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Abstract: Cylindricity is a kind of three-dimensional form distortion of a cylinder. An accurate
in situ measurement of cylindricity is relatively complex because measuring and reconstructing
cylindrical profile and evaluating out-of-cylindricity should be involved. Any method of in situ
measuring cylindricity must solve a common issue, i.e., to eliminate spindle error motions and
carriage error motions during measurement and reconstruction. Thus, error separation techniques
have played an important role in in situ cylindricity measurement through multipoint detections.
Although several valuable five-point methods for in situ measurement of cylindrical profile have
been proposed up to present, namely the parallel scan, spiral scan, and V-block scan, there are
obvious differences in many aspects, such as the arrangement of probes, error separation model,
reconstruction method, adaptability to service environment, accuracy and reliability in practical
application, etc. This paper presents the evaluation of their advantages and disadvantages in theory
and the actual measurement based on the standard ISO 12180. Suggestions for best meeting the
requirements of modern manufacturing and the most prospective one for industrial applications are
also given.
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1. Introduction

Large rollers, whose sizes can sometimes reach a diameter of a few meters and a length of several
meters, are employed in many heavy industries, e.g., papermaking, automobile, metallurgy, and
shipbuilding. Such a roller should be characterized by high form accuracy, because its cylindricity
errors would incorporate in the products, such as super calendar papers, roll-to-roll films, piston
cylinders, and automobile steel sheets, etc. Using conventional roundness and cylindricity instruments
may be impractical due to their large size and mass. Hence, there are increasing needs for accurate
measurement of out-of-cylindricity of rollers in order to ensure the surface quality of the products.
In situ measurements in production may be a good solution [1,2]. In general, a spindle supports
the measured cylinder to rotate and a carriage slides along the longitudinal direction, which are
indispensable in the in situ measuring system for the cylindricity. Raw probe signals representing radial
deviations of the cylinder are always superposed by the radial error motions of the cylinder, which
come from the spindle radial and tilt error motions, and the carriage straightness error motions [1–4].
Nevertheless, how to fully eliminate the radial error motions of the cylinder and straightness error
motions of the carriage in the in situ measuring system is a great challenge [2,5]. Two basic issues
are involved here: mathematical modeling of cylindrical profile and mathematical modeling of the
measuring system.
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1.1. Mathematical Modeling Cylindricity

The parameters and recommendations for measurement of cylindricity are described in the
standard ISO 12180 [6]. The cylindrical profile can be considered as three superposed deviations: radial
deviations, median line deviations, and cross-section deviations, as shown in Figure 1. Obviously,
median line deviations denote out-of-straightness of the median line of a cylinder, and radial
deviations and cross-section deviations denote the radius deviation and out-of-roundness of the
cross-section, respectively.
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Cylindrical profile is made up of sequential cross-sectional profiles arranged in the axial direction,
and each cross-sectional profile can be described as definite periodic signals with a base frequency equal
to rotational frequency of the cylinder [5]. Therefore, the cylindrical profile r(z, θ) can be described as
a Fourier expansion:

r(z, θ) = r0(z) + ∑∞
p=1

[
ap(z) cos(pθ) + bp(z) sin(pθ)

]
. (1)

where, z and θ are respectively the axial and angular coordinates of the cylindrical profile, and r0(z) is
the radius of the cross-sectional profile. ap(z) + jbp(z), which denotes the pth harmonic vector of the
cross-sectional profile, can be expressed with the Legendre interpolation, i.e., ap(z) = ∑Ma

j=0 apjzj, and

bp(z) = ∑Mb
j=0 bpjzj. Substituting ap(z) and bp(z) into Equation (1), the cylindrical profile r(z, θ) can be

rewritten as follows:

r(z, θ) = r0(z) +
[(

∑Ma
j=0 a1jzj

)
cos(θ) + (∑Mb

j=0 b1jzj) sin(θ)
]

+∑∞
p=2
[
ap(z) cos(pθ) + bp(z) sin(pθ)

] (2)

Term 2 in Equation (2) belongs to the first harmonic component of the cross-sectional profile.
Let a1(z) = ∑Ma

j=0 a1jzj and b1(z) = ∑Mb
j=0 b1jzj, then, a1(z) + jb1(z) can be characterized as a vector from

the rotating center in a cross-section of the cylinder to the least squares center (LSC) of the cross-sectional
profile [5,7]. If the linear term (a10 + a11z) + j(b10 + b11z) about the Z-axis in a1(z) + jb1(z) is canceled,
the cylinder as a whole will be tilted and moved, and the cylindrical profile will be not changed. Thus,
the mathematical model of the cylindrical profile can be expressed by Equation (3).

r(z, θ) = r0(z) + r1(z, θ) + r2(z, θ) (3)

where, r1(z, θ) = a1(z) cos(θ) + b1(z) sin(θ) is the first harmonic component of the cross-sectional
profile. Obviously, a median line of the cylindrical profile, as shown Figure 1b, can be fitted
through the LSC vectors a1(z) + jb1(z) in sequential cross-sections [5,6,8]. The 0th harmonic
component, r0(z), represents average radius deviations of sequential cross-sectional profiles, as
shown Figure 1a. The sum of the pth(p = 2–∞) harmonic components, denoted by r2(z, θ) =

∑∞
p=2
[
ap(z) cos(pθ) + bp(z) sin(pθ)

]
, represents the out-of-roundness of sequential cross-sectional

profiles, as shown Figure 1c.
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From Equation (3), a feasible method of measuring and reconstructing a cylindrical profile can
be suggested. It is to accurately measure the radius deviations, roundness errors, and LSC vectors
of sequential cross-sections. Moreover, the median line is fitted through the LSCs, and cylindrical
profile can be reconstructed by assembling the measured radius deviation and out-of-roundness of
each cross-section on the fitted median line.

1.2. Mathematical Modeling of the Measuring System

Cylindricity errors are three-dimensional form deviations, and accurate measurement of
cylindricity is relatively complex, should include measuring and reconstructing cylindrical profile, and
evaluating out-of-cylindricity. Any in situ measuring system must employ several probes mounted
onto a carriage to sense the radial deviations of the cylinder while the cylinder is rotating and the
carriage is sliding along the longitudinal direction. It is known that rotating of the cylinder or sliding of
the carriage have inevitable five degree-of-freedom geometric error motions due to their manufacturing
and assembly errors. Therefore, the method of measuring cylindrical profile must be able to eliminate
error motions of the cylinder and carriage in data analysis. Error separation techniques (ESTs) have
been used in measurement of the form errors, such as straightness, flatness, roundness, and so on.
Error separation techniques ensure measurement accuracy by separating form errors and error motions
with specific designed setup and special mathematical modeling. In general, the three-point roundness
EST [3,4,9] can remove the radial error motions in the cross-section of the cylinder and accurately
determine radius deviations and out-of-roundness of the cross-sectional profile of the cylinder [3,5,9].
However, the first harmonic of the cross-sectional profile are inseparable from that of the radial error
motions in the cross-section of the cylinder [3–5,8,9]. The first harmonic of the cross-sectional profile
denotes the vector from rotating center to the LSC of the cross-sectional profile. Median line of the
cylinder is a spatial curve that is fitted through the LSCs of sequential cross-sectional profiles [6,8].
Therefore, three-point roundness EST is insufficient to accurately determine a cylindrical profile.

