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Abstract: This paper focuses on the nonlinear aeroelastic system identification method based
on an artificial neural network (ANN) that uses time-delay and feedback elements. A typical
two-dimensional wing section with control surface is modelled to illustrate the proposed identification
algorithm. The response of the system, which applies a sine-chirp input signal on the control surface,
is computed by time-marching-integration. A time-delay recurrent neural network (TDRNN) is
employed and trained to predict the pitch angle of the system. The chirp and sine excitation signals
are used to verify the identified system. Estimation results of the trained neural network are compared
with numerical simulation values. Two types of structural nonlinearity are studied, cubic-spring and
friction. The results indicate that the TDRNN can approach the nonlinear aeroelastic system exactly.

Keywords: neural network; system identification; nonlinear aeroelastic

1. Introduction

Early investigation treated the aeroelastic system as purely linear [1]. However, many sources
of nonlinearity exist in the actual aeroelastic system, such as structural nonlinearity or aerodynamic
nonlinearity, both of which affect performance of the system. The effects of three types of
structural nonlinearity on the flutter of a two-degree-of-freedom system were calculated on an analog
computer [2,3]. Describing functions and harmonic balance were adopted to approach nonlinear flutter
problems [4–9], as both can be used to predict some nonlinear behavior. However, the aeroelastic
system is dynamic and its response is dependent on initial conditions. Subsequently, the describing
function approach does not permit a full exploration of the effect of nonlinear behavior [10].

The system identification method, which predicts the response of the nonlinear system via
establishing an approximate model of the system, has been adopted in the last decades. Volterra kernels
were used to represent the system, which can estimate uncertainties by considering only the linear
component of flight data [11]. Block-oriented identification, a non-iterative identification algorithm
that divides the system into linear and nonlinear subsections, was utilized to approach characterization
of nonlinear dynamics [12]. A frequency domain identification method was presented to estimate
physical poles of the dynamic system [13]. A parameter-varying estimation framework was proposed
to predict flutter speed [14]. Computational fluid dynamics (CFD) based reduced-order-models, were
used to study the control surface limit cycle oscillation (LCO) and the structure of aerodynamic model
equations, as a combination of linear and nonlinear contributions [15,16]. Unfortunately, the actual
wing is a complex nonlinear system, influenced by many uncertain factors. It is difficult for traditional
identification methods to establish an accurate model for such a complex system.

The neural network identification method, which does not need to establish the precise model of
the system, has been developed in recent years. An artificial neural network (ANN) can approximate
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any nonlinear function and adapt to environmental changes by learning. Neural network identification
can be used to identify linear or nonlinear systems and is a very effective method to identify nonlinear
aeroelastic systems. The neural network identification method has been applied to predict aerodynamic
force, flutter critical speed, and LCO speed of the system [17,18].

The purpose of this work is to study the nonlinear aeroelastic system identification method based
on the ANN and verify the effectiveness of the neural network. A typical three-degree-of-freedom
wing section model in two-dimensions is established. Two types of structural nonlinearity, including
cubic-spring and friction, are studied in this work. The standard Runge-Kutta algorithm is used
to compute the response of the cubic-spring-nonlinear aeroelastic system and the friction-nonlinear
aeroelastic system. Then, a time-delay recurrent neural network (TDRNN) is established and the
neural network model is trained by the simulated data. The chirp and sine excitation signals are used
to verify the identification model.

2. Neural Network System Identification

Traditional identification algorithms, such as the Volterra kernel, Hammerstein-Winner, and
harmonic balance methods, need to establish approximate models corresponding to actual systems.
However, the actual aeroelastic system is complex and influenced by many nonlinear factors. Thus,
establishing corresponding mathematical models of the system is difficult. ANN has good nonlinear
mapping ability, self-learning adaptability, and parallel information processing ability. This method
can identify essential nonlinear systems and is an ideal tool for identifying unknown and uncertain
nonlinear systems. The neural network is also a physical realization of the system and can be used for
online control.

The TDRNN consists of input, hidden, and output layers. The hidden layer contains the input
and feedback nodes and nonlinear and linear neurons. A feedback connection is present in the hidden
layer. The time-delay memory elements (Z−1) are used to store previous values of the input signal
and output (feedback) signal. W denotes the weight of the neuron. The weights (W) can be adjusted
during the training process until accuracy of the neural network meets requirements. b represents the
bias of the neuron. f1 and f2 are transfer functions. The structure of the TDRNN is shown in Figure 1.
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Figure 1. Structure of the time-delay recurrent neural network (TDRNN).

The input–output relationship of the TDRNN is written as follows:

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − p), x(t − 1), . . . , x(t − q)) (1)
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where x(t) is the input value at t moment, y(t) is the output value at t moment. The output signal
y(t) is regressed on previous values of the output signal (y(t − 1), y(t − 2), . . . , y(t − p)) and previous
values of an independent (exogenous) input signal (x(t − 1), . . . , x(t − q)).

