Supplementary Materials: Adsorption characteristics of phenolic compounds on graphene oxide and reduced graphene oxide: a batch experiment combined theory calculation

Xiaobo Wang, Yanhui Hu, Jianhua Min, Sijie Li, Xiangyi Deng, Songdong Yuan and Xiaohua Zuo

1. Supplementary Information: Text

Text S1. Preparation of GO dispersion

In brief, concentrated H₂SO₄ (46 mL) was added to a mixture of graphite flakes (1 g) and NaNO₃ (1 g) in a 250 mL beaker. The mixture was stirred for 0.5 h in an ice bath at 5 °C. KMnO₄ (6 g) was added slowly in small portions to keep the reaction temperature below 5 °C, being followed by stirring for 2 h. Then the mixture was heated up to 35 °C and stirred for 2 h. After that, 46 mL of deionized water was gradually added into the solution. The reaction temperature was raised to 98 °C. After it was maintained at 98 °C for 15 min, the heat was removed. Additional water (100 mL) and 30% H2O2 (20 mL) were added. The mixture was centrifuged and washed with deionized water sequentially. The obtained product was dispersed in water, exfoliated through ultrasonication for 1 h, and used as a stock of GO suspension in water.

Text S2. The calculation of kinetic parameters

The pseudo-first-order model can be expressed as eq. (2),

$$\ln\left(\operatorname{qe} - \operatorname{qt}\right) = \ln\operatorname{qe} - k1t \tag{2}$$

the pseudo-second-order model as described by eq. (2),

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(2)

where k1 and k2 is the rate constant of the pseudo-first and second-order model of adsorption (1 h-1 and g mmol-1 h-1), qe and qt are the maximum adsorption capacity at the equilibrium state and the adsorption capacity at time t.

Text S3. Langmuir Adsorption Models

The Langmuir model was utilized to fit the adsorption isotherms. The following expression describes the Langmuir equation:

$$\frac{c_{\rm e}}{q_{\rm e}} = \frac{1}{q_{\rm m}} c_{\rm e} + \frac{1}{q_{\rm m} K_{\rm L}} \tag{1}$$

where qe (mmol g-1) and ce (mmol L-1) were the equilibrium adsorption capacity and equilibrium concentration of an adsorbate in solution, respectively, KL was the Langmuir constant (L mmol-1), which was related to the affinity of the binding sites, and qm represents the maximum adsorption capacity of the adsorbent (mmol g-1). The values of qm and KL were calculated from the slope and intercept of the linear plot of ce / qe against ce

Text S4. The calculation of thermodynamic parameters

The standard free energy change (Δ G0), enthalpy change (Δ H0), entropy change (Δ S0) were determined. The standard free energy change (Δ G0) can be calculated from the following equation:

$$\Delta G^0 = -RT \ln K^0 \tag{1}$$

Where R is the universal gas constant (8.314 J mol-1 K-1), T is the temperature in Kelvin. The adsorption equilibrium constant K0 can be calculated by plotting ln qe/ce versus ce and extrapolating ce to zero. The value of the intercept is the value of the lnK0

According to eq. (2), lnK0 was plotted versus 1/T, and the standard enthalpy change (Δ H0) and entropy change (Δ S0) were obtained from the slope and intercept of the line.

$$\ln K^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
⁽²⁾

2. Supplementary Information: Tables

Table S1. Kinetic parameters for the adsorption of five phenolics (40 mg L-1) on GO and RGO fitted with the pseudo-second-order model .