Modeling of a probe sensing the cylindrical profile is particularly foundational for cylindrical
profile measurement. Reference [10] built such a measurement model, as shown in Figure 2. OXYZ
is the global coordinate system, in which the cylinder coordinate system OcXcYcZc and the carriage
coordinate system OsXsYsZs are located. Theoretically, there are ten terms of error motions, including
the cylinder’s translational error motions ecx, ecy, ecz and tilt error motions τcx, τcy, as well as the
carriage’s straightness error motions esx, esy and three angular error motions of pitch τsx, yaw τsy, and
roll τsz. The vectors of the Oc and Os in the OXYZ system are ec =

[
ecx, ecy, 0

]
and es =

[
esx, esy, z

]
,

respectively. Let the rotation angle of the cylinder be θ. In the OsXsYsZs system, the measuring point P
locates at rs = [r0 cos(ϕ), r0 sin(ϕ), zs], and point P in the OXYZ system would be offset due to the
carriage error motions. If ecz, τsz, and quadratic terms of the errors are omitted, the actual position of
point P in the OXYZ system is:

ζx = r0 cos(ϕ) + esx + zsτsy; ζy = r0 sin(ϕ) + esy + zsτsx.

In a similar way, in the OcXcYcZc system, because of point P’s offsets caused by the error motions
of the cylinder, the actual position of point P in the OXYZ system is:

ξx = r(z + zs, θ + ϕ) cos(ϕ) + ecx + (z + zs)τcy;
ξy = r(z + zs, θ + ϕ) sin(ϕ) + ecy + (z + zs)τcx.

Obviously, the output of the probe indicates their difference in OXYZ system:

t(z + zs, θ) = (ξx − ζx) cos(ϕ) + (ξy − ζy) sin(ϕ) = [r(z + zs, θ + ϕ)− r0]

+
[
ecx + zτcy − esx + zs

(
τcy − τsy

)]
cos(ϕ) +

[
ecy + zτcx − esy + zs(τcx − τsx)

]
sin(ϕ).

(4)
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where, [r(z + zs, θ + ϕ)− r0] is the cylindrical profile. Equation (4) indicates that output of the probe
is a mixture of cylindrical profile and all kinds of error motions in measuring system, in which
[ecx + zτcy − esx], [zs

(
τcy − τsy

)
], [ecy + zτcx − esy], and [zs(τcx − τsx)] are the mutual independent error

motions. Therefore, the minimum number of the probes in order to fully eliminate the error motions is
five [10]. From Figure 2 and Equation (4), the three-point roundness EST [3–5,9] arranges three probes in
one cross-section of the cylinder, and the error motions [ecx + zτcy− esx] and [ecy + zτcx− esy] are sensed
by the probe, and can be canceled. If all error motions are expected to be eliminated, a few probes
must be arranged in the axial direction to sense the error motions [zs(τcx − τsx)] and [zs(τcx − τsx)].
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The literature on the subject of in situ measurement of cylindricity is limited. Nyberg [11]
proposed the four-point EST for in situ measurement of cylindricity, which combines the concepts
of two-point straightness and three-point roundness ESTs. The signals from the three probes were
used to calculate radius deviations and out-of-roundness of each cross-sectional profile. Whereas the
signals from the two probes placed at the same generatrix in the cylinder were employed to determine
out-of-straightness of the generatrix. However, this method sidesteps the problem of accurately
determining curved median line profile of the cylinder, although it was successfully verified on a
dedicated measuring device by the experiments.

Several valuable five-point ESTs for in situ measurement of cylindrical profile have been
reported [8,10,12,13]. They are clearly different in the arrangement of probes, error separation
model, reconstruction method, adaptability to service environment, and accuracy of measuring and
reconstructing. Related technical notes are presented in the following for comparing and evaluating
pros and cons. Suggestions for best meets the requirements of modern manufacturing and the most
prospective one for industrial applications will then be made.

2. Error Separation Models for In Situ Measurement of Cylindricity

2.1. Parallel Scan EST

Reference [8] presented a parallel scan EST for measuring cylindrical profile, as shown in
Figure 3. Let the cylinder be divided by M cross-sections, and the axial distance between each
two cross-sections be d. Five displacement probes are mounted onto the carriage, which moves along
the Z direction. When the carriage is located at the Jth (J = 1, 2, · · · , M) position and the cylinder
rotates one revolution, Probes 1–3 sense the mixed radial errors in the Jth cross-section, meanwhile,
Probes 4 and 5 sense the X directional mixed errors in the (J + 1)th and (J + 2)th cross-sections.
When data collection is completed, the carriage moves a distance d along the Z direction and enters the
(J + 1)th position. At this moment, Probes 1–3 locates in the (J + 1)th cross-section and Probes 4 and 5
locate in the (J + 2)th and (J + 3)th cross-sections, respectively. Data collection of new revolution will
be carried on.
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When the carriage locates at the Jth (J = 1, 2, · · · , M) position, the cylinder is rotating and
Probes 1–5 collects data. It was verified that the pth (p = 0, 2, 3, · · · , N − 2) harmonic vector
R(zJ , p) of the Jth cross-sectional profile r(zJ , i) (i = 0, 1, · · · , N − 1) of the cylinder could be
detected with the three-point roundness EST [3–5,8,9] by the outputs of Probes 1–3, denoted
by tn(zJ , i) (n = 1, 2, 3) (i = 0, 1, · · · , N − 1). Therefore, r0

(
zJ
)

and r2
(
zJ , i

)
(i = 0, 1, · · · , N − 1),

indicating the radius deviation and out-of-roundness of the Jth cross-sectional profile, can be
accurately determined. In addition, êx

(
zJ , i
)
(i = 0, 1, · · · , N − 1), indicating the separated result

of the X directional error motions in the Jth cross-section of the cylinder, can be obtained by
the outputs of Probes 1 and 2, as shown in Ref. [8,14]. The first harmonic vector should be
Êx
(
zJ , 1

)
= DFT

[
êx
(
zJ , i
)]
|p=1, here, DFT is the discrete Fourier transform operator.

