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Abstract: The goal of this study involves developing an efficient and accurate parallel computation
method for two-phase flow problems including complex moving foreign bodies. The proposed
parallel computing techniques are based on the moving body-fitted grids’ overset on background
multidomains with grid-overlapping at their interface. First, the cavitation flow over the
hemispherical head form is investigated using the two-phase flow solver, which is validated by
comparing the numerical and experimental results. Subsequently, the parallel computing technique
based on the multidomain method that divides the computational domain into several smaller
subdomains is proposed to facilitate more efficient numerical simulations. At the interface of
the subdomains, the grid-overlapping method is proposed for more accurate simulations. The
illustrative computations indicate that the accuracy of the parallel computation combined with the
grid-overlapping method on multidomains is identical to that of the serial computation based on a
single block, albeit with a significant reduction in the computation time. Finally, the moving overset
grid technique is combined with the background multidomain method and applied to simulate
the gust flow that is generated by the pitching motions of the twin hydrofoils. The overset grid
technique includes the following three sequential steps: hole-cutting, finding donor cells, and bilinear
interpolation. The prediction results for the inflow gust generated by oscillating hydrofoils closely
follow the measured results.

Keywords: cavitation flow; moving overset grid; grid-overlapping interface; parallel computing

1. Introduction

Local static pressure in the vicinity of a foreign body in a liquid decreases to the vapor pressure
when the object moves fast, and cavities are generated by the phase change from a liquid to gas. The
vaporization of liquid due to decreases in the pressure is generally called cavitation. If the pressure
increases again, then the cavity explodes and generates high pressure and heat that can damage a
foreign body such as a propeller, a pump, and a nozzle. Thus, the parts are designed for operating
without cavitation in their normal operating conditions. Conversely, the cavitation phenomena are
used to reduce the viscous drag of a submerged vehicle. The viscosity of gas or vapor is lower than that
of a liquid, and the frictional drag of the vehicle is reduced by covering the vehicle body with cavitation.
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The cruise speed of submerged projectiles, such as supercavitating torpedos, is significantly increased
using this principle. In order to maximize the advantage, it is necessary to maintain the cavitation
shape over the surface of object under complex external environments. Therefore, it is important to
experimentally and numerically predict the cavitation shape. Kopriva et al. [1], Lee et al. [2,3], and
Karn et al. [4] experimentally investigated the changes in the cavitation shape due to inflow gust. The
experiments were conducted in cavitation tunnels. The gust flow was generated using twin hydrofoils
that oscillated in a pitching motion. The change in cavitation shape due to inflow gust was examined
by varying the amplitudes and frequencies of the oscillating motion of the hydrofoils.

It is extremely helpful to predict a cavitation flow in the design stage of the aforementioned
product types with a certain level of accuracy and efficiency. However, it is challenging to numerically
simulate the cavitation flow due to relevant physical issues such as a sharp interface between different
phases, phase transition phenomena, and a high variation in the speed of sound based on the varying
volume fractions of a fluid mixture. In order to capture the interface, various numerical techniques
were proposed, including the homogeneous mixture model [5], volume of fluid (VOF) method [6],
level set method [7], and smoothed particle hydrodynamics (SPH) [8]. Among the methods, the
homogeneous mixture model is frequently used for its wide applicability. Given the assumption
of a local equilibrium state of momentum, momentum conservation equations are solved for the
homogeneous mixture, although continuity equations are solved for each phase. The proportions of
fluid, vapor, or gas in a homogeneous mixture are expressed using a volume fraction.

The phase transition phenomena are modeled using cavitation models that compute the mass
transfer rate from a fluid to vapor or vice versa. The model by Merkle et al. [9] is frequently used for its
dependence on the proportion of volume fraction and difference between the local and vapor pressure.
The term is added to the continuity equation as a source term.

The high variation in the speed of sound is based on the density variation of the fluid mixture and
lowers the convergence rate of numerical solutions, because it depends on the lowest speed of sound.
In order to solve the problem, the preconditioning method first proposed by Turkel [10] is frequently
employed. In the method, the eigenvalues of the flux matrix are modified to reduce the variation in the
speed of sound over the entire computational domain [11]. In the preconditioning schemes for steady
solutions, the time terms play the role of an iteration index. With respect to unsteady simulations,
dual-time stepping methods that use pseudo time in the governing equations are employed [12]. When
the residual of the dependent variables is lower than the prescribed criteria in the pseudo time step, the
numerical solution simulation proceeds to the next step with respect to physical time. The numerical
methods were used in preceding studies, including Kunz et al. [13,14], Lindau et al. [15,16], and Owis
et al. [17,18]. The studies developed numerical methods based on dual-time stepping preconditioning
techniques to solve incompressible Navier–Stokes equations, and validated the same by comparing
their numerical solutions with experimental results [19]. Lindau et al. [20] extended the methods to
solve fluid–structure–interaction problems by combining six degree of freedom (DOF) models with the
incompressible code and predicting the motion of high speed supercavitating vehicles. Venkateswaran
et al. [21,22], Ahuja et al. [23], and Senocak and Shyy [24] added isothermal models to improve the
accuracy of a numerical solution for cavitation flow. Kunz et al. [25,26], Lindau et al. [27–29], and
Owis et al. [30] extended incompressible numerical methods to consider compressibility by solving the
compressible Navier–Stokes equations, and attempted to validate the compressible codes by applying
the same to various cavitation flows. Kim et al. [31,32] also developed numerical methods to more
accurately solve compressible cavitation flows by investigating the effects of turbulence models and
viscous flux vectors. Essentially, the numerical method is employed in the current study.

