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Abstract: Identifying node importance in complex networks is of great significance to improve the
network damage resistance and robustness. In the era of big data, the size of the network is huge
and the network structure tends to change dynamically over time. Due to the high complexity,
the algorithm based on the global information of the network is not suitable for the analysis of
large-scale networks. Taking into account the bridging feature of nodes in the local network, this paper
proposes a simple and efficient ranking algorithm to identify node importance in complex networks.
In the algorithm, if there are more numbers of node pairs whose shortest paths pass through the
target node and there are less numbers of shortest paths in its neighborhood, the bridging function
of the node between its neighborhood nodes is more obvious, and its ranking score is also higher.
The algorithm takes only local information of the target nodes, thereby greatly improving the
efficiency of the algorithm. Experiments performed on real and synthetic networks show that the
proposed algorithm is more effective than benchmark algorithms on the evaluation criteria of the
maximum connectivity coefficient and the decline rate of network efficiency, no matter in the static
or dynamic attack manner. Especially in the initial stage of attack, the advantage is more obvious,
which makes the proposed algorithm applicable in the background of limited network attack cost.
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1. Introduction

In recent years, network science research has attracted a great amount of attention from researchers
in different fields including physics, mathematics, chemistry, medical science, biology, computer
science, sociology and so on [1–9]. In particular, the vulnerability of complex networks is one of
the most important directions due to its considerable effect on network cascade failure caused by
random failure and deliberate attack [10–18]. Random failure can be regarded as a simple abstraction
of successive errors in complex networks by destroying nodes or edges with uniform probability.
Deliberate attack means that the network nodes or edges are attacked according to their importance
in descending order under the premise of mastering global information of the network [19–23]. On
14 August 2003, a large-scale power cascade failure in the northeastern United States and eastern
Canada caused global concern. Similarly, in early 2008, due to some damage to major transmission
lines and key towers, severe ice sheet disasters in southern China caused large-scale blackouts. These
examples indicate that important node failure may result in great damage on the whole network.
One of the crucial questions in protecting networks from cascading failures is to design an efficient
method to identify important nodes and take protective strategies. The important nodes in the network
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refer to a tiny fraction of special nodes that have great influence on the structure and function of
the network [24,25]. The more important the node, the greater influence the node failure causes. For
example, researchers have found that, in networks such as email networks, the Internet, protein
networks, food chain networks and peer-to-peer (P2P) networks, removing the nodes with the largest
degree will cause the network to become very vulnerable.

Many centrality measures are proposed to evaluate node importance in complex networks,
including degree [26], closeness [27], betweenness [28,29] and so on. Degree is a very simple and
classic one which identifies the node importance by just calculating the number of nodes connected to
the target node. However, the precision of its computation is not high enough in most applications and
nodes with the same degree may play different important roles in a complex network. Betweenness
and closeness collect global information of the network to compute the importance of nodes. The
two centralities need to calculate the shortest path between any pair of nodes in the network.
The computational complexity is too high and thus they are not suitable for large-scale networks.
In [30], ego network betweenness was proposed to compute the betweenness centrality of ego in an
ego network. Its scalability and ease of implementation makes it a good alternative for betweenness
in large networks. A lot of metrics on the computation of complex network were designed for large
complex networks later [31–34].

Additionally, there are many other studies on this issue. Kitsak et al. [35] proposed a novel
network decomposition method to identify the most important nodes by continuously removing the
peripheral nodes, and the simulation result showed that it is positive and efficient. Wang et al. [36]
considered that the importance of nodes is related to the degree of nodes and their neighbors,
and proposed a new algorithm WL to rank the importance of network nodes. Ugander et al. [37]
found that the number of connected subgraphs between neighboring nodes is the determining factor
of node importance. Ai et al. [38] proposed an entropic metric, Entropy Variation, defining the node
importance as the variation of network entropy before and after its removal. By quantifying the
structural similarity between nodes’ neighborhoods, Ruan et al. [39] proposed a node importance
ranking algorithm which only needs to obtain the neighborhood information within two hops of the
node. The algorithm showed that the bigger the degree of a node and the fewer connections between
neighboring nodes, the more important the target node.