Simultaneously, Probes 4 and 5 sense the X directional mixed errors, including the (J + 1)th
and (J + 2)th cross-sectional profiles, denoted by r

(
zJ+1, i

)
and r

(
zJ+2, i

)
(i = 0, 1, · · · , N − 1), the X

directional error motions in the Jth cross-section ecx
(
zJ , i

)
and the tilt error motion of the cylinder

around the Y direction τcy(J, i), as well as the X directional straightness deviations of the carriage
esx
(
zJ
)

and yawing τcy(J), as shown in Figures 2 and 3. From Equation (4), the outputs of Probes 4
and 5, denoted by tn(J, i) (n = 4, 5) (i = 0, 1, · · · , N − 1), are given by

t4(J, i) = r
(
zJ+1, i

)
−D4 +

{
[ecx
(
zJ , i
)
+ d× τcy(J, i)]−

[
esx
(
zJ
)
+ d× τsy(J)

]}
(5a)

t5(J, i) = r
(
zJ+2, i

)
−D5 +

{
[ecx
(
zJ , i
)
+ 2d× τcy(J, i)]−

[
esx
(
zJ
)
+ 2d× τsy(J)

]}
. (5b)

Applying Discrete Fourier transform (DFT) to t4(J, i) and t5(J, i), we may obtain the
pth (p = 0, 1, · · · , N − 1) harmonic vectors of the outputs of Probes 4 and 5, denoted by T4(J, p) =
DFT[t4(J, i)] and T5(J, p) = DFT[t5(J, i)], in which the first harmonic vectors are T4(J, 1) and
T5(J, 1), respectively.

Θcx(J, 1) (J = 1, 2, · · · , M) is designated as the first harmonic vector of the X directional
additional error motions induced by the tilt error motions of the cylinder around the Y-axis.
Referencing the sequential three-point straightness EST [5,15], the iterative formulas used to extract
R
(
zJ , 1

)
(J = 1, 2, · · · , M), representing the LSC vectors of each cross-sectional profile, ware derived in

in Appendix of Reference [14]. When the carriage locates at the first position, let Θcx(1, 1) and R(z1, 1)
be equal to “zero”. The first harmonic vector R

(
zJ , 1

)
of the Jth (J = 2, 3, · · · , M) cross-sectional profile

is extracted by:

R
(
zJ , 1

)
= R

(
zJ−1, 1

)
+ T4(J − 1, 1)− Êx

(
zJ−1, 1

)
−Θcx(J − 1, 1) (6a)

Θcx(J, 1) = Θcx(J − 1, 1)− [T5(J − 1, 1)− T4(J − 1, 1)] +
[
T4(J, 1)− Êx

(
zJ , 1

)]
. (6b)
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The LSC vector of the Jth (J = 1, 2, · · · , M) cross-sectional profile is 2R
(
zJ , 1

)
/N or

2R
(
zJ , N − 1

)
/N, with which a curved median line of the cylinder can be accurately fitted, here,

R
(
zJ , N − 1

)
= conjugation

[
R
(
zJ , 1

)]
. It is noteworthy that the curved median line fitted through the

LSCs of each cross-sectional profile, as a whole, undergoes little movement and inclination because
R(z1, 1) and Θcx(1, 1) are all set to “zero”, rather than their truth-values. The correctness of the curved
median line profile will not be affected.

Now, by means of the three-point roundness EST and Equation (6), R
(
zJ , p

)
(p = 0, 2, 3, · · · , N − 2)

as well as R
(
zJ , 1

)
and R

(
zJ , N − 1

)
, indicating the pth (p = 0, 1, 2, · · · , N − 1) harmonic vectors of the

Jth (J = 1, 2, · · · , M) cross-sectional profiles, can be detected accurately. A reconstructed cylindrical
profile, denoted by r

(
zJ , i
)
(J = 1, 2, · · · , M) (i = 0, 1, · · · , N − 1), can be achieved by;

r
(
zJ , i
)
= IDFT

[
R
(
zJ , p

)]
(i, p = 0, 1, 2, · · · , N − 1). (7)

Where, IDFT is the inverse discrete Fourier transform operator. Theoretical analysis and numerical
validation about this EST have been performed in Reference [8]. The results verify that error motions
of the cylinder and carriage are all removed, i.e., full harmonic error separation is realized. The LSCs
of each cross-sectional profile of the cylinder are accurately extracted even if the error motions of the
cylinder are not repeatable in each rotation. The spatial curved median line of the cylinder is accurately
determined by fitting through the LSCs of the sequential cross-sectional profiles. The cylindrical profile
conforming to the standard ISO 12180 [6], can then be reconstructed by Equation (7), as shown in
Equation (3). The cylindrical form errors, not only cylindricity but also out-of-roundness, generatrix
straightness, taper angle, and radius deviation, can be evaluated simultaneously by using the
reconstructed cylindrical profile.

2.2. Spiral Scan EST

Reference [10] presented the spiral five-probe arrangement for measurement of cylindrical profile,
as shown in Figure 4. Five displacement probes arranged in a spiral scanning-path are mounted
onto the carriage, which moves along the Z direction. This system makes it possible to transform
the cylindrical profile measurement to the one-dimensional straightness measurement of the spiral
profile on the cylinder given that the rotation of the cylinder keeps pace with the movement of the
carriage. Let the total number of scanning points per revolution be N, and the scanning angular
interval should be δ = 2π/N. When probes move along the spiral line, the variable z of the carriage
moving along the Z direction is proportional to the variable θ = i × δ of the cylinder rotating,
i.e., z = θ × T/(2π) = i × T/N, where, constant T is the pitch of the spiral line. The angular
positions of Probes 1–5 are ϕn (n = 1, 2, · · · , 5) with respect to the X direction, and axial positions are
zsn = τ × ϕn/(2π) (n = 1, 2, · · · 5), respectively. When the cylinder rotates and the carriage moves
synchronously, several error motions come up as shown in Figure 2, including the cylinder’s radial
error motions ecx(i), ecy(i) and tilt error motions τcx(i), τcy(i), as well as the carriage straightness error
motions esx(i), esy(i) and pitching τsx(i), yawing τsy(i) (i = 0, 1, · · · , N ×M− 1). Here, M is number
of total rotating circle of the spiral line on the cylinder. Let r(i) (i = 0, 1, · · · , N ×M− 1) be the spiral
line profile on the cylinder. According to Equation (4), the outputs of the five probes, denoted by
tn(i) (n = 1, 2, · · · , 5) (i = 0, 1, · · · , N ×M− 1), can be written as follow:

tn(i) = r(i + kn)− Dn +
{
[ecx(i)− esx(i) + zτcy(i)]+zsn[τcy(i)− τsy(i)]

}
cos(ϕn)

+{[ecy(i)− esy(i) + zτcx(i)]+zsn[τcx(i)− τsx(i)]} sin(ϕn).
(8)

where, kn = ϕn/δ (n = 1, 2, · · · , 5); Dn (n = 1, 2, · · · , 5) are the initial zero-setting values of the
probes. Similarly to the three-point straightness EST based on DFT [5,16], the weighted output
of Probes 1–5 should be t(i) = ∑5

n=1 cntn(i). Let the weighted coefficients cn (n = 1, 2, · · · , 5) be
∑5

n=1 cn cos(ϕn) = 0 and ∑5
n=1 cn sin(ϕn) = 0, and ∑5

n=1 cnzsn cos(ϕn) = 0, ∑5
n=1 cnzsn sin(ϕn) = 0.