As described above, several numerical techniques were developed to solve physical issues related
to the accurate and efficient simulation of cavitation flow. However, the numerical simulation of
cavitation flows requires significantly higher computational times due to increases in the number
of equations and increases in the variation in the speed of sound when compared with those of
single-phase fluid flow. Therefore, several studies have focused on resolving the issue from a different
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viewpoint that involved adopting parallel computing techniques [33,34]. Domain decomposition
methods are generally used to apply the parallel computing techniques for the simulation of cavitation
flow, and this divides the complete computational domain into subdomains that are separately treated
by each processor. This implies that increases in the number of processors increase the number of
subdomains and decrease the computation time, because the size of the domain for each processor
decreases. However, the simulation time does not linearly decrease with increases in the number of
processors, because the interface boundary between subdomains increases. Specifically, the treatment
of the interface boundary between the subdomains is critical for the accuracy and efficiency of the
parallel computation.

The interface boundary is categorized into non-overlapping and overlapping methods. In the
non-overlapping method, a simple linear interpolation method is applied for information exchange
at the interface boundary between subdomains. The method is fast and simple. However, error due
to low-order interpolation can adversely affect the accuracy of the numerical result if the interface is
subject to a high gradient flow that cannot be avoided when the number of subdomains increases. In the
overlapping method, additional interface mesh points that are termed as dummy points are included
in each subdomain. At the end of each numerical time integration step over each subdomain, data
exchange between subdomains exchange occurs through overlapped points. The dependent variables
on the interface boundary of each subdomain are updated using the data on the dummy points.

However, to the best of authors’ knowledge, there has been no systematic analysis on the accuracy
of the domain decomposition methods. In the study, the accuracy of the domain decomposition
methods is analyzed in combination of the alternating direction implicit (ADI) schemes. Based on the
result, the overlapped multidomain method is proposed to be as accurate as the serial single-domain
method. In addition, the efficient moving body-fitted overset grid technique is proposed, which
can be combined with the background overlapped multidomains method to enable efficient and
accurate parallel computations of complex two-phase flow problems involving complex moving
foreign bodies. First, cavitation flow over a hemispherical head form is selected as a benchmark
problem. The reason for the selection of the problem is two-fold: first, since the problem has been
used for the validation of the related numerical methods in a lot of preceding studies, there are a lot of
numerical data as well as the experimental data for comparison, and the other is that the final goal
of the present development of numerical methods is to investigate the effects of incoming gust on
cavitation flows around a high-speed submerged projectile. The current numerical methods based on
the preconditioned dual-time stepping compressible Navier-Stokes (NS) equations solvers combined
with the cavitation model on serial computation are validated by comparing the prediction results
with the measured data. Subsequently, parallel computing techniques combined with the overlapping
methods over multiblocks are applied. The validity of the proposed algorithms is confirmed by
comparing the numerical results between the parallel computations using the overlapping methods
and serial computation. Finally, multidomain methods are combined with the moving overset grid
technique to simulate the gust flow generated by twin pitching hydrofoils. The moving body-fitted
overset grids are used to model the oscillating hydrofoils, and the multiblocks with overlapping
interfaces are used to model the background flow. The validity of the present numerical method is
confirmed by comparing the numerical results with measured data.

The governing equations and basic numerical methods are introduced in Section 2. The accuracy
of the overlapped multidomain methods in combination with the ADI scheme are analyzed, and the
overlapped method, which is as accurate as the corresponding single-domain method, is proposed in
Section 3. The numerical results obtained from the serial computation of the cavitation flow over a
hemispherical head form are presented and compared with the experimental data, and the parallel
computation results obtained from the proposed multidomain methods with the overlapping interfaces
are subsequently applied and validated in Section 4. The moving body-fitted overset grid methods
consist of three sequential stages, including hole-cutting, finding donor cells, and interpolation, which
are described in Section 5. Finally, the numerical results obtained from the application of the present
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numerical method based on the moving body-fitted overset grids combined with the background
overlapped multidomains to the second benchmark problem, including the gust flow that is generated
by twin pitching hydrofoils, are presented in terms of their comparison with the measured data in
Section 6. The conclusions are detailed in Section 7.

2. Governing Equations and Numerical Methods

In this section, governing equations and numerical methods are described. First, the compressible
Reynolds-averaged Navier–Stokes (RANS) equations combined with a homogenous mixture model
are presented as the governing equations for cavitation flow. Subsequently, the preconditioning
and dual-time stepping methods are briefly described as the numerical methods that are used to
solve the governing equations. It should be noted that the numerical methods that are similar
to the aforementioned methods were used in studies by Kunz et al. [25,26], Lindau et al. [27–29],
Owis et al. [18,30], and Kim et al. [31,32].

