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Featured Application: This work addresses issues related to fault-tolerant control of quadcopter 

UAVs. 

Abstract: Fault diagnosis (FD) is one of the main roles of fault-tolerant control (FTC) systems. An 

FD should not only identify the presence of a fault, but also quantify its magnitude and location. In 

this work, we present a robust fault diagnosis method for quadcopter unmanned aerial vehicle 

(UAV) actuator faults. The state equation of the quadcopter UAV is examined as a nonlinear system. 

An adaptive sliding mode Thau observer (ASMTO) method is proposed to estimate the fault 

magnitude through an adaptive algorithm. We then obtain the design matrices and parameters 

using the linear matrix inequalities (LMI) technique. Finally, experimental results are presented to 

show the advantages of the proposed algorithm. Unlike previous research on quadcopter UAV FD 

systems, our study is based on ASMTO and can, therefore, determine the time variability of a fault 

in the presence of external disturbances. 

Keywords: fault diagnosis; quadcopter UAV; fault-tolerant control; sliding mode observer; Thau 

observer 

 

1. Introduction 

Quadcopter unmanned aerial vehicles (UAVs) have been used in a variety of applications, due 

to their numerous advantages, such as small size, agility, low cost, mechanical simplicity, and indoor 

and outdoor operability, which have led to their increased popularity compared to other UAV 

systems. As a result, they have been investigated and tested in a range of environments and 

applications which include target tracking [1,2], fault detection and fault-tolerant control [3,4], and 

formation flight [5,6]. 

Particularly the topic of fault-tolerant control (FTC) has received a large amount of attention in 

the community, which led to quadcopter UAVs that are less error-prone and, thus, more reliable 

during flight. In general, there are two types of FTC: passive and active. Several studies investigated 

passive FTCs [7,8], which have the advantage that they do not require any fault diagnosis scheme, 

but the resulting disadvantage is that they have a lower fault tolerance [9]. To overcome this 

limitation, active FTCs have been introduced to improve said fault tolerance. Fault diagnosis (FD) is 

the essential requirement for active FTCs to determine the location and magnitude of faults. Through 

FD, active FTCs can be designed to compensate the effect of faults and, thus, improve flight control 

and stability, which makes FD the main task of active FTCs. 

The FD approach has been studied by numerous authors. Freddi et al. [10,11] investigated a 

model-based fault diagnosis which can be used to monitor sensor faults and detect actuator faults. In 

this method, residuals are used to distinguish between system and observer outputs, but these 
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methods are inaccurate and unsuitable for quantifying the magnitude of a fault. Ma and Zhang 

[12,13] proposed a method for fault estimation based on a Kalman filter, but their approach is of 

insufficient robustness with regard to disturbances if the transfer matrices are inaccurate. Several 

effective approaches, such as sliding mode observer [14,15], neural network [16,17], and adaptive 

observer [18,19], have been investigated, but none of these approaches focused on a real quadcopter 

UAV. Moreover, recent studies [20,21] used fuzzy methods for fault diagnosis problems, but these 

approaches do not focus on real quadcopters, and may be overly complex to implement in a flight 

controller. Only few studies focused on the problem of fault diagnosis in a real quadcopter UAV, 

verified through real flight data. While [4] used an actuator fault estimation with an adaptive 

observer based on H


, and demonstrated the effectiveness of the proposed scheme, this method 

may not be sufficiently robust to external disturbances because the underlying mathematical model 

neglects both nonlinear terms and external disturbances. The most recent application of an adaptive 

Thau observer (ATO) for actuator fault diagnosis was proposed in [22]. While this approach is 

capable of handling model uncertainties in the nonlinear quadcopter model, it is rather complex and 

time-consuming because it uses system identification to find the drag terms, and the filter to eliminate 

sensor noise. 

In the present study, we try to overcome these limitations by combining a sliding mode observer 

based on Walcott–Zak observer design [23], with ATO to handle the actuator fault diagnosis. This 

method is capable of accounting for time-varying actuator faults. We then derive the Lyapunov 

stability and other conditions to obtain the desired matrices and associated parameters. Finally, a 

straightforward method based on linear matrix inequalities (LMI) is proposed to allow relaxing the 

derived conditions, which is a useful feature in flight controllers. Unlike previous methods, our 

approach is simple and not overly time-consuming, which makes it amenable for use in real 

quadcopters. Moreover