The weighted output t(i) (i = 0, 1, · · · , N ×M− 1) can be rewritten as: t(i) = ∑5
n=1 cnr(i + kn)− D.
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Where, D = ∑5
n=1 cnDn is the weighted initial zero-setting value. Obviously, all error motions of the

cylinder and carriage are removed from t(i). Moreover, applying the DFT to t(i) and introducing the
time-shift theorem, we can obtain the pth(p = 0, 1, · · · , N ×M− 1) harmonic vectors of the weighted
output t(i) (i = 0, 1, · · · , N ×M− 1) as follows:

T(p) = DFT[t(i)] = R(p)×Ω(p)−D(p); Ω(p) = ∑5
n=1 cn exp

(
jpϕn

M

)
. (9)

where, D(p) = DFT[D]. If the transfer function Ω(p) 6= 0 (p = 0, 1, · · · , N ×M− 1), the
pth (p = 0, 1, · · · , N ×M− 1) harmonic vectors of the spiral line profile on the cylinder are:

R(p) =
T(p) + D(p)

Ω(p)
. (10)
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Figure 4. Schematic of spiral scan EST [10]. The 1–5 are the displacement probes.

According to the properties of the DFT, D(p)|p=0 6= 0 and D(p)|p 6=0 = 0. Similar to the parallel
scan EST, the initial zero-setting value D1–D5 of Probes 1–5 is also allocated a value of zero or the
nominal radius, which will not affect the spiral line profile on the cylinder. Applying the IDFT
to R(p) (p = 0, 1, · · · , N ×M− 1), we may obtain ρ(i) = IDFT[R(p)] (i, p = 0, 1, · · · , N ×M− 1),
indicating the spiral line profile on the cylinder. A reconstructed cylindrical profile should be:

r(z,
..
i) = ρ(i)(i = 0, 1, · · · , N ×M− 1); z = i× t

N
;

..
i = remainder(i/N) (

..
i = 0, 1, · · · , N − 1). (11)

It’s worth noting that, different from the parallel scan EST, the spiral scan EST measures the
one-dimensional straightness of the spiral profile on the cylinder, and reconstructs an integral
cylindrical profile. It is difficult to distinguish the radius deviation and out-of-roundness of each
cross-section, as well as the profile of the spatial curved median line of the cylinder.

2.3. V-Block Scan EST

Ref. [1,12,13,17] presented the V-block scan EST for measurement of cylindrical profile as shown
in Figure 5. An element connecting the two V-blocks functions as guideway, along which a carriage
moves. A displacement probe is mounted onto the carriage. When the cylinder driven by the spindle
rotates, probe keeps collecting data. At the moment, two V-blocks should contact reliably with the
surface of the cylinder, and the measuring system should avoid rotating around and moving in the
Z-axis. Because five points are contact with the measured surface during measuring, this system may
be regarded as an analogous five-point EST measuring system.
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Figure 5. Schematic of V-block scan EST [1,12,13]. The left shows the measured cylinder in the OXYZ
system; the right shows the cross-section of the cylinder in the plane of the V-block.

As shown in Figure 5, the OXYZ system was assumed in such a way that the Z-axis coincides with
the axis of the nominal cylinder, and the plane determined by the X- and Y-axes coincide with the plane
of the left V-block. The Y-axis is the angular bisector of the V-block. Let the total number of scanning
points per revolution be N, and the scanning angular interval should be δ = 2π/N. Let the angular
position of the probe be ϕ = kδ with respect to the X-axis, and the half angle of the V-block be α = uδ.
Because the system rides on the cylinder during measuring, the radial and tilt error motions of the
cylinder will have nothing to do with the output of the probe. However, as those two cross-sectional
profiles that are contacted by two V-blocks have roundness errors, it would make the measuring system
generate the radial and tilt error motions. At this moment, the probe situated in measured cross-section
will collect the radial mixed errors, including the cross-sectional profile r(z, i) (i = 0, 1, · · · , N − 1),
the measuring system’s radial error motions ex(z, i), ey(z, i) (i = 0, 1, · · · , N − 1) in the cross-section
where the probe is, as well as the carriage straightness error motions esx(z), esy(z) in the location where
the probe is. According to Equation (4), the output of the probe t(z, i) (i = 0, 1, · · · , N − 1) should be:

t(z, i) = r(z, i + k) + [ex(z, i)− esx(z)] cos(ϕ) +
[
ey(z, i)− esy(z)

]
sin(ϕ). (12)

where, the initial zero-setting value of the probe is omitted due to without impact on accurate
measurement. It is worth noting that ex(z, i), ey(z, i) (i = 0, 1, · · · , N − 1), indicating the measuring
system’s radial error motions in measured cross-section, are caused by the cross-sectional profiles
in contacted with the two V-blocks. There are obviously four points on the V-blocks in contact
with the cross-sections defined by the plane z = 0, L of the cylinder. If the contacted points are
regarded as the virtual probes, output of the virtual probes in the z = 0, L cross-sections should
be “zero”. It is obvious that the z = 0, L cross-sectional profiles r(z, i)|z=0,L (i = 0, 1, · · · , N − 1)
control the radial error motions of the measuring system in the z = 0, L cross-sections, denoted by
ex(z, i), ey(z, i)|z=0,L (i = 0, 1, · · · , N − 1).

At this moment, if the carriage moves, and the probe locates in the z = 0, L cross-sections,
respectively, the probe collects the radial mixed errors during cylinder rotating. The outputs of
the probe should be t(z, i)|z=0,L (i = 0, 1, · · · , N − 1), as shown in Equation (12). Taking DFT to
t(z, i)|z=0,L (i = 0, 1, · · · , N − 1), we will achieve the pth(p = 0, 1, · · · , N − 1) harmonic vector of the
z = 0, L cross-sectional profiles R(z, p)|z=0,L, as follow.