2.1. Governing Equations

The density-based, unsteady, compressible, two-dimensional, or axisymmetric RANS equations
are expressed as follows:

∂q̂
∂t

+
∂(Ê− Êv)

∂ξ
+

∂(F̂− F̂v)

∂η
= Ŝ (1)

where:

q̂ = 1
J
(
ρmYl , ρmu, ρmv, ρmht, ρmYv, ρmYg

)T

Ê = 1
J
(
ρmYlU, ρmuU + ξx p, ρmvU + ξy p, ρmhtU, ρmYvU, ρmYgU

)T

F̂ = 1
J
(
ρmYlV, ρmuV + ηx p, ρmvV + ηy p, ρmhtV, ρmYvV, ρmYgV

)T
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J (0, ξxτxx +ξyτxy, ξxτyx + ξyτyy, ξx

(
uτxx + vτxy − qx

)
+ξy

(
uτyx + vτyy − qy

)
, 0, 0)T

F̂v = 1
J (0, ηxτxx +ηyτxy, ηxτyx + ηyτyy, ηx

(
uτxx + vτxy − qx

)
+ηy

(
uτyx + vτyy − qy

)
, 0, 0)T

Ŝ = 1
J ((

.
m+

+
.

m−) −caYlρmv/y, ρmgx − ca(ρmuv− τxy)/y, ρmgy

−ca(ρmv2 − τxy)/y, ca(uτxy + vτyy − ρmhtv− qy)/y,−( .
m+

+
.

m−)
−caYvρmv/y,−caYgρmv/y)T

(2)

A description of the variables used in Equations (1) and (2) is shown in Table 1. With respect to a
multiphase flow, the homogeneous mixture model [5] is combined in Equations (1) and (2). The model
assumes that the dynamics and thermodynamics of each phase are significantly coupled such that the
dynamic and thermodynamic equilibrium states are retained as homogeneous mixtures in the control
volume. The multiphase properties are determined by the ratio of each phase, and this is used in the
momentum and energy conservation equations, although the continuity equation is applied for each
phase. Therefore, the resultant two-dimensional or axisymmetric governing equations consist of three
continuity equations for liquid, condensable, and non-condensable gases, two momentum equations,
and an energy equation.

Table 1. Nomenclature in Equations (1) and (2).

u, v Velocity Y Mass fraction τ Viscous stress
p Static pressure ht Total enthalpy

.
m Mass transfer rate

t Physical time ρ Density q Heat flux

U, V Contravariant
Velocity g Acceleration of

Gravity ca
1: Axisymmetric flow

0: Planar flow
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2.2. Preconditioning System and Dual-Time Stepping

With respect to the reliable numerical simulation of multiphase flow, preconditioned dual-time
stepping methods are employed, and the resultant equations are expressed as follows:

Γe
∂Q̂
∂t

+ Γ
∂Q̂
∂τ

+
∂(Ê− Êv)

∂ξ
+

∂(F̂− F̂v)

∂η
= Ŝ (3)

where:
Q̂ =

1
J
(

p, u, v, T, Yv, Yg
)

Γe =
∂q̂
∂Q̂

=
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(4)

Here, Γe denotes the flux Jacobian matrix, and Γ denotes the preconditioned matrix. The
derivatives of the scaled property are derived as follows:

∂ρ′m
∂p

=
∂ρm

∂p
+

1
V2

p
− 1

c2 (5)

where Vp denotes the pseudo-acoustic speed that is expressed as follows [35,36]:

V2
p = min

(
max

(
V2

a , β2
p

)
, c2
)

(6)

where V2
a and β2

p denote the cutoff value and local artificial velocity, respectively.
With respect to an unsteady simulation, it is important to select optimum characteristic time

scales. However, the pseudo-time term (the second time derivative) is used as the inner or subiteration
at each physical time level [12]. In the subiterations, the characteristic time scale is determined with the
lowest acoustic time scale in entire computational domain. If the inner iteration simulation converges,
then the resultant equations satisfy the full unsteady equations.

2.3. Cavitation Model

The source term
.

m+ and sink term
.

m− in Equation (2) for the condensation and evaporation rate
are respectively expressed as follows [9]:

.
m+

= Cdestαl ρlmin(0,p−pv)

0.5ρlU2
∞t∞

.
m− =

Cprodαvρvmax(0,p−pv)

0.5ρlU2
∞t∞

(7)
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where Cdest and Cprod denote empirical constants, and are set as Cdest = 1 and Cprod = 80, respectively, in
the present study.

2.4. Turbulence Model

The low-Reynolds number k–ε two-equation turbulence model is used as follows [37]:

ρ dk
dt = ∂

∂xj

[(
µ + µ

σk

)
∂k
∂xj

]
+ Pk − ρε + Lk

ρ dε
dt =

∂
∂xj

[(
µ + µ

σε

)
∂ε
∂xj

]
+ Cε1 f1Pk

ε
k − Cε2 f2ρ ε2

k + Lε

(8)

where Cε1 = 1.44, Cε2 = 1.92, σε = 1.3, and σk = 1.0.
In a cavitation flow, the standard two-equation models are known to overpredict the turbulent

eddy viscosity inside the cavity. In order to resolve the problem, a filter-based model is used [38].
The model decreases the viscosity between the turbulence length scale and the filter size, ∆, which is
determined by the local grid size. The relevant parameters are defined as follows:

µT = ρ fµCµ
k2

ε
fFBM, fFBM = min

(
1,

∆·ε
k3/2

)
(9)

where Cµ = 0.09.