The mean squared error (MSE) of training data is used to evaluate performance of the proposed
TDRNN, which is defined as:

MSE =
N

∑
t=1

(ŷ(t)− y(t))2/N (2)

where ŷ(t) is the estimated value of the TDRNN, y(t) is the real value of the nonlinear aeroelastic
system, which is obtained from the numerical simulation or wind-tunnel experiment. N is the number
of the calculated data values.

Taking control surface flap deflection (β) as the system input signal and pitch angle (α) as the only
considered output signal, the aeroelastic system is a single-input-single-output (SISO) system. The
flowchart for neural network identification is shown in Figure 2. Measurement noise with an intensity
of signal-to-noise ratio (SNR) = 20 dB is added to the output signal to simulate the actual environment.
A TDRNN is used to approach the nonlinear aeroelastic system. The input and output data obtained
from the simulation is divided into three parts. The first part is the training set (70%), which is used to
compute the gradient and update network weights and biases. The second part is the validation set
(15%), which is used to evaluate the network during the training process. The third part is the test set
(15%), which is used to compare different models. After the network has been trained, it can be used
to estimate the response of the nonlinear aeroelastic system.
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Figure 2. Flowchart for neural network identification. SNR: Signal-to-noise ratio.

3. Nonlinear Aeroelastic System Model

A typical two-dimensional wing section with a control surface is illustrated in Figure 3. This
includes the plunge (h), the pitch (α) of the main wing, and the flap (β) of the control surface.
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Other parameters of the model are shown in Table 1 [12]. Governing equations of motion for the
structure of the nonlinear aeroelastic system are derived to be:[

m mxmb
mxmb Ia

]{ ..
h
..
α

}
+

[
ch 0
0 ca

]{ .
h
.
α

}
+

[
kh 0
0 ka

]{
h
α

}
+

[
0

Mα(α)− kaα

]
=

{
−L
Ma

}
(3)

Constants are defined as follows: m is the mass of the wing section; b is the semi-chord of the
airfoil; Ia is the moment of inertia about the elastic axis; xm is the non-dimensional distance between
the mass center and elastic axis; ch and ca represent structural damping coefficients of the wing in
plunge and pitch, respectively; and kh and ka are stiffness coefficients of the wing in plunge and
pitch, respectively.

Table 1. Nonlinear aeroelastic system parameters.

Parameter Value

V 6 m/s
ρ 1.225 kg/m3

b 0.135 m
m 12.387 kg
xm 0.2466
xb −0.6
Iα 0.065 kg·m2

ch 27.43 kg/s
cα 0.180 kg·m2/s
kh 2844.2 N/m
kα 2.82 Nm/rad
clα 2π
clβ 3.358
cmα −0.628
cmβ −0.635

L and Mα are the aerodynamic lift and moment, which can be defined as follows [19]:

L = ρV2bclα

[
α +

.
h
V

+

(
1
2
− xb

)
b

.
α

V

]
+ ρV2bclββ (4)

Mα = ρV2b2cmα

[
α +

.
h
V

+

(
1
2
− xb

)
b

.
α

V

]
+ ρV2b2cmββ (5)
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where ρ is the free-stream density; V is the inflow velocity; clα and cmα are the lift and moment
coefficient per angle of attack, respectively; clβ and cmβ are the lift and moment coefficient per control
surface deflection (β), respectively; xb is the non-dimensional distance between the mid-chord and
the elastic axis; β is the flap displacement of the control surface; and Mα(α) is the moment-rotation
relationship of pitch angle (α).

Substituting Equations (4) and (5) into Equation (3), the following is obtained:[
m mxmb

mxmb Ia

]{ ..
h
..
α

}
+

 ch + ρVbclα ρVb2clα

(
1
2 − xb

)
−ρVb2cmα ca − ρVb3cmα

(
1
2 − xb

) { .
h
.
α

}

+

[
kh ρV2bclα
0 kα − ρV2b2cmα

]{
h
α

}
+

[
0

Mα(α)− kαα

]
=

{
−ρV2bclβ
ρV2b2cmβ

}
β

(6)

Defining:

M =

[
m mxmb

mxmb Ia

]
,

C =

 ch + ρVbclα ρVb2clα

(
1
2 − xb

)
−ρVb2cmα ca − ρVb3cmα

(
1
2 − xb

) ,

K =

[
kh ρV2bclα
0 kα − ρV2b2cmα

]
,

F1 =

{
−ρV2bclβ
ρV2b2cmβ

}
,

F2 =

[
0
1

]
.

Substituting M, C, K, F1, F2 into Equation (6), it may be expressed in a compact matrix form as:

M

{ ..
h
..
α

}
+ C

{ .
h
.
α

}
+ K

{
h
α

}
+ F2(Mα(α)− kαα) = F1β (7)

The transformed equations of motions in the state space form become:

.
X = AX + B1β + B2(kαα − Mα(α)) (8)

where:

X =
[

h α
.
h

.
α
]T

,

A =

[
0 I

−M−1K −M−1C

]
,

B1 =

[
0

M−1F1

]
, and

B2 =

{
0

M−1F2

}
.

The results of Equation (8) can be obtained by direct time marching integration.