R(z, p)|z=0,L =
T(z, p) + M(z, p)

Ω(p)
|z=0,L; Ω(p) = exp(jpϕ)− Γ(p) (13)

Γ(p) =
{

exp(jpα)

[
cos(ϕ)

2 cos(α)
+

sin(ϕ)

2 sin(α)

]
+ exp[jp(π − α)]

[
− cos(ϕ)

2 cos(α)
+

sin(ϕ)

2 sin(α)

]}
M(z, p)|z=0,L = DFT

[
esx(z) cos(ϕ) + esy(z) sin(ϕ)

]
|z=0,L
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where, Ω(p) is the transfer function, and T(z, p)|z=0,L = DFT[t(z, i)]|z=0,L are the
pth(p = 0, 1, · · · , N − 1) harmonic vectors of the output of the probe when it locates in the z = 0, L
cross-sections. M(z, p)|z=0,L are the pth(p = 0, 1, · · · , N − 1) harmonic vectors of the disturbances
from the carriage straightness error motions when the probe locates in the z = 0, L cross-sections.

If stiffness of the measuring system is sufficient, the radial error motions of the measuring
system in measured cross-section, denoted by ex(z, i), ey(z, i)(i = 0, 1, · · · , N − 1), should be the linear
combination of ex(z, i)

∣∣z=0,L, ey(z, i)
∣∣
z=0,L. Here, their pth (p = 0, 1, · · · , N − 1) harmonic vectors,

denoted by Ex(z, p) = DFT[ex(z, i)] and Ey(z, p) = DFT
[
ey(z, i)

]
, can be achieved.

Now, taking DFT to Equation (12), we will obtain the pth (p = 0, 1, · · · , N − 1) harmonic vector
of the output of the probe when it locates in measured cross-section:

T(z, p) = DFT[t(z, i)] = exp(jpϕ)R(z, p) + Ex(z, p) cos(ϕ) + Ey(z, p) sin(ϕ)−M(z, p). (14)

Bringing Ex(z, p), Ey(z, p) and R(z, p)|z=0,L (p = 0, 1, · · · , N − 1) into Equation (14), we can
determine R(z, p), indicating the pth (p = 0, 1, · · · , N − 1) harmonic vectors of the measured
cross-sectional profile of the cylinder.

R(z, p) =
{

T(z, p) +
(L− z)T(0, p) + zT(L, p)

LΩ(p)
Γ(p)

}
exp(−jpϕ) + ∆(z, p). (15)

∆(z, p) =
{

M(z, p) +
(L− z)M(0, p) + zM(L, p)

LΩ(p)
Γ(p)

}
exp(−jpϕ)

where, T(z, p) is the pth(p = 0, 1, · · · , N − 1) harmonic vector of the output of probe in measured
cross-section. M(z, p) is the pth(p = 0, 1, · · · , N − 1) harmonic vector of the disturbances from the
carriage straightness error motions in measured cross-section. A reconstructed cylindrical profile
r(z, i)(i = 0, 1, · · · , N − 1) can be achieved by taking IDFT to R(z, p)(p = 0, 1, , · · · , N − 1), similarly
to Equation (6). However, it is worth noting that Equations (13)–(15) are true if the transfer function
Ω(p) 6= 0, in addition, the disturbances from the carriage straightness error motions will impact the
accuracy of the V-block scan EST.

3. Applicative and Comparative Analysis for In Situ Measurement of Cylindricity

Three error separation models for in situ measurement of cylindricity have been investigated as
above. Theoretically, they all can be used to measure and reconstruct cylindrical profile. However,
their validity and accuracy need to be verified by numerical verifications through experiments so as to
further reveal characteristic features as well as main benefits and drawbacks.

3.1. Experimental Verification and Analysis of Parallel Scan EST

An experimental system based on the parallel scan EST was setup as shown in Figure 6.
The headstock and tailstock supported the cylinder. The carriage had three parallel sections separated
by a distance d = 40 mm. Five inductive displacement probes (TESA GTL 21 DC) were mounted
onto the carriage, in which Probes 1–3 were mounted in the left section according to the three-point
roundness EST, and Probes 4 and 5 were located in the middle and right sections. An angular encoder
(RENISHAW RESM 52, 8192 lines, zero line, 5 subdivisions) was mounted on the rotor in the headstock
to control the course of data acquisition so as to obtain uniform sampling on the circumference.
The total number of sampling points per revolution N was 1024. In order to avoid the non-first
harmonic suppression [3–5,8,14] and achieve the large error transfer function Ω(p)(p = 0, 2, · · · , 15),
the angular positions of the Probes 1–3 were set respectively α = 77.03◦, β = 86.84◦ as shown in
Figure 7. The rotational speed of the cylinder was 1 rpm.
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carriage straightness error motions in measured cross-section. A reconstructed cylindrical profile 𝑟(𝑧, 𝑖)(𝑖 = 0,1, ⋯ , 𝑁 − 1) can be achieved by taking IDFT to 𝐑(𝑧, 𝑝)(𝑝 = 0,1, , ⋯ , 𝑁 − 1), similarly to 
Equation (6). However, it is worth noting that Equations (13)–(15) are true if the transfer function 𝛀(𝑝) ≠ 0, in addition, the disturbances from the carriage straightness error motions will impact the 
accuracy of the V-block scan EST. 
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It can be seen from Figure 3 and Equation (6) that the parallel scan EST is to simultaneously
execute the three-point roundness and sequential three-point straightness ESTs [5,8] for the detection
of the radius deviation, out-of-roundness, and LSC of each cross-section of the cylinder, respectively.
A novelty of the EST is to accurately detect the spatial curved median line of the cylinder and to
measure and reconstruct cylindrical profile consistent to the standard ISO 12180 [6]. The key to
verifying the validity of the EST is to evaluate the accuracy of the measured curved median line profile
of the cylinder. Currently, there is not a mature method to calibrate the curved median line profile,
and it is difficult to investigate the error motions of the cylinder. Therefore, we will compare the
repeatability of the curved median line profiles to prove the accuracy. In engineering practices, the
high repeatability of measurement results will indicate high-precision of the measurements, and also
high accuracy to some extent.
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Figure 7. Angular positions of Probes 1–5.