In this paper, we propose a novel method called NBF (based on node bridging feature) to identify
the importance of nodes in the network. It is a challenging work to rank node importance in complex
networks due to its large-scale size and frequently changed topology. We summarize the major
contributions by the following four ingredients:

• The paper presents a node bridging feature in complex networks, which refers to the fact that
the greater the number of node pairs whose shortest paths pass through the target node and the
less the number of shortest paths in its neighborhood, the more significant bridge function and
structure importance the node has;

• We propose a novel node importance identification algorithm based on the node bridging feature,
which just needs local information of the target nodes, making the algorithm applicable in
large-scale networks;

• Through comprehensive experiments on real and synthetic datasets, the proposed algorithm is
demonstrated to outperform a state-of-the-art model compared with five benchmark algorithms
on evaluation criteria of the maximum connectivity coefficient and the decline rate of network
efficiency, no matter whether in static or dynamic attack strategies;

• The advantage of the proposed algorithm is more obvious when removing a small number of
important nodes, which makes the algorithm applicable in the background of limited network
attack cost.

The outline of this paper is as follows. In Section 2, we present our method to identify node
importance and introduce the benchmark algorithms, evaluation criteria and datasets. We make
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simulation analysis on real and synthetic networks under static and dynamic attacks in Section 3.
Finally, a summary and some conclusions are stated in Section 4.

2. Materials and Methods

2.1. The Proposed Method

Considering an undirected and unweighted network G(N, E) composed of N nodes and E edges,
the network is represented by A(aij)N∗N , where aij = 1 represents node i and node j are connected;
otherwise, aij = 0.

From the perspective of the network robustness and invulnerability, when a node does not work
due to deliberate attack and the node is on the shortest path between a pair of its neighbor nodes,
the connection of the neighbor node pair would be affected. As shown in Figure 1a, node c builds a
bridge between node a and node b. Therefore, removing node c will result in disconnection between
nodes a and b. In Figure 1b, nodes a, b, c are connected to each other, so node c no longer acts as an
intermediary. In this situation, even if node c is removed, nodes a and b can still maintain effective
connection. In addition, as shown in Figure 1c, nodes a and b can communicate with each other
through c, but other short communication paths such as a↔ d↔ b also exist in the neighbourhood.
In this case, the bridging function of node c is weakened. Furthermore, we study the situation when
there is a connection between the node’s one-hop neighbors and two-hops neighbors. Figure 1d–f
show several ways of direct or indirect contact between nodes a and b. In Figure 1d, when there is
only one shortest path between nodes a and b, the bridging feature of node c is obvious. In Figure 1e
and Figure 1f, when the shortest path length between nodes a and b is less than 3, even if node c is
removed, nodes a and b still keep effective contact for there is absolutely at least one another path
between nodes a and b in this case. Similar to Figure 1c, Figure 1f shows when there exist two shortest
paths a↔ c↔ d↔ b and a↔ e↔ f ↔ b of which the length is 3, the bridging function of node c is
also weakened. In this paper, we just take into account the target node’s neighbors within two-hops.

Figure 1. Several different connections between neighbor nodes a and b of node c. (a) node a and node
b get connected by node c; (b) nodes a, b, c get connected with each other; (c) node a and node b get
connected by node c or node d; (d) node a and node b get connected by node c and node d; (e) node a
and node b get connected directly; (f) node a and node b get connected by node d; (g) node a and node
b get connected by nodes c, d or nodes e, f .

Based on the above observations, we propose a novel method by taking into account the bridging
feature of nodes to identify node importance in complex networks. For a node in the network,
the greater the number of node pairs whose shortest paths pass through the target node, and the less



Appl. Sci. 2018, 8, 1914 4 of 14

the number of shortest paths between its neighbor node pairs, the more significant the bridge function
and structure importance the node has. The evaluation value of the importance of node i calculated by
the algorithm proposed in this paper can be expressed as

NBF(i) = ∑
m,n∈Γ1(i)

1

2P(2)
mn

+ ∑
x∈Γ1(i),y∈Γ2(i)

1

3P(3)
xy

m 6= n, x 6= y, (1)

where P(2)
mn represents the number of the paths with the shortest path length two-hops between nodes

m and n, P(3)
xy represents the number of the paths with the shortest path length three-hops between

nodes x and y, Γ1(i) and Γ2(i) separately represent the sets of neighbors one-hop and two-hops away
from node i. If the two-hops shortest paths of the neighbor node pair (such as m and n) do not pass
through the target node i, then define P(2)

mn = ∞, namely, 1/P(2)
mn = 0. Similarly, if the three-hops

shortest paths of the neighbor node pair do not pass through the target node i, the second part of the
formula is also 0. Therefore, when any two nodes in the neighborhood are connected, the NBF value
of the target node i is 0.