4. Results and Discussion

Real aeroelastic systems are often affected by a number of structural nonlinear factors, such as
cubic-spring, friction, freeplay, backlash, hysteresis, time-delay, and saturation. Figure 4 shows the
moment–displacement relationships of four types of structural nonlinear aeroelastic system.
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In the present work, the cubic-spring and friction cases are carried out. These examples will
illustrate the use of a neural network to identify the nonlinear aeroelastic system. The initial cases of
the aeroelastic system are h = 0, α = 0,

.
h = 0, and

.
α = 0. Input signal of the system is a sine-sweep-chirp

signal in the range of 0 to 5 Hz over 35 s. Time marching integration is used to produce response of the
aeroelastic system.

4.1. Case 1: Cubic-Spring Nonlinearity

The first case of nonlinearity is the cubic-spring, the relationship between moment and
displacement can be expressed as:

Mα(α) = kαα + kα3a3 (9)

where kα3 is cubic stiffness in the pitch direction, and kα3 = 2.44.
Substituting Equation (9) into Equation (8), it is obtained that:

.
X = AX + B1β − B2kα3a3 (10)

In this case, the standard Runge-Kutta algorithm is employed to produce theoretical results. Then,
the neural network is trained by input and output data obtained by simulation. The chirp and sine
input signals are used to verify the identified system. Responses of the system are calculated by
time-marching-integration and the TDRNN net independently. Comparisons of estimation results
with real results are shown in Figures 5 and 6.
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Figure 6. Response of sine input signal.

The dotted line shows the response of time-marching-integration and the solid line shows results
of TDRNN. The two results are in very good agreement and it is hard to distinguish one from the
other. The MSE of the chirp input signal is 4.3435 × 10−7 and the MSE of the sine input signal is
4.0733 × 10−7. The results indicate that the identified system approaches the real nonlinear aeroelastic
system well.

Figure 7 shows a comparison of the input–output characteristic of the aeroelastic system with
cubic-spring nonlinearity, when the excitation signal is sine function.
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4.2. Case 2: Friction Nonlinearity

The second case of nonlinearity is friction. The Coulomb model is adopted as the friction force
model in this paper. The moment-displacement relationship of the pitch angle is arbitrarily assumed
to be:

Mα(α) = fc·sgn(
.

α) (11)

where fc is Coulomb’s friction force.
Substituting Equation (11) into Equation (8) yields:

.
X = AX + B1β + B2(kαα − fc·sgn(

.
α)) (12)

The chirp and sine input signals are also used to verify effectiveness of the neural network
identification algorithm. Comparisons of estimation results with real results are illustrated in Figures 8
and 9.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 11 

 

Figure 7. Input–output characteristic of the aeroelastic system with cubic-spring nonlinearity. 

4.2. Case 2: Friction Nonlinearity 

The second case of nonlinearity is friction. The Coulomb model is adopted as the friction force 

model in this paper. The moment-displacement relationship of the pitch angle is arbitrarily assumed 

to be: 

𝑀𝛼(𝛼) = 𝑓𝑐 ∙ sgn(𝛼)̇ (11) 

where 𝑓𝑐 is Coulomb’s friction force. 

Substituting Equation (11) into Equation (8) yields: 

𝑋̇ = 𝐴𝑋 + 𝐵1𝛽 + 𝐵2(𝑘𝛼𝛼 − 𝑓𝑐 ∙ sgn(𝛼)̇) (12) 

The chirp and sine input signals are also used to verify effectiveness of the neural network 

identification algorithm. Comparisons of estimation results with real results are illustrated in Figures 

8 and 9. 
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Figure 9. Response of sine input signal.

The dotted line shows the response of time-marching-integration and the solid line shows the
results of TDRNN. The two results are similar and thus difficult to distinguish. The MSE of the chirp
input signal is 2.6631 × 10−6 and the MSE of the sine input signal is 1.7472 × 10−6. Therefore, the
identified system approaches the real nonlinear aeroelastic system effectively.

Figure 10 shows a comparison of the input–output characteristic of the aeroelastic system with
friction nonlinearity, when the excitation signal is a sine function.
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5. Conclusions

Traditional identification methods need to establish describing functions or approximate models
of the system. Due to the complexity of the nonlinear aeroelastic system, it is hard to establish an
accurate model of the system. The neural network identification method, which does not need to
know the precise model of the system, is proposed to approach the nonlinear aeroelastic system. In
this algorithm, a recurrent element is used to feedback results of output and a time-delay element is
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adopted to store previous values of the input and output signals. The TDRNN, which is trained by the
simulation or experiment data, can be used to predict the response of the nonlinear aeroelastic system.

A typical three-degree-of-freedom wing section model is used to illustrate the methodology. Both
cubic-spring and friction structural nonlinear aeroelastic systems are investigated in this study and
responses calculated by direct time-marching-integration. A TDRNN is employed and trained by the
simulated data. A frequency sweep input signal and a sinusoidal input signal are used to verify the
identification model. The results show that the TDRNN can approach the accuracy of a nonlinear
aeroelastic system and that the neural network identification method is a reliable and effective method.
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