Figure 11, the output value of
h1

k is computed in the Formula (16).

P
(

h1
k

∣∣∣x) = σ
(

neth1
t

)
(16)

where P
(
h1

k

∣∣x) is a value of h1
k node when x is used as an input. σ

(
neth1

t

)
is a Sigmoid function used

as an activation function in the artificial neural network, as shown in Formula (17).

σ
(

neth1
t

)
=

1

1 + exp
(
−neth1

t

) (17)

where the neth1
t

represents the weight sum of input layer values. The neth1
t

is computed in Formula (18).

neth1
t
= ∑6

c ω1
ctxc (18)

Because an RBM-based learning is unsupervised learning, it is proceeded by using the x′ value
that computed the net value from h1 to x again. The TEDS continues learning by using the following
phase from the input layer to the last layer. In the 1st phase, the TEDS computes the 1st hidden layer
value, P

(
h1

k

∣∣x). In the 2nd phase, the TEDS computes
〈

xnh1
k
〉

0 by using the P
(
h1

k

∣∣x) value and the
input value. The

〈
xnh1

k
〉

0 is computed by using Formula (19).

〈
xnh1

k

〉
0
=

∂ log
(
ρ
(
h1

k

∣∣x))
∂ω1

kk
(19)

In the 3rd phase, the TEDS computes the input layer value, P
(
xn
∣∣h1) and the P

(
h1

k

∣∣P(xn
∣∣h1))

based on the P
(

xn
∣∣h1). In the 4th phase, the TEDS compares the input value with the P

(
h1x
∣∣x) and

the P
(

xn
∣∣h1) with the P

(
h1

k

∣∣P(xn
∣∣h1)). The

〈
xnh1

k
〉

is computed in the same method as Formula (19).
In the 5th phase, the difference amount of the weight between the input layer and the first hidden
layer is computed in Formula (20) about the complete pair <n, k>.

∆w1
nk = α

(〈
xnh1

k

〉
0
−
〈

xnh1
k

〉
1

)
(20)

where α is a learning rate determined by a developer in advance and the weight is modified by using
Formula (21).

new_w1
nk = old_w1

nk + ∆w1
nk (21)
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The learning from the first hidden layer to the last hidden layer is repeated by the first phase to
about the 5th phase. The TEDS continues learning between the last hidden layer and the output layer
in the following phases.

In the 1st phase, it computes the output layer result P(y|h4) . Here, the P(y|h4) is assumed as y.
In the 2nd phase, it computes error E by using the difference between ŷ and the target value d.

The E is computed by using Formula (22).

E =
1
2 ∑i

i=1 (dn − ŷ)2 (22)

In the 3rd phase, the error signal is computed by using Formula (23).

δy = (d− ŷ)ŷ(1− ŷ) (23)

In the 4th phase, the weight between the last hidden layer and the output layer is modified by
using the error signal δy.

new− w5
k = old− w5

k + αδyh4
k (24)

In the 5th phase, the 2nd~4th phases are repeated if the error E is equal to and greater than the
Emax. If the E is less than the Emax, the learning is closed.

4. The Performance Analysis

4.1. An Analysis of the OFSG Performance

The OFSG extracts the payload from the sensor data and stores the extracted payload in a cache
and transfers the stored payload cache to a farm central server after compression and fragmentation.
The simulation environment of the OFSG is as follows.

First, the number of wireless sensor nodes is 20, the data size is 800 bytes, and the data generation
cycle is 0.1 s.

Second, the experiment time is 1500 s, and data fragmentation and data transmission quantity are
measured by the 5 s.

Third, the existing wireless sensor gateway not using fragmentation and compression and the
OFSG using them are compared in terms of their data fragmentation and transmission quantity.

Fourth, when one message is fragmented into all fragments, it is called one data fragmentation.
The number of data fragmentation times is the same as that of messages.

Figures 12 and 13 show the number of data fragmentation times and data transmission quantity
in the existing gateway. Figures 14 and 15 show the number of data fragmentation times and data
transmission quantity in the OFSG.
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The experiment shows that in Figure 12 an existing gateway fragmented 189,325~371,283 messages
and in Figure 13 transferred 153,398~247,036 messages of them. Therefore, the message transmission
rate of the existing gateway was 66.53%. In Figure 14 the OSFG fragmented 446,110~628,115 messages
and in Figure 15, transferred 326,954~461,935 messages of them. Therefore, the message transmission
rate of the OSFG was 73.5% and was improved by about 7% compared with the existing gateway.
Therefore, the reason why this experiment result was improved is because the OSFG used the
compression and fragmentation technique applied to headers. If the headers are used, a bigger
payload can be stored in a fragment. As the size of the field that can store a payload gets larger,
the message is fragmented into a smaller number of fragments and is processed faster.
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4.2. The Analysis of the CSM Performance

To analyze the performance of the CSM, the APDS and the TEDS should be simulated beforehand.
If the number of the APDS’s hidden layers gets larger, this paper measures the number of repeated
learning times and the accuracy of the APDS. If different activation functions are used, this paper
measures the accuracy of a neural network model. In addition, this paper analyzes the learning speed
and reliability of each neural network model by comparing the proposed TEDS neural network model,
long short-term memory (LSTM) neural network model and convolutional neural network (CNN)
neural network model. The Server PC using the GeForce GTX 1080 CPU and the Client PC transferring
sensor data are used for the simulation environment.