Six measurement experiments were conducted on the experimental system for same cylinder
shown in Figure 6, the number of the cross-section divided in the cylinder was M = 25. A set of
software was developed to sequentially control the course of measurements and data collections
of Probes 1–5. By calculating Equation (6) with iterative, the LSC vector 2R

(
zj, N − 1

)
/2 of the

Jth(J = 1, 2, · · · , M) cross-sectional profile of the cylinder was extracted, with which the curved
median line profile was fitted in each experiment, as shown in Figure 8. Although the profiles of
the curved median line were quite consistent among in the six experiments, the variations of the
extracted LSC vector of each cross-sectional profile were significant, being approximately within the
range ±2.5 ± 2.5iµm, which cannot be a convincing proof of the accuracy of the parallel scan EST for
measuring cylindrical profile.
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Theoretically, this EST can eliminate the radial and tilt error motions of the cylinder as well as
the carriage straightness error motions. Actually, similarly to the sequential three-point straightness
EST, the double integration calculations [15] as Equation (6) are executed for detecting the LSC vectors
of each cross-sectional profile of the cylinder, which reduces the anti-interference capacity of the EST.
Influences of various interferences on detecting the LSC vectors of each cross-section are amplified,
which conduct the large variations in the measured median line profiles. In particular, when there are
significant systematic interferences in the measuring system, such as inconsistencies in sensitivity and
linearity, angular and positional errors of five probes, an obvious distortion of the measured median
line profile will occur. Even more, the larger the total number of the cross-section in the cylinder is, the
more serious the distortion is.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 20 
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Comparatively, if the outputs of Probes 1–4 are used to measure and reconstruct the cylindrical
profile, this EST will become an integrated EST of the three-point roundness and sequential two-point
straightness. Here, the sequential two-point straightness EST [18] is executed for the detection of the
LSC vector of each cross-sectional profile of the cylinder. Let us see Equation (6), Θcx(J, 1), which is
the first harmonic vector of the additional X directional error motions induced by the tilt error motions
of the cylinder around the Y-axis of each position, should be omitted, and the double integration
calculations will be avoided. At this moment, the tilt error motions of the cylinder cannot be removed
although the influences of various interferences on detecting the LSC vector of each cross-section are
weakened. In engineering practices, the tilt error motions of the cylinder are much smaller, particularly
in case if the cylinder is long and the rotation speed is low. Figure 9 shows the curved median
line profiles measured by the outputs of Probes 1–4. Obviously, the measured profiles are in good
consistency in six experiments, and the variation of the extracted LSC vector of each cross-sectional
profile is within the range ±1 ± 1iµm, which shows a convincing proof of the accuracy of the parallel
scan EST for measuring cylindrical profile.
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The accuracy of the extracted LSC vectors of sequential cross-sectional profiles by the four-point
EST is higher than that extracted by the five-point EST if the tilt error motions of the cylinder are small
and negligible. Figures 8 and 9 show that the profiles of the curved median line measured by two
parallel ESTs differ slightly, and the conformity of the spatial median line measured by the parallel
four-point EST is validated to be higher in the six experiments, which implies that the tilt error motions
of the cylinder of the experimental system is small. Therefore, the parallel four-point EST is more
suitable for in situ measurement of cylindricity of the large-scale roller, where the tilt error motions of
the cylinder are indeed small in case that the cylinder is long and the rotation speed is low. On this
basis, the cylindrical profile can be accurately reconstructed by Equation (7).

3.2. Applicative Analysis of Spiral Scan EST

Theoretically, the spiral scan EST for measuring the cylindrical profile must face two basic queries.
One is harmonic suppression and the other is the multi-point straightness EST based on DFT. As stated
above, Equation (9) would be true if the transfer function Ω(p) (p = 0, 1, · · · , N ×M− 1) was not
“zero”. However, when p = M, the transfer function should be:

Ω(M) = ∑5
n=1 cn exp(jϕn) = ∑5

n=1 cn cos(ϕn) + j ∑5
n=1 cn sin(ϕn) ≡ 0.

This means that the Mth harmonic suppression happens in this EST, i.e., the Mth harmonic
component of the spiral line profile on the cylinder is unable to exactly be determined. In Reference [10],
the partial transfer function Ω(p) (p = 0, 1, · · · , 250) was shown as Figure 10.

A numerical validation procedure has been developed in this study to help qualitative and
quantitative evaluation of the cylindrical profile obtained by this EST. Whether the Mth harmonic
suppression impacts correct detection of spiral line profile on the cylinder should be verified first.
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Figure 10. Transfer function Ω(p) (p = 0, 1, · · · , 250) of spiral scan EST. Here, angular position of five
probes ϕn (n = 1, 2, · · · , 5) is 0◦, 395◦, 838.7◦, 1236.5◦, 1658.8◦, respectively, and pitch of spiral line is
T = 10. Number of total rotating circles of spiral line is M = 29 [10].

We created a set of given data to describe a virtual spiral line profile on the cylinder. A series
of random data was used to simulate the radial error motions of two imaginary rolling bearings that
supported the cylinder to rotate so that the different error motions in each revolution were simulated.
A series of the other random data was used to simulate the carriage straightness error motions including
yaw and pitch. The outputs of five probes were set according to Equation (8), and then, the procedures
of reconstructing the spiral line on the cylinder were carried out according to Equations (9)–(11).

As shown in Figure 11, the given spiral line profile on the cylinder only with the median line
deviations is similar to Figure 1b. The difference between the measured spiral line profile and given
one presents periodicity, which is the 29th harmonic component of the spiral line profile on the cylinder.
Such a difference causes the spiral line profile measured by this EST to slightly shift as a whole, yet the
profile of the spiral line is not distorted. Therefore, the Mth harmonic suppression of this EST will not
impact the accuracy of measuring the spiral line profile.
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Figure 11. Comparison of the measured spiral line profile with given one in the case of ideal
measurement. Here, angular position of probes ϕn (n = 1, 2, · · · , 5) is 0◦, 395◦, 838◦, 1236◦, 1659◦,
respectively, and pitch of spiral line is T = 10 mm. Number of total rotating circles of spiral line is
M = 29.
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The measured spiral line profile as shown in Figure 11 is based on a kind of “ideal measurement”,
i.e., based on an assumption that the straightness profile of the spiral line is closed, because the spiral
scan EST is based on DFT in theory. In the case of “ideal measurement” during numerical validations,
the sampling of five probes were carried out under the condition that the starting point and ending
point of given spiral line profile were connected. However, it is impossible in actual measurements.
If the angular distance between Probes 1 and 5 is ϕ = (ϕ5 − ϕ1) and the total rotation angle of the
cylinder is 2πM, Probes 2–4 cannot normally collect data in the angular range from (2πM− ϕ) to
2πM during actual measurement. Now, how to estimate the output of Probes 2–4 in this angular range
would affect the precision of the measured spiral line profile on the cylinder. Here, the outputs of
Probes 2–4 in the angular range from (2πM− ϕ) to 2πM are assigned with the data collected by Probe
1 in the angular range from 0 to ϕ so as to best agree with the requirement for closed profile. Figure 12
demonstrates the verified results of this EST in the case of “actual measurement”.
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Figure 12. Comparison of the measured spiral line profile with given one in the case of actual
measurement. Here, angular position of probes ϕn (n = 1, 2, · · · , 5) is 0◦, 395◦, 838◦, 1236◦, 1659◦,
respectively, and pitch of spiral line is T = 10 mm. Number of total rotating circles of spiral line is
M = 29.