2.5. Numerical Scheme

The dual-time preconditioned system is numerically solved using the alternating direction
implicit (ADI) method [39] in structured grids. The convective flux term is approximated using the
monotonic upstream-centered scheme for conservation laws (MUSCL) with third-order accuracy [40].
A second-order backward difference is used to discretize the physical time derivative. A first-order
backward difference is used to approximate the pseudo-time derivative. At each physical time step, a
pseudo-time iterative procedure is applied with a critical residual of 10−4.

3. Parallel Computation and Grid-Overlapping Interface

In this section, the domain decomposition method combined with the overlapping method is
described for the accurate and efficient parallel computation of cavitation flow. First, the domain
decomposition strategy is described, and the overlapping methods combined with the ADI scheme are
subsequently detailed.

3.1. Domain Decomposition Strategy

As described in the introduction, the numerical simulation for cavitation flow requires expensive
computational costs given its physical issues. Parallel computing based on domain decomposition
is used to reduce the numerical cost. The domain decomposition methods divide the entire
computational domain into smaller domains that are independent of each other and communicate
through the interface boundary between neighboring subdomains, and thus, the methods are suitable
for parallel computing.

It is important for the overall efficiency of parallel computation to distribute the number of
grid points over the subdomains based on the performance of the processor for each subdomain,
which is termed load balancing. The most ideal domain decomposition method is that where each
processor with an equivalent performance solves the equally distributed subdomain. Subsequently,
the performance of numerical simulation is maximized by eliminating the load unbalance that may
otherwise occur between the processors. Additionally, the arrangement of subdomains is also critical,
and the interface boundary that is parallel to the mean flow is generally preferable because a severe
gradient flow can lead to a numerical error during communication between subdomains through the
interface boundary. However, with respect to a problem including complex geometries, it is difficult to
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maintain a lower load on each processor by simultaneously increasing the number of subdomains and
the preferable interface boundary lines between the subdomain. In the study, a parallel computation
based on the grid-overlapping methods is proposed to resolve the issue by increasing the accuracy of
information exchange through the interface boundary between the subdomains.

Figure 1 shows the schematic concept of serial and parallel computations based on single and
multidomains, respectively. The single domain consists of interior computational points (black) and
boundary points (white), while multi-subdomains consist of interface boundary points (red circles) in
addition to the two types of points.
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3.2. Grid-Overlapping Interface

As described in the previous section, the governing equation is solved using the ADI method.
The method assumes the absence of variations in the values of dependent variables at the boundary
points. Thus, the variables on the points in the interface boundary are excluded from the update that is
formed using the ADI method, because the interface boundary is also considered as the boundary for
each subdomain. Therefore, it is critical to increase the accuracy of information exchange through the
interface boundary to improve the overall accuracy of parallel computation. An overlapping method
is proposed to achieve the aforementioned purpose.

Figure 2 shows the schematic concept of the overlapping methods. Each subdomain includes
dummy points through which the data on the computational points in adjacent subdomains are
transferred. The transfer of the data that is computed in adjacent subdomain updates the value on the
points in the interface boundary condition with a more reliable value.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 26 
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For example, the matrix equation of the ADI method with eight points is expressed as follows:

S∆Q = R (10)
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where:

S =



B2 C2 0 0 0 0
A3 B3 C3 0 0 0
0 A4 B4 C4 0 0
0 0 A5 B5 C5 0
0 0 0 A6 B6 C6

0 0 0 0 A7 B7


(11)

With the use of Equation (11), Equation (10) corresponds to a matrix equation formed by applying
the ADI method over the single domain. The values of flow variables on points 1 and 8 that are
assumed as on the boundary do not exhibit any variation, i.e., ∆Q1 = ∆Q8 = 0.

Figure 3 shows the entire domain decomposed into two subdomains without overlapping points,
where the first subdomain includes five points from points 1 to 5, and the second subdomain includes
four points, from 5 to 8. If the parallel computation based on the domains is performed with a linear
interpolation, the matrix S in Equation (11) is modified as follows:

S1 =

 B2 C2 0
A3 B3 C3

0 A4 B4

, S2 =

[
B6 C6

A7 B7

]
(12)
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In the ADI method, variation in the points of boundary condition in each subdomain is absent.
The equation omits C4, A5, B5, C5, and A6, which exist in Equation (11). This implies that it is not
possible to obtain the value on point 5 from the solution of Equation (12). The value on point 5 is
typically updated using the linear interpolation of the values on the neighboring points, and this is
definitely different from that in Equation (11). The overlapped subdomains are employed to reduce
the difference.

Figure 4 shows the overlapped domains with two points that correspond to the minimum in an
overlapping method. If the ADI method is applied in the configuration, and Equation (11) subsequently
changes as follows:

S1 =

 B2 C2 0
A3 B3 C3

0 A4 B4

, S2 =

 B5 C5 0
A6 B6 C6

0 A7 B7

 (13)
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In the method, the value on points 4 and 5 is computed by solving Equation (12). However, a
difference exists between Equations (11) and (13) wherein C4 and A5 are missing in Equation (13) when
compared with Equation (11). The effect of the difference is negligible with respect to a simulation
for a problem with simple geometry or a small number of grids. However, the four-point overlapped
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method should at least be used to ensure that the numerical solution of parallel simulation is identical
to that of the single domain.