Taking node c in Figure 1g as an example, we show the calculation process of the algorithm.
The number of the shortest paths with two-hops between the node pair a and d is 1, so the first part
of the NBF algorithm can be calculated as 1

2∗P(2)
ad

= 1
2∗1= 0.5. For the two-hops neighbor nodes e and b

of node c, calculate the number of the shortest paths with three-hops between them and nodes a and
d, separately. It is easy to get P(3)

ab = P(3)
ed = 2 and P(3)

ae = P(3)
db = ∞. As a result, only the node pair a

and b and the node pair d and e contribute to the ranking score of node c. The second part of the NBF
algorithm can be calculated as 1

3∗P(2)
ab

+ 1
3∗P(2)

ed

= 1
3∗2+

1
3∗2 ≈ 0.333. Therefore, the importance of node c in

Figure 1g is expressed as NBF(c) = 0.5 + 0.333 = 0.8333.

2.2. Benchmark Methods

We here introduce the benchmark algorithms compared in this paper, including degree centrality,
k-shell algorithm, WL algorithm, ego betweenness centrality and LLS algorithm.

1. Degree centrality
Degree centrality is a very simple ranking algorithm. The node degree ki represents the number
of neighbours of node i, namely

ki =
N

∑
j=1

aij. (2)

2. K-shell algorithm
The implementation of the k-shell decomposition method is as follows: firstly,
continuously remove the nodes with degree one until all nodes’ degrees are larger than
one. All of these removed nodes are assigned 1-shell. Then, keep removing the existing nodes
until all nodes’ degrees are larger than two and add the removed nodes to 2-shell. Repeat this
procedure until all nodes have been assigned to one of the shells.

3. WL algorithm
WL algorithm holds the opinion that the importance of nodes in the network is closely related to
the importance of edges the nodes connected. The weight of edge ij is expressed as

wij = ki × k j, (3)

where ki is the degree of node i. The weight of node is expressed as

wi = ∑
j∈Γi

wij, (4)
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where Γi is the set of neighbors of node i. Thus, the importance of the node is expressed as

w(i) =
wi

∑
j∈N

wj
. (5)

4. Ego betweenness (Abbreviated as EgoBet)
Ego network consists of a target node and the nodes (1-hop neighbors) which are connected to
the target node and all the edges between those nodes. The standard measure of betweenness
considers all the shortest paths of node pairs across the target node, while ego betweenness just
takes into account the shortest paths of node pairs within the ego network. Ego betweenness can
be expressed as

CEB(i) = ∑
s 6=i 6=t;s,t∈Γ1(i)

σ(s, t|i)
σ(s, t)

, (6)

where σ(s, t|i) is the number of shortest paths passing through node i between node s and node t,
σ(s, t) is the total number of shortest paths between node s and node t, and Γ1(i) represents the
set of 1-hop neighbors of node i.

5. LLS algorithm
LLS algorithm is a method to evaluate the importance of nodes based on similarity of node
neighbors. The similarity of node neighbors is calculated by Jaccard index when nodes b and c
are not connected, while the value of similarity is 1 when nodes b and c are connected, namely

sim(b, c) =

{ |n(b)∩n(c)|
|n(b)∪n(c)| b, c not connected;

1 b, c connected,
(7)

where b(i) is the set of one hop and two hop neighbors of node i. Thus, the node importance is
denoted as

LLS(i) = ∑
b,c∈n(i)

(1− sim(b, c)). (8)

For the five benchmark algorithms, k-shell algorithm makes use of the information of the whole
network and all of the other five algorithms just utilize the local information.

2.3. Evaluation Criterion of Algorithms

We adopt two criteria: the maximum connectivity coefficient [40] and the decline rate of network
efficiency [41,42] to calculate the connectivity of the network after attack, in order to evaluate the
effectiveness of the node importance identification algorithms. After important nodes get attacked,
the connectivity of the network will turn worse. The more important the nodes, the worse the
connectivity of the network.