	Adsorbate	q _{e,exp} (mmol/g)	Pse	udo-First-Orc	ler	Pseudo	Gecond-Order qe,cal R ² (mmol g ⁻¹) 0.9998		
Adsorbent			k1 (1 h-1)	q _{e,cal} (mmol g ⁻¹)	R ²	k2 (g mmol ⁻¹ h ⁻¹)	q _{e,cal} (mmol g ⁻¹)	R ²	
GO	PE	0.271	0.185	0.134	0.802	318.8	0.274	0.9998	
	ME	0.356	0.158	0.159	0.727	209.9	0.337	0.9995	
	IPE	0.454	0.112	0.138	0.615	210.3	0.459	0.9998	
	BPA	0.4	0.126	0.143	0.779	219.0	0.409	0.9998	
	PPE	0.7 0.	0.114	0.089	0.432	418.3	0.704	0.9999	
RGO	PE	0.483	4.756	0.216	0.742	70.7	0.497	0.9981	
	ME	0.841	13.917	0.282	0.932	249.9	0.833	0.9999	
	IPE	1.117	20.066	0.638	0.962	297.4	1.123	0.9999	
	BPA	1.56	12.635	0.113	0.943	159.6	1.571	0.9995	
	PPE	2.054	11.153	0.015	0.751	1037.9	2.055	0.9999	

Table S2. Chemical structures and some properties of the tested phenolics.

Phenolics	Structure	$S_W(g/L)$	logK _{OW}	pK _a
phenol (PE)	но	67	1.46	9.95
4-methylphenol (ME)	HO	20	1.9	10.19
4-isopropylphenol (IPE)	HO CH ₃ CH CH CH ₃	NA	2.9	10.3
bisphenol A (BPA)	H0	0.12–0.3	3.3	9.5
2-phenylphenol (PPE)	OH	0.7	3.1	9.9

Phenols	Adsorbents	qm(mmol g ⁻¹)	KL(L mmol ⁻¹)	R ²
mbonol (DE)	GO	1.086	1.158	0.907
phenol (PE)	RGO	1.393	1.239	0.959
4 methylinhenel (ME)	GO	1.116	1.791	0.889
4-memyiphenoi (ME)	RGO	2.017	1.945	0.969
4-isopropylphenol	GO	1.576	1.776	0.988
(IPE)	RGO	2.237	3.842	0.981
high angl (DDA)	GO	0.947	4.776	0.991
displiendi A (dr A)	RGO	2.507	27.673	0.996
2 whore the or al (DDE)	GO	2.268	2.635	0.853
2-phenyiphenoi (FFE)	RGO	2.788	40.978	0.994

Table S3. Parameters for adsorption of phenols on GO and RGO obtained by data fitting with the Langmuir model at 298K.

Table S4. Parameters for adsorption of phenolics on GO and RGO obtained by data fitting with the Freundlich model at three different temperatures.

Phenolics	T(K) -	GO				RGO			
		Q_{F}	1/n	Km	R^2	$Q_{\rm F}$	1/n	Km	R^2
PE	298	0.645	0.745	0.555	0.997	0.882	0.758	0.847	0.992
	313	0.524	0.689	0.391	0.996	0.754	0.769	0.693	0.985
	333	0.443	0.662	0.292	0.988	0.624	0.77	0.542	0.989
	298	0.939	0.751	0.92	0.986	1.695	0.703	2.118	0.993
ME	313	0.781	0.721	0.71	0.974	1.374	0.678	1.598	0.985
	333	0.656	0.717	0.555	0.977	1.108	0.708	1.156	0.995
IPE	298	1.264	0.723	1.382	0.995	2.393	0.599	4.292	0.981
	313	1.099	0.759	1.132	0.997	2.103	0.613	3.362	0.995
	333	0.972	0.783	0.964	0.998	1.979	0.698	2.658	0.986
BPA	298	1.124	0.566	1.229	0.992	3.675	0.321	57.667	0.973
	313	1.039	0.603	1.065	0.991	3.287	0.345	31.475	0.94
	333	0.948	0.623	0.918	0.996	3.281	0.4	19.499	0.902
PPE	298	2.194	0.667	3.248	0.99	3.819	0.272	137.89	0.968
	313	2.159	0.752	2.783	0.994	3.68	0.32	58.651	0.976
	333	2.001	0.799	2.382	0.995	3.66	0.34	45.425	0.973

2. Supplementary Information: Figures

Figure S1. FT-IR (a) and Raman (b) spectra of GO and RGO samples.

Figure S2. zeta potential of GO and RGO samples as a function of pH.

Figure S3. Electrons distribution schematics of PE, ME, IPE, BPA and PPE.