As shown in Figure 5, the four-point overlapped method where the numerical solution on the
entire grid points is obtained as follows:

S1 =


B2 C2 0 0
A3 B3 C3 0
0 A4 B4 C4

0 0 A5 B5

, S2 =


B4 C4 0 0
A5 B5 C5 0
0 A6 B6 C6

0 0 A7 B7

 (14)

Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 26 

 
Figure 4. Subdomains with two overlapped points. 

In the method, the value on points 4 and 5 is computed by solving Equation (12). However, a 
difference exists between equations (11) and (13) wherein C4 and A5 are missing in Equation (13) 
when compared with Equation (11). The effect of the difference is negligible with respect to a 
simulation for a problem with simple geometry or a small number of grids. However, the four-point 
overlapped method should at least be used to ensure that the numerical solution of parallel 
simulation is identical to that of the single domain. 

As shown in Figure 5, the four-point overlapped method where the numerical solution on the 
entire grid points is obtained as follows: 

= 0 0000 0 , = 0 0000 0  (14) 

 
Figure 5. Subdomains with four overlapped points. 

The values of variables on points 5 and 6 in Subdomain 1 and points 3 and 4 (Subdomain 2) are 
obtained from its neighboring subdomain. The values are transferred via the interface boundary to 
the neighboring domain. Therefore, the method provides numerical solutions that are equivalent to 
that of a single domain, albeit at a lower numerical cost. In the following section, the overlapped 
methods and serial numerical method are applied to benchmark problems to highlight the accuracy 
and efficiency of the numerical solutions that are obtained in the present method. 

4. Cavitation Flow over the Hemispherical Head Form 

In this section, the cavitation flow over hemispherical head form is numerically investigated 
using serial and parallel computations. The validity of numerical solutions is confirmed by 
comparing the same with the data measured by Rouse et al. [19]. Additionally, the accuracy of the 
numerical solution obtained from the parallel computations based on the overlapped methods is 
confirmed by comparing it with that of the serial computation. The efficiency of parallel 
computations is highlighted by comparing the computation time with respect to the number of 
processors that are employed in the computations. 

4.1. Computational Domain 

Figure 6 shows the entire computational domain and the applied boundary conditions. The 
number of grids that is used in the serial computation correspond to 300 × 100. The minimum of the 
Δy at the wall is set as 0.001D. The flow condition is selected based on that in the study by Lindau et 
al. [28]. The Reynolds number is 1. 4 × 10 , the inlet temperature is 300 K, the free stream velocity is 
u = 15.24 m/s, and the static pressure is 38.375 kPa. In the aforementioned condition, the cavitation 
number corresponds to σ = 0.3. The no-slip boundary condition is applied on the wall surface. At the 
inlet boundary, the free stream velocity and temperature are specified with the exception of the static 
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The values of variables on points 5 and 6 in Subdomain 1 and points 3 and 4 (Subdomain 2) are
obtained from its neighboring subdomain. The values are transferred via the interface boundary to the
neighboring domain. Therefore, the method provides numerical solutions that are equivalent to that of
a single domain, albeit at a lower numerical cost. In the following section, the overlapped methods and
serial numerical method are applied to benchmark problems to highlight the accuracy and efficiency
of the numerical solutions that are obtained in the present method.

4. Cavitation Flow over the Hemispherical Head Form

In this section, the cavitation flow over hemispherical head form is numerically investigated
using serial and parallel computations. The validity of numerical solutions is confirmed by comparing
the same with the data measured by Rouse et al. [19]. Additionally, the accuracy of the numerical
solution obtained from the parallel computations based on the overlapped methods is confirmed by
comparing it with that of the serial computation. The efficiency of parallel computations is highlighted
by comparing the computation time with respect to the number of processors that are employed in
the computations.

4.1. Computational Domain

Figure 6 shows the entire computational domain and the applied boundary conditions. The
number of grids that is used in the serial computation correspond to 300 × 100. The minimum
of the ∆y at the wall is set as 0.001D. The flow condition is selected based on that in the study by
Lindau et al. [28]. The Reynolds number is 1.4× 105, the inlet temperature is 300 K, the free stream
velocity is u = 15.24 m/s, and the static pressure is 38.375 kPa. In the aforementioned condition,
the cavitation number corresponds to σ = 0.3. The no-slip boundary condition is applied on the
wall surface. At the inlet boundary, the free stream velocity and temperature are specified with the
exception of the static pressure. The static pressure is specified at the outlet boundary. The other
parameters on the boundaries are determined by an extrapolation inside the computational domain.
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4.2. Interface Boundary Condition