2.3.1. Maximum Connectivity Coefficient

The maximum connectivity coefficient G can be calculated as follows:

G = R/N, (9)

where R represents the number of nodes in the maximum connected component after attack and N
represents the total number of nodes in the network. The faster the decrease in G, the more efficient
the attack strategy.
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2.3.2. Decline Rate of Network Efficiency

The most direct effect of node removal is causing the shortest distance between nodes to become
longer or even making the nodes unreachable. The network efficiency represents the strength of
network connectivity after removing some nodes and can be described as

η =
1

N(N − 1) ∑
i,j∈V

ηij, (10)

where N is the total number of network nodes and ηij is the network efficiency between node pair i
and j, ηij = 1/dij, dij is the shortest path between nodes i and j. When nodes i and j are not connected,
ηij = 0. In order to analyze the effect on network efficiency of removing nodes more directly, the decline
rate of network efficiency µ is adopted, which is defined as

µ = 1− η/
η0

, (11)

where η0 is the efficiency of the original network and η is the efficiency of the network after removing
nodes. The higher the µ value, the more significant the effect on network efficiency of removing nodes
and the more important the removed nodes.

2.4. Data Description

To evaluate the performance of the proposed method, we apply it to real and synthetic
networks. The real networks include: USAir (American aviation network) [43,44], Netscience (Scientist
cooperation network) [45,46], Infectious (People infection network) [47,48], USAirport (American
airport network) [49,50], Yeast (Protein interaction network) [51,52] and Power (Power grid of
the western United States) [2,39]. The statistical properties of the six networks are presented in
Table 1. It can be seen from the table that the six real data sets used in this paper have their
own characteristics and are representative, which can well verify the effectiveness of the algorithm.
In addition, one synthetic small-world network is used, which was generated by a Watts–Strogatz
model [2] with the parameters N = 6000, K = 6 and p = 0.1. The synthetic network is denoted as WS in
this paper.

Table 1. Basic statistical properties of the six real networks, including network size (n), edge number
(m), average degree 〈k〉, network aggregation coefficient C and average shortest path length L.

Network n m 〈k〉 C L

USAir 332 2126 12.807 0.625 2.729
Netscience 379 914 4.823 0.741 6.026
Infectious 410 2765 13.488 0.456 3.631
USAirport 1574 28,236 21.901 0.505 3.113

Yeast 2375 11,693 9.847 0.306 5.094
Power 4941 6964 2.669 0.080 18.989

3. Results and Analysis

On the real and synthetic networks, take degree centrality, k-shell algorithm, WL algorithm,
ego betweenness centrality, LLS algorithm and the proposed NBF algorithm as attack strategies and
rank the nodes in the network by the five algorithms. Then, remove a fraction of top important nodes
according to the ranking result in a static and dynamic manner. Analyze the changes of the maximum
connectivity coefficient and the decline rate of network efficiency when the nodes are removed,
and verify the effectiveness of the proposed algorithm at last. Static network attacks refer to the
network nodes being removed in descending order of node importance calculated initially, regardless
of the impact of network structure changes due to node removal. In contrast, dynamic network attacks



Appl. Sci. 2018, 8, 1914 7 of 14

mean that only the most important node is removed in each round of attack, and all node importance
in the remaining network needs to be recalculated each time.

3.1. Experimental Results on the Maximum Connectivity Coefficient

Figure 2 shows the comparison of the network maximum connectivity coefficient G subjects
with different static attack strategies on real and synthetic networks. As can be seen from Figure 2,
in the static attack mode, the NBF attack strategy corresponds to the fastest decline of G, that is to say,
the proposed algorithm performs the best when identifying node importance. The advantage of the
NBF algorithm is more obvious especially when the rate of removed nodes is small. For example, in the
USAirport network from Figure 2a, when the rate of removed nodes is less than 15%, the decline speed
of G is much more faster. In real applications, 15% is a very big attack rate when taking into account the
cost of attack which has to be paid for. Since the NBF attack strategy can make the network fragment
the most when removing a small rate of nodes, and also guarantee a great strike effect when removing
a large rate of nodes, the proposed NBF algorithm performs the best on ranking node importance and
has the highest application value. In addition, one can find that ego betweenness centrality attack
strategy has the second best attack effect in four networks, LLS attack strategy has the second best
attack effect in one network and WL attack strategy has the second best attack effect in one network.