4.2.1. The Analysis of the APDS Performance

To analyze the APDS performance, the initial weight, the initial learning rate, and the learning
reduction rate of each algorithm that a developer should set at the initial learning stage are used as
control variables. Table 1 shows the control variables to analyze the APDS performance.

Table 1. The control variables to analyze the agricultural partial diagnosis sub-module (APDS) performance.

Control Variable Value

Learning Rate 0.01
Weight (all) 0.20

Figure 16 shows the average repeated learning times and the average error rate according to the
number of hidden layers of the six neural network models of the APDS.
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In case there is no hidden layer, the APDS neural network models learn fastest when the number
of average repeated learning times is 100, but they do not classify data when an error rate is 52.9%.
In case there isone1 hidden layer, the APDS neural network models show that the number of average
repeated learning times is 249 and the error rate is 3.1%. In case there are six hidden layers, the APDS
neural network models show that the number of average repeated learning times is 898 and the error
rate is 2.8%.

In case there are hidden layers in the APDS neural network models, the error rate is about 0.5%.
However, because the average repeated learning times are increased in proportion to the number of
hidden layers, the APDS neural network models have to use just one hidden layer.
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Figure 17 shows the accuracy according to test data when the APDS neural network models that
used one hidden layer use the Sigmoid function and a tanh function as an activation function.
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When a Sigmoid function was used as an activation function and the number of test samples was
500, the accuracy was measured as 99.97%. When the number of test samples was 700, the accuracy
was measured as 96%. When the number of test samples was 1200, the accuracy was measured as
92.587%. Finally, when the number of test samples was 2000, the accuracy was measured as 91.337%.

When a rectified linear unit (ReLU) function was used as an activation function and the number
of test samples was 500, the accuracy was measured as 95.1%. When the number of test samples was
700, the accuracy was measured as 94.89%. When the number of test samples was 1200, the accuracy
was measured as 91.73%. Finally, when the number of test samples is 2000, the accuracy was measured
as 85.32%.

When a tanh function was used as an activation function and the number of test samples was 500,
the accuracy was measured as 93.31%. When the number of test samples was 700, the accuracy was
measured as 88.94. When the number of test samples was 1200, the accuracy was measured as 84.2%.
Finally, when the number of test samples was 2000, the accuracy was measured as 82.45%.

In summary, if a Sigmoid function is used as an activation function, the average accuracy is
measured as 94.84%. If a ReLU function is used, the average accuracy is measured as 91.97%. If a
tanh function is used, the average accuracy is measured as 87.38%. Therefore, the Sigmoid function is
increased by about 3% and 7% in accuracy compared with ReLU and tanh, respectively.

4.2.2. The Analysis of the TEDS Performance

To analyze the TEDS performance, the number of hidden layers is set to 4. The number of nodes
of each hidden layer is set to 15. The learning rate and weight are set at 0.1 separately. The experiment
on the TEDS was performed twice and the result is as follows. The first experiment was to compare
the learning time of neural network models according to training samples. Figure 18 shows the result.

In the TEDS in Figure 18, when the number of the training samples is 21, the learning time is 0.96.
When the number of training samples is 80, the learning time is 0.98. When the number of training
samples is 120, the learning time is 0.90. When the number of the training samples is 150, the learning
time is 0.95. The average learning time of the TEDS is 0.95. In the CNN in Figure 18, when the number
of the training samples is 21, the learning time is 0.78. When the number of the training samples is 80,
the learning time is 0.65. When the number of the training samples is 120, the learning time is 0.63.
When the number of the training samples is 150, the learning time is 0.75. The average learning time of
the CNN is 0.68.
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In the LSTM in Figure 18, when the number of the training samples is 21, the learning time is
1.30. When the number of the training samples is 80, the learning time is 1.34. When the number of
the training samples is 120, the learning time is 1.44. When the number of the training samples is 150,
the learning time is 1.4. The average learning time of the LSTM is 1.38.