From Figure 12, it may be found that the given spiral line profile on the cylinder with the
median line deviation, radius deviations and roundness errors, and the measured spiral line profile is
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almost the same as the given one except for its slight translation. Their differences also present the
periodicity of the 29th harmonic. Because the data substitutions of Probes 2–4 introduce some errors, the
difference between the measured spiral line profile and given one has the high-frequency components.
In addition, the measured spiral line profiles at both ends of the cylinder are deteriorated significantly.
However, in engineering practice, we pay attention to low frequency parts of the measured profile,
high frequency error in the measured profile can be eliminated by filtering. Therefore, the shortened
effective measurement length of the spiral line profile is a weakness of this EST. It is worth noting
that the above numerical verification results were obtained under the condition that the radial error
motions of two imaginary rolling bearings and carriage error motions were only 20% of the given
spiral line profile on the cylinder. If this ratio goes up, the confidence level of the spiral line profile
measured by this EST will be greatly decreased.

In Reference [10], a prototype instrument was developed based on the spiral scan EST. Comparing
the results of the instrument with that of a commercial roundness measuring machine indicated the
feasibility of measuring out-of-roundness, but the instrument seemed to be not able to identify the
curved median line profile of the cylinder. In the opinion of the authors of Reference [10], the Mth
harmonic suppression issue in this EST was worth in-depth examined. Whereas, they did not touch
the issue of the multi-point straightness EST based on DFT.

3.3. Applicative Analysis of V-Block Scan EST

Frist, we should evaluate the validity and accuracy of the V-block scan EST based on the
standard ISO 12180 [6]. From Equation (15), we seem to obtain the measured cross-sectional profiles
R(z, p) (p = 0, 1, 2, · · · , N − 1). However, from Equation (13), it can be verified that the transfer
function Ω(p)|p=1,N−1 ≡ 0, as shown below.

Ω(1) = exp(jϕ)−
{

exp(jα)
[

cos(ϕ)
2 cos(α)

+ sin(ϕ)
2 sin(α)

]
− exp[j(π − α)]

[
cos(ϕ)

2 cos(α) −
sin(ϕ)

2 sin(α)

]}
= exp(jϕ)− {cos(ϕ) + j sin(ϕ)} = 0

Therefore, Equations (13) and (15) are not true in this case, the first harmonic suppression occurs
in the V-block scan EST. It can be seen that R(0, p)|p=1,N−1 and R(L, p)|p=1,N−1, which indicate the first
and (N − 1)th harmonic vectors of the z = 0, L cross-sectional profiles, cannot be accurately extracted.
In other word, the LSCs vectors of the z = 0, L cross-sectional profiles are unknowable.

On the basis of routine, R(0, p)|p=1,N−1 and R(L, p)|p=1,N−1 will be set as “zero”. Then,
Ex(z, p)|p=1,N−1 and Ey(z, p)|p=1,N−1 could be also regarded as “zero” because the radial and tilt
error motions of the measuring system are controlled by the z = 0, L cross-sectional profiles.
In view of the properties of DFT, there are M(z, 0) 6= 0 and M(z, p)|p 6=0 = 0 in Equation (13).
From Equation‘(15), R(z, p)|p=1,N−1, which indicate the first and (N − 1)th harmonic vectors of the
measured cross-sectional profiles of the cylinder, are:

R(z, 1) = T(z, 1) exp(−jϕ); R(z, N − 1) = conjugation[R(z, 1)]. (16)

However, R(0, p)|p=1,N−1 and R(L, p)|p=1,N−1 are actually existent and are typical of the
LSC vectors of the z = 0, L cross-sectional profiles in contact with two V-blocks. They induce
Ex(z, p)|p=1,N−1 and Ey(z, p)|p=1,N−1, indicating the first harmonic vectors of the radial error motions
of the measuring system. Substituting Ex(z, 1) and Ey(z, 1) into Equation (14), T(z, p)|p=1,N−1, which
indicate the first and (N − 1)th harmonic vectors of the output of the probe, can be rewritten as follow:

T(z, 1) =
[

R(z, 1)− (L− z)R(0, 1) + zR(L, 1)
L

]
exp(jϕ); T(z, N − 1) = conjugation[T(z, 1)].

Equation above shows that T(z, 1) comprises R(z, 1) and linear combination of R(0, 1) and R(L, 1).
However, from Equation (16), the LSC vectors in the measured cross-sections 2R(z, 1)/N are just based
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on the line connecting the actual LSCs of the z = 0, L cross-section, i.e., 2R(0, 1)/N and 2R(L, 1)/N.
Hence, the spatial curved median line fitted by 2R(z, 1)/N or 2R(z, N − 1)/N has a little movement
and inclination, based on which the cylindrical profile can be reconstructed accurately even if the
suppression of the first harmonic exists.

The non-first harmonic suppression [3–5,8,14], which denotes the transfer function Ω(p)|p>1 = 0,
will impact the measurement accuracy of the out-of-roundness of each cross-sectional profile of the
cylinder. Whether suppression of the non-first harmonic exists in this EST will depend on the values
of angular parameters of ϕ and α as shown in Figure 5. Digital simulations were performed to verify
how to configure parameters of ϕ and α to avoid the non-first harmonic suppression. Figure 13
demonstrates the relationships between the angular parameters and the pth harmonic suppression.
It may be found that if α = 30◦ and ϕ = 90◦, the pth (p = 5, 7, 11, 13, 17, · · ·) harmonic suppression
occurs. Especially, when α = ϕ, full harmonic suppression will occur. Let total number of scanning
points per revolution be N and δ = 2π/N, ϕ = kδ and α = uδ, the non-first harmonic suppression
of this EST will be avoided provided that k 6= u, and the greatest common factor of (k− u) and
(N/2− 2u) as well as N is 1, e.g., α = 45◦ and ϕ = 68◦. Therefore, this measuring system needs to
carefully adjust the angular position of the probe so as to avoid the non-first harmonic suppression
and get the transfer function Ω(p)(p = 0, 2, · · · , 15) as large as possible.
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The 0th harmonic component R(z, 0) denotes the radius deviations of the sequential cross-sectional
profiles. From Equation (15), measurement accuracy of the radius deviations depends on:

∆(z, 0) =
{

M(z, 0) +
(L− z)M(0, 0) + zM(L, 0)

L[sin(α)− sin(ϕ)]
sin(ϕ)

}
(17)

It is known that M(0, 0) and M(L, 0) come from esx(z)|z=0,L and esy(z)
∣∣
z=0,L, i.e., the carriage

straightness error motions in the z = 0, L cross-sections, in other word, the guideway’s slope
in the XOZ and YOZ plane. Due to the existence of guideway’s errors at the z = 0, L
cross-sections, the reconstructed cylindrical profile would produce a conical form. M(z, 0) =

DFT
[
esx(z) cos(ϕ) + esy(z) sin(ϕ)

]
|p=0, indicating the 0th harmonic component of the disturbances
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from the carriage straightness error motions in the measured cross-section, directly results in the
measurement errors in the radius of the reconstructed cylindrical profile, as shown in Figure 1a.