Figure 2. The network maximum connectivity coefficient (G) subjects with different dynamic attack
strategies. Maximum connectivity coefficient (G) on the y-axis against the rate of removed node (p)
on the x-axis. (a) the USAir network; (b) the Netscience network; (c) the Infectious network; (d) the
USAirport network; (e) the Yeast network; (f) the Power network; and (g) the synthetic network WS.

In order to further verify the efficiency of our NBF method, the experiment analyzes the changes
of the network maximum connectivity coefficient in the dynamic attack mode, as shown in Figure 3.
Observing the experimental results, we can also find that the maximum connectivity coefficient under
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the NBF dynamic attack strategy decreases faster than other strategies, which shows that the NBF
algorithm is more accurate than other algorithms for ranking node importance. The design principle
of the NBF algorithm considers the bridging feature of the nodes, so the structure importance of the
network nodes can be more effectively sorted. The experimental results verify this point. In addition,
it can be observed that, when the network nodes are removed by k-shell method, the network has the
worst fragmentation effect. This is because the k-shell method can not distinguish the importance of
nodes in the same shell layer.

Figure 3. The network maximum connectivity coefficient (G) subjects with different dynamic attack
strategies. Maximum connectivity coefficient (G) on the y-axis against the rate of removed node (p)
on the x-axis. (a) the USAir network; (b) the Netscience network; (c) the Infectious network; (d) the
USAirport network; (e) the Yeast network; (f) the Power network; and (g) the synthetic network WS.

Comparing the static attack and dynamic attack results of each algorithm in the same data set
in Figures 2 and 3, it can always be observed that the dynamic attack effect is better than the static
attack effect. This is due to the fact that, in the dynamic attack mode, the importance of nodes is
recalculated when removing a node, ensuring that each attacked node is the most important node
in the current network. However, in the static attack mode, the network structure changes with the
removal of nodes, and the importance of the nodes may be greatly reduced due to the drastic changes
in the network structure.

In addition, we find that the decline speed of G is related to the network structure, especially the
average degree 〈k〉 of the network. The Power network and the Netscience network have the lowest
and second lowest average degree, respectively. In addition, the two networks are almost down after
removing the top 10% important nodes under most attack strategies. The reason is that less average
degree means less edges for the node pairs, so, after removing a small fraction of important nodes, the
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connectivity of the network turns bad very fast. Thus, we just show the removing process of the top
30% important nodes instead of the total nodes in the two networks.

3.2. Experimental Results on the Decline Rate of Network Efficiency

Figure 4 reflects the changes in the decline rate of network efficiency µ when nodes are removed
in descending orders according to the importance ranking by different algorithms. The larger the
value of µ, the more significant the decrease in network efficiency, and the more accurate the node
importance identification algorithms. It can be observed that, in the static attack mode, the value of
µ under the NBF attack strategy is larger than other strategies, which shows that the NBF algorithm
is more accurate than other algorithms. Similar to the results on the network maximum connectivity
coefficient, the NBF algorithm has more obvious advantages when the proportion of node removal is
small, so the proposed algorithm has the best application value.

Figure 4. The decline rate of network efficiency (µ) subjects with different static attack strategies.
The decline rate of network efficiency (µ) on the y-axis against the rate of removed node (p) on the
x-axis. (a) the USAir network; (b) the Netscience network; (c) the Infectious network; (d) the USAirport
network; (e) the Yeast network; (f) the Power network; (g) the synthetic network WS.

Furthermore, we investigate the decline rate of network efficiency µ subjects with different
dynamic attack strategies, and the result is shown in Figure 5. The result is consistent with that of static
attack strategies. It can be seen from the figure that the NBF algorithm designed in this paper has the
highest impact on network fragmentation compared with the other five algorithms. The effectiveness
of the proposed algorithm is further verified by different evaluation criteria.

In summary, the comparison experiments on the maximum connectivity coefficient and the
decline rate of network efficiency show that the proposed algorithm performs better than degree
centrality, k-shell algorithm, WL algorithm, LLS algorithm and ego betweenness centrality in static
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attack strategies and in dynamic attack strategies. The advantage of the proposed algorithm is more
obvious in the initial stage of attack. In addition, the dynamic attack effect is better than the static
attack for the same importance ranking algorithm.