As described in the previous section, interface boundary conditions are required for parallel
computations based on multidomain methods, and are critical in terms of the overall accuracy
of parallel computations. The types of interface boundary conditions depend on the associated
multidomain methods, namely the number of overlapped grid points. Three types of interface
boundary conditions, including linear interpolation, two-point overlapped methods, and four-point
overlapped methods, are used. Figure 7 shows a magnified view of the grids that were used for the
serial and parallel computations. In Figure 7a, the computation domain consists of a single domain
used for the serial computation. The results obtained from the serial computation based on the
single domain are used as the reference results by which the accuracy and efficiency of the parallel
computations are assessed. The validity of the serial computation is confirmed by comparing its
results with the measured data. In the other parallel computations, the computational domain consists
of multi-subdomains.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 26 
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Figure 8 shows the distribution of the cavitation flow around the body in terms of the water
volume fraction where AL = 1 and AL = 0 denote pure water and vapor, respectively. The overall
distributions of cavitation in all of the cases are similar to each other, which confirms the validity of
the parallel computations. However, the pressure distributions on the body are compared with the
measured data to examine the effects of the interface boundary conditions in further detail.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 26 
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Figure 9 compares the distributions of the predicted mean pressure coefficients along the body
surface. The data measured by Rouse et al. [19] is also provided to confirm the validity of the numerical
results. Generally, good agreements are observed between the numerical and experimental results,
although there are not enough measured points around the peak for stricter validation. However, the
numerical predictions by Owis et al. [17,30] showed results similar to the present ones: the peak value
is located more downstream in comparison to the experimental result.
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However, all of the numerical results slightly overpredicted the cavity length when compared
with the experimental results. The pressure in the cavity is lower than that of the surrounding fluid
such that flow is induced inside the cavity, and this causes a re-entrance jet. The cavity length depends
on the re-entrance flow, and this implies that the cavity length exhibits high unsteadiness and varies
relative to the re-entrance jet phenomena. In all of the numerical simulations, the re-entrance flow
occurs at the end of the cavity. The unsteadiness potentially leads to the observed difference between
the numerical and the experimental results.

As shown Figure 9, the mean pressure coefficient obtained from the numerical result based on the
four-point overlapped method closely follows that of a single domain. The other numerical results
obtained from parallel simulations based on the linear interpolation and two-point overlapped grids
are slightly lower than those in the single domain. This is due to the difference in the interface boundary
conditions that are associated with the number of overlapped points in the parallel simulations. The
difference does not appear to be critical to the overall computational accuracy of the simple problem.
However, it is not possible to infer the same for problems involving complex geometry. Therefore, as
noted in the previous section, the four-point overlapped method is proposed to resolve the issue.

Figure 10 shows the pressure distribution around the interface boundary to highlight the accuracy
of the four-point overlapped method. With the exception of the case of the single block and four-point
overlapped methods, an abrupt change in the slope of pressure contours is observed across the
grid interface line between the subgrids. The discontinuity leads to an observed difference in the
mean pressure coefficients, as shown in Figure 9. Overall, the four-points overlapped method for the
interface boundary in the parallel computation in combination with the multi-subgrid method provides
numerical results with an accuracy that is equal to that of the serial computation at a lower numerical
time value. In all of the subsequent parallel numerical simulations, the four-point overlapped method
is used to illustrate its efficiency.
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4.3. Number of Subgrid Blocks (or Processors)

In the parallel computations, it is generally expected that the computation time decreases when
the number of sub-blocks (or processors) increases. However, the reduction in the computation time
does not exhibit a linear decrease. In order to confirm the computing time by varying the number of
sub-blocks, computation domains consisting of one, four, eight, and 16 blocks are considered. Figure 11
shows the computation domains. In all of the cases, the four-point overlapped method is used for the
interface boundary condition. The other flow and boundary conditions are identical to those in the
previous simulations.

Figure 12 shows the distribution of cavitation flow in terms of the water volume fraction for each
case. The fact that the overall cavitation distribution exhibits similar pattern indicates that the number
of blocks does not significantly affect the accuracy of the numerical solutions.
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Figure 13 shows the distribution of the mean pressure coefficient that is obtained from each
case in conjunction with the measured data. The results indicate excellent agreement between the
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serial and parallel computations, although the difference slightly increases when the number of
sub-blocks increases.
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Figure 14 shows the variation in the numerical costs in terms of the speedup that is defined as
T1/Tn where T denotes the time required to complete the computation, and the subscript denotes
the number of processors (or sub-blocks) that are used. As expected, an increase in the number of
processors further reduces the computation time. In the simulation, the use of 16 processors reduces the
computation time by 12 times. However, it does not decrease linearly, because each subdomain includes
overlapped points that imply that the number of total grid increases with increases in the number
of sub-blocks. However, the results indicate that the parallel computation based on the multiblock
methods in combination with the four-point overlapped grids provides a numerical solution with an
accuracy identical to that of the serial computation, albeit at a lower numerical cost.
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5. Moving Overset Grid Method

The algorithm of moving chimera grid methods consists of the following three sequential steps:
hole-cutting, finding donor cells, and bilinear interpolation [33,41–45]. The steps are described in
detail below.

5.1. Hole Cutting

The moving chimera grid method includes a minimum of two grid domains. The domains
are classified into two types, namely a background grid and a body-fitted (moving) grid. In the
background grid, hole points exist on which the calculation is not necessary, because they belong to the
body-fitted grid domains. In order to find the points, the dot product is used as a criterion as follows:

Hole point if
→
sp·→ns < 0 (15)

Figure 15 shows the schematic view of determining the hole points. At the hole points, the
variables from the governing equations are set to zero. The points close to the hole points are classified
as interpolation points.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 26 

Figure 14. Performance of parallel computation based on the number of sub-blocks or processors. 

5. Moving Overset Grid Method 

The algorithm of moving chimera grid methods consists of the following three sequential steps: 
hole-cutting, finding donor cells, and bilinear interpolation [33,41–45]. The steps are described in 
detail below. 

5.1. Hole Cutting 

The moving chimera grid method includes a minimum of two grid domains. The domains are 
classified into two types, namely a background grid and a body-fitted (moving) grid. In the 
background grid, hole points exist on which the calculation is not necessary, because they belong to 
the body-fitted grid domains. In order to find the points, the dot product is used as a criterion as 
follows: 

Hole point if ∙ 0 (15) 

Figure 15 shows the schematic view of determining the hole points. At the hole points, the 
variables from the governing equations are set to zero. The points close to the hole points are 
classified as interpolation points. 