Therefore, the learning time of the TEDS is faster than that of the LSTM by about 0.43 and slower
than the CNN by about 0.27. However, the following second experiment shows that the TEDS is better
than the CNN in farm diagnosis.

The second experiment was to compare the diagnosis success rate according to the test samples.
The result is shown in Figure 19.
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In the TEDS neural network models in Figure 19, when the number of the training samples is 500,
the diagnosis success rate is measured as 98.40%. When the number of the training samples is 600,
the diagnosis success rate is 97.83%. When the number of the training samples is 1200, the diagnosis
success rate is 96.33%. When the number of the training samples is 2000, the diagnosis success rate is 96%.
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In the CNN neural network models in Figure 19, when the number of the training samples is
500, the diagnosis success rate is measured as 95%. When the number of the training samples is 600,
the diagnosis success rate is 96.67%. When the number of the training samples is 1200, the diagnosis
success rate is 91%. When the number of the training samples is 2000, the diagnosis success rate is 87.5%.

In the LSTM neural network models of in Figure 19, when the number of the training samples is
500, the diagnosis success rate is measured as 87.40%. When the number of the training samples is 600,
the diagnosis success rate is 90.33%. When the number of the training samples is 1200, the diagnosis success
rate is 92.50%. When the number of the training samples is 2000, the diagnosis success rate is 92.10%.

In summary, the success rate of TEDS was higher than the CNN by an average of 5% and the
LSTM by an average of 7%. For the CNN, when the number of samples is small, the difference between
the TEDS and the CNN is about 2%. When the number of samples is 2000, the difference between the
TEDS and the CNN is about 9%. For the LSTM, as the number of samples gets larger, the success rate
is increased, but the success rate of the LSTM is much lower than that of the TEDS.

In summary, in the first experiment of learning time, the TEDS is slower than the CNN by 0.27
and faster than the LSTM by 0.43 s. In the second experiment of success rate, the TEDS is higher
than the CNN by an average of 5% and the LSTM by an average of 7%. The TEDS is slower than the
CNN in learning speed, but as data gets increased, the success rate of the TEDS gets higher. Therefore,
the TEDS is the best neural network model when the state of a farm is judged.

5. Conclusions

Because an existing smart farm has to diagnose only a specific area of a farm or prepare agricultural
robots by function according to the environment of farms and the kinds of crops, they are expensive to
use and to manage.

To solve these problems, this paper proposes a total crop-diagnosis platform (TCP) based on deep
learning models in natural nutrient environment which collects the weather information based on a
farm’s location information, diagnoses the collected weather information and the crop soil sensor data
with a deep learning technique, and notifies a farm manager of the diagnosed result.

The TCP based on a cloud server does not depend on the environment of farms and the kinds
of crops. Because the TCP does not need to buy and manage various agricultural robots, contrary to
an existing farm, this cuts costs significantly. If the environment of farms and the kinds of crops
are changed, the TCP has only to customize its software. In addition, the TCP based on deep
learning interconnects the communication protocols of various sensors, solves the maximum data
size that sensor can transfer, predicts in advance crop disease occurrence in the external environment,
and provides important information to the farmers for managing their crops.

The proposed TCP has some expected effects, as follows.
First, the OFSG interconnects the various communication protocols of sensors and solves the

limitation of data size that sensors can transfer. Second, because the OFSG uses the compression
and fragmentation applied to the headers, the number of the fragmentation times gets smaller and
the processing speed gets higher. Third, because the APDS uses a Sigmoid function as an activation
function in analysis process, it is better than a tanh function by about 7% in accuracy. Fourth, the TEDS
is faster than the LSTM by 0.43 in learning time and higher than the LSTM by about 7% in success rate.
As the data size gets bigger, the success rate of the TEDS gets more stable.

However, the TCP also has the following uncertainty and limitations. First, it processed the
experiment by using the past weather data which our weather center provides and the past soil data
which our neighboring farms provides. Second, because a deep learning model designer has much
difficulty in establishing a proper threshold value by analyzing past weather and soil data, it takes
much time to find a proper threshold value during the initial design process.

In the future, if researchers including us can obtain and process experiments with real time
weather and soil sensor data, more accurate and better results can be obtained in the experiments.
In addition, researches will have to search for how to reduce the time to find a proper threshold value.
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Abbreviations

IoT Internet of Things
AI Artificial intelligence
ICT Information and communication technology
TCP Total crop-diagnosis platform
OFSG Optimized farm sensor gateway
DSM Data storage module
CSM Crop self-diagnosis module
CNN Convolutional neural metwork
LSTM Long short-term memory models
IPS Interconnection protocol sub-module
SDFS Sensor data fragment sub-module
APDS Agricultural partial diagnosis sub-module
TEDS Total environment diagnosis sub-module
Agbot Agricultural robot
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