Figure 5. The decline rate of network efficiency (µ) subjects with different dynamic attack strategies.
The decline rate of network efficiency (µ) on the y-axis against the rate of removed node (p) on the
x-axis. (a) the USAir network; (b) the Netscience network; (c) the Infectious network; (d) the USAirport
network; (e) the Yeast network; (f) the Power network; (g) the synthetic network WS.

3.3. Complexity Analysis

When computing the shortest paths of node pairs within 2-hops neighbors for the target node in
NBF algorithm and ego betweenness, we just compute the square and cube of the adjacency matrix
of the network and check the elements in the new matrix instead of using a Dijkstra algorithm,
which makes it much faster. The method is also used in [30].

The computational complexity of the six methods is shown in Table 2, where n is the total number
of nodes in the network, m is the number of edges and 〈k〉 is the average degree of the network.
From the table, we can see that the computational complexity of k-shell is O(m), which is the lowest,
but, from the experimental results, one can see that it performs the worst. WL algorithm and degree
centrality have the second lowest computational complexity, but the attack effect is also not good.

The computational complexity of NBF algorithm is O(n〈k〉2), which is equal to that of ego
betweenness and LLS algorithm. Although NBF algorithm and ego betweenness have the same
computational complexity, ego betweenness just considers neighbor nodes within 1-hop, while the
NBF algorithm takes into account neighbor nodes within 2-hops. The actual computing time of ego
betweenness is less than that of the NBF algorithm. Both the NBF algorithm and LLS algorithm
consider neighbor nodes within 2-hops, and the computational cost of the two algorithms is almost the
same. One can see from the experimental results that the NBF algorithm, ego betweenness and LLS
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algorithm outperform the other algorithms in most cases and the NBF algorithm performs the best in
almost all cases. In summary, NBF can get the best attack effect in reasonable time when compared
with other outstanding algorithms, which makes it applicable in large-scale networks.

Table 2. The computational complexity of six methods.

Method Information Computational Complexity

K-shell Global information O(m)
WL Local information O(m + n〈k〉)

Degree Local information O(m + n〈k〉)
EgoBet Local information O(n〈k〉2)

LLS Local information O(n〈k〉2)
NBF Local information O(n〈k〉2)

4. Conclusions

The identification of node importance in complex networks is of theoretical and practical
significance for improving network robustness and invulnerability. By analyzing the neighborhood
structure of the target node, we propose a node importance identification algorithm based on a
node bridging feature. The algorithm just needs neighborhood information within two hops of
the node for computing instead of global information, which makes it applicable in a large-scale
network. The robustness simulation experiments on real networks and synthetic networks show that
the proposed algorithm performs better than degree centrality, k-shell algorithm, WL algorithm, LLS
algorithm and ego betweenness centrality under two network connectivity evaluation criteria whether
in static or dynamic attack strategies. Especially in the real applications where the cost of network
attacks is limited, the advantage of the proposed algorithm is more obvious.

We also find that the dynamic attack effect is better than the static attack for the same node
importance identification algorithm. This is due to the fact that, in the dynamic attack mode,
the importance of nodes is recalculated when removing a node, ensuring that each attacked node is the
most important node in the current network. Therefore, both proposed algorithms and attack strategy
construction are key factors for the invulnerability of the complex network, which guides the way to
construct and maintain more robust networks.

In addition, we discover that attack effect is related to the network structure, especially the
average degree of the network. This is because a less average degree corresponds to less edges of
the node pairs; thus, after removing the important nodes, the connectivity of the network turns bad
very fast. The Power network and the Netscience network have the lowest and second lowest average
degree, respectively, and the two networks are almost down after removing the top 10% important
nodes under most attack strategies.

The algorithm designed in this paper is for the undirected and unweighted networks. In real
networks, the connections between nodes usually have directions, and each connection has different
weights. It is easy to know from the expression of the NBF algorithm that the algorithm can be extended
to directed weighted networks, which is the focus of future research. In addition, an algorithm that is
optimal for one network may get sub-optimal results in a different network, and it is almost impossible
to design a universal ranking algorithm which outperforms the best in all networks. In order to
get more universal conclusions, we will test our algorithm on more real and synthetic networks in
the future.
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