 
Figure 15. Schematic view of method to determine hole points using the dot product. 

5.2. Donor Cell 

It is important to determine donor cells that contain target interpolation points. Graham’s scan 
method [46] is used in the study, although there are several extant methods to identify donor cells. 
The method uses the cross-product sign. As shown in Figure 16, the values of the cross product 
between the vectors defined along the side edge of the cell (green-colored vector) and the vector 
formed between the vertex of the cell and the interpolation points (yellow-colored vector) are always 
positive, because the product order is in a counterclockwise direction as follows (in a two-
dimensional space): × 0, × 0, × 0, × 0 (16) 

The values are negative when the product order is reversed in a clockwise direction. The donor 
cell for interpolation is identified using the method. 

Figure 15. Schematic view of method to determine hole points using the dot product.

5.2. Donor Cell

It is important to determine donor cells that contain target interpolation points. Graham’s scan
method [46] is used in the study, although there are several extant methods to identify donor cells. The
method uses the cross-product sign. As shown in Figure 16, the values of the cross product between the
vectors defined along the side edge of the cell (green-colored vector) and the vector formed between
the vertex of the cell and the interpolation points (yellow-colored vector) are always positive, because
the product order is in a counterclockwise direction as follows (in a two-dimensional space):

→
f1 f2 ×

→
f1P ≥ 0,

→
f2 f3 ×

→
f2P ≥ 0,

→
f3 f4 ×

→
f3P ≥ 0,

→
f4 f1 ×

→
f4P ≥ 0 (16)

The values are negative when the product order is reversed in a clockwise direction. The donor
cell for interpolation is identified using the method.



Appl. Sci. 2018, 8, 1937 17 of 25
Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 26 

 
Figure 16. Graham’s scan to check the presence of point P in the donor cell. 

5.3. Bilinear Interpolation 

With respect to various interpolation methods, bilinear interpolation [47] is used for its 
simplicity as follows: = (1 − )(1 − ) + (1 − ) + (1 − ) +  (17) 

The unknown values of ξ and η correspond to the rate of distance and are determined from the 
coordinates, as shown in Figure 17. The values of the physical variables at the point P are determined 
using Equation (17). The interpolation method is applied to the interpolation points in the 
background grid domain and the boundary points in the body-fitted grid domain. 

 
Figure 17. Bilinear interpolation for point P. 

6. Gust Flow by Two Pitching Hydrofoils 

6.1. Experimental Setup and Computational Domain 

Figure 18a shows the high-speed cavitation tunnel in the Korea Research Institute of Ships and 
Ocean Engineering (KRISO), where the experiment on gust flow was carried out. Figure 18b shows 
the gust generator consisting of twin hydrofoils with its driving system. The tunnel exhibits a 
rectangular test section with dimensions of 3000 mm (X) × 300 mm (Y) × 300 mm (Z), where the 
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5.3. Bilinear Interpolation

With respect to various interpolation methods, bilinear interpolation [47] is used for its simplicity
as follows:

P = (1− ξ)(1− η) f1 + ξ(1− η) f2 + (1− ξ)η f3 + ξη f4 (17)

The unknown values of ξ and η correspond to the rate of distance and are determined from the
coordinates, as shown in Figure 17. The values of the physical variables at the point P are determined
using Equation (17). The interpolation method is applied to the interpolation points in the background
grid domain and the boundary points in the body-fitted grid domain.
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6. Gust Flow by Two Pitching Hydrofoils

6.1. Experimental Setup and Computational Domain

Figure 18a shows the high-speed cavitation tunnel in the Korea Research Institute of Ships and
Ocean Engineering (KRISO), where the experiment on gust flow was carried out. Figure 18b shows the
gust generator consisting of twin hydrofoils with its driving system. The tunnel exhibits a rectangular
test section with dimensions of 3000 mm (X) × 300 mm (Y) × 300 mm (Z), where the coordinates
denotes the directions of main flow stream, the height, and the width, respectively. The flow velocity
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that is generated is up to 20.4 m/s [48]. The hydrofoil was used as the gust generator [1]. The gust
generated by the twin hydrofoils is convected downstream at the mean flow velocity, oscillating at
the prescribed frequencies. To measure the velocity of gust flow at the data acquisition point shown
in Figure 19a, one-dimensional laser Doppler velocimetry (FlowExplorer 300 by Dantec Dynamics)
was used with an uncertainty of 0.04% [49]. The data acquisition point is placed to be the center point
between the trailing edge of the hydrofoil and the position of the head of a submerged projectile,
which will be placed to investigate the effects of incoming gust on its cavitation shape in a future study.
Figure 19a shows the entire computational domain, including the twin hydrofoils with the applied
boundary conditions. The computation domain is constructed by using the two-dimensional section,
of which the dimensions are 350 mm (X) × 300 (mm) (Y), where the length in the main flow direction is
shortened for the reduction of numerical gust. The upper and lower boundaries are set as the solid wall
on which no-slip boundary condition (BC) is applied. The left boundary is set as the inlet boundary on
which the uniform velocity of 8.5 m/s in the horizontal direction is prescribed. The right boundary is
set as the outlet boundary with the prescribed static pressure. The computational domain includes
four domains (i.e., two background and two hydrofoil-fitted grid domains), as shown in Figure 19b.
The hydrofoil-fitted grid domains oscillate in a pitching direction with prescribed amplitudes and
frequencies corresponding to 4◦, 6◦, and 8◦, and 5 Hz, 10 Hz, 15 Hz, and 20 Hz, respectively.
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6.2. Numerical Results with Measured Data