In References [12,13,17], computer simulations of this EST for measurement of cylindrical
profile were conducted to assess the non-first harmonic suppression. The results indicate that
the 11th harmonic component exists when α = 60◦ and ϕ = 90◦ were selected. From Figure 13,
the pth(p = 11, 13, 23, 25, · · ·) harmonic suppression occurs in this case. It is a weakness that the
straightness deviations of the guideway affect directly measurement accuracy of the cylindrical profile.
It yields the necessity to compensate for the carriage straightness deviations in order to improve the
measurement accuracy. In the authors’ opinion, however, the compensation method should not change
the fact that guideway’s slopes in XOZ and YOZ planes would make the reconstructed cylindrical
profile be a conical form. A measuring system allowing cylindricity measurements by this EST was
constructed [12,13,17]. Some potential sources of systematic errors, such as, unequal angles of V-blocks,
calibration error of the probe, deflection of the probe axis from its nominal orientation were analyzed.
A series of experiments were conducted involving the comparison of measurement results of a group
of cylindrical elements. The cylindricity deviation of each sample element was determined with two
methods: V-block scan EST and high accurate radial method [19]. The conducted tests showed that the
difference lies within the interval ±19% (for a probability level p = 0.95).

4. Conclusions

Three five-point ESTs used for in situ cylindricity measurement were analyzed to determine their
characteristic features as well as main benefits and drawbacks.

The following are conclusions drawn about the parallel scan EST:

1. Measurement of cylindrical profile was performed with five displacement probes. Outputs from
five probes were used to measure radius deviations and roundness deviations of sequential
cross-sectional profiles, as well as the LSC vectors of sequential cross-sectional profile, with which
spatial curved median line profile of the cylinder was determined. Further, cylindrical profile
could be accurately reconstructed by assembling each obtained cross-sectional profile onto the
spatial curved median line.

2. The completeness of the measurement model in theory is promising. Accurate detection of the
spatial curved median line of the cylinder highlights its novelty, and the error motions of the
cylinder and carriage in measuring system are fully eliminated.

3. Detecting full harmonic components of sequential cross-sectional profiles is dependent on how
the three probes in one cross-section are located relative to each other. Therefore, to ensure good
anti-interference capability, angular arrangement of the three probes should be carefully selected
so as to obtain large transfer function Ω(p) (p = 0, 2, · · · , 15).

4. The probes should be strictly calibrated and carefully chosen. Especially, inconsistencies of
sensitivity and linearity among five probes should be overcome as much as possible, which is a
main factor impacting on the precision of spatial curved median line of the cylinder.

5. Accuracy of the method has not been verified by calibration.
6. The method is suitable for on-machine measurement of cylindrical profile. Where, the carriage

can be mounted onto the tool carriage. Measurement cost is relatively low.
7. The parallel four-point scan EST is more suitable for in situ cylindricity measurement of large-scale

roller, where the tilt error motions of the cylinder are negligible because the roller is long and the
rotation speed is low.

The conclusion about spiral scan EST can be summarized as follows:

1. Measurement of cylindrical profile is performed with five displacement probes, which are
arranged in a spiral scanning-path. Cylindrical profile measurement is transformed to
one-dimensional straightness measurement by the multi-point straightness EST based on DFT.
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2. The multi-point straightness EST based on DFT is built in an assumption that the straightness
profile is end-to-end. The actual spiral profile on the cylinder is impossible to achieve. Therefore,
direct adoption of straightness EST based on DFT to measure and reconstruct spiral profile on
the cylinder would weaken the theoretical completeness.

3. The way to fill a segment of data of Probes 2–4 at the tail end of measurement becomes a crucial
factor to determine measurement accuracy. In light of the authors’ experience, if straightness
errors of actual spiral profile are significant in the outputs of the probes, it may be a good solution
that a segment of data of Probes 2–4 at the tail end of measurement are assigned by the data
collected by Probe 1 at the head end of measurement.

4. The Mth harmonic suppression of the EST will not impact measurement accuracy of the spiral
line profile. It only causes a slight shift of the measured spiral line profile.

5. Because a segment of data of Probes 2–4 at the tail end of measurement is uncertain, the accuracy
of the measured spiral line profiles at both ends of the cylinder deteriorated significantly.
Therefore, the shortened effective measurement length of the spiral line profile is a weakness.

6. Accuracy of the method has not been verified by calibration.
7. If this EST is employed in situ measurement of cylindricity, motion accuracy of the guideway

and spindle should be high.

The conclusions about V-block scan method can be summarized as follows:

1. Measurement of cylindrical profile was performed with the measuring system made up of two
V-blocks and a displacement probe. During measuring, two cross-sectional profiles that contact
two V-blocks control the radial and tilt error motions of the measuring system, yielding repeatable
error motions of the measuring system in each revolution. This makes the measured cylindrical
profile immune to the error motions of the cylinder.

2. Error motions of the cylinder are removed, whereas, the carriage straightness error motions
will directly impact the measurement accuracy of cylindrical profile, which would weaken the
theoretical completeness.

3. Detecting full harmonic components of sequential cross-sectional profiles is dependent on
selection angular values of the probe and V-block. Therefore, to ensure good anti-interference
capability, angular value of the probe should be carefully selected so as to obtain large transfer
function Ω(p)(p = 0, 2, · · · , 15).

4. The measurement uncertainty was assessed through statistical testing. The expanded uncertainty
reached 19% compared to the results obtained with the highly accurate radial method. This EST
was verified in practice using a model test stand, not on a large roller.

5. It is a portable system, and is suitable for in situ measurement.
6. During measurement, it is crucial to avoid the measuring system rotating around and moving

in the Z-axis of the cylinder. How to decrease the impact from straightness deviations of the
guideway is crucial to measurement accuracy.

7. Compensation for the straightness deviations of the guideway was proposed to improve
the measurement accuracy. In the authors’ opinion, however, it may be a good solution to
diametrically arrange the second probe in the axial direction of the original probe.

Summing up, the parallel four-point scan technique is recommended for on-machine measurement
cylindricity of large rollers, where spindle tilt error motions are negligible. Diametrical arrangement
of the second probe in the axial direction of original probe will make the V-block scan EST be the
most prospective technique for short roller. However, it is worth noting that, in actual multipoint EST,
the main factor of impact on measurement accuracy is the inconsistency of characteristics between
multiple displacement probes; therefore, probes should be carefully chosen.
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