Figure 20 shows the isocontours of pressure and u-velocity when the hydrofoils are positioned at
the maximum angle of attacks. It can be seen that the gust flow generated by the twin hydrofoils is
convected downstream smoothly without any discontinuity at the boundaries between the background
and the subdomains.
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Figures 21–23 show the predicted time histories of the v-velocity component recorded at the
data acquisition point due to the gust flow generated by the pitching hydrofoils at the amplitudes
and frequencies as listed above. Periodic fluctuations in the velocity are observed in all of the cases.
This implies that the twin pitching-hydrofoils successfully generate gust flow with periodic velocity
components in a direction that is normal to the mean flow. In case of the 5-Hz frequency, a difference
exists between the numerical and experimental results. This is because the oscillation frequency of
the hydrofoils is extremely low, such that its wavelength is relatively long when compared with
the size of the computational domain, and thus, the related vortical waves are increasingly affected
by the boundary conditions. It is well known that any of the outflow boundary conditions do not
work well for the low-frequency components of the wavelength comparable to the dimension of the
entire computation domain [50]. In the present study, the lowest frequency of the vortical waves
is 5 Hz, and the mean flow speed is 8.5 m/s, which results in the wavelength λ = 8.5/5 = 1.7 m,
which is much larger than the dimension of the computational domain. However, as the oscillation
frequency increases, there are closer agreements between the numerical and the experimental results.
To ensure the property of the current numerical scheme and preserve the dispersion relation, which is
an important parameter for determining the ability of this numerical scheme to simulate wave-type
phenomena, the numerical wave number of the present scheme needs to be analyzed [51–56]. The
critical wavenumber can be defined as |Im(knumer.c)∆x− kexact∆x| = 0.005, according to which the
critical wavenumber of the present scheme is Im(knumer.c)∆x = π/5. This implies that the vortical
wave satisfying the unequal equation k∆x ≤ π/5 can be simulated using the proposed numerical
scheme with negligible dispersion and dissipation errors. The grid for the part where the gust flow
is generated is set to be 2 mm (X) × 1 mm (Y). Therefore, the present scheme can simulate the gust
wave with a frequency of up to fc = umean × k/2π = umean/10∆x = 8.5/(10× 0.002) = 425 Hz. The
results also indicate a similar trend wherein increases in the amplitude or the frequency increase the
maximum velocity.
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Figure 21. V-velocity based on non-dimensional time in case of an amplitude of 8◦: (a) 5 Hz; (b) 10 Hz;
(c) 15 Hz; and (d) 20 Hz.
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Figure 22. V-velocity based on non-dimensional time in case of amplitude of 6◦: (a) 5 Hz; (b) 10 Hz;
(c) 15 Hz; and (d) 20 Hz.
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Figure 23. V-velocity based on non-dimensional time in the case of amplitude of 4◦: (a) 5 Hz; (b) 10 Hz;
(c) 15 Hz; and (d) 20 Hz.
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7. Conclusions

In the study, efficient and accurate parallel computation methods for two-phase flow problems
involving complex moving foreign bodies were developed using the parallel computation based on
the moving body-fitted grids overset on background multidomain meshes. First, the multiphase flow
solver using the multidomain method with the grid-overlapping interface is validated. The solver was
applied to predict the cavitation flow over a hemispherical head form, and its validity was confirmed
by comparing its numerical results with the measured data. Subsequently, three types of interfaces
boundary conditions, namely linear interpolation, two-point overlapped methods, and four-point
overlapped methods were applied. It was theoretically and numerically demonstrated that parallel
computation based on the four-point overlapped method provided almost the same numerical solution
as serial computation. Next, the efficiency of the present parallel computation method was numerically
investigated by varying the number of sub-blocks (or processors). When compared with the case of
four blocks, the computation time was reduced by a factor of four, while the computational time was
reduced 12 times in the case of 16 blocks. This indicates that the computation time did not decrease
linearly with increases in the number of processors due to the overlapped grid points, wherein the total
number of grid points increased when the number of the subdomain increased. However, the results
indicated that multidomain approaches in combination with the four-point overlapping method can be
used as accurate and efficient numerical tools to solve multiphase problems. Finally, the multidomain
approaches were combined with moving overset grid techniques wherein the algorithm consisted
of three sequential steps, namely hole-cutting, finding donor cells, and interpolation. The gust flow
generated by twin pitching hydrofoils was numerically simulated using the present numerical method.
The numerical results of the time histories of fluctuating vertical flow velocity indicated excellent
agreement with the measured data in the considered range of the amplitudes and frequencies of the
pitching motion of the hydrofoils. The results revealed that the present numerical method based on
moving chimera grids in combination with the multidomain accurately and efficiently simulated the
complex flow phenomena involving moving bodies. In the future study, the effects of incoming gust
on cavitation flow around a high-speed submerged projectile will be investigated using the present
numerical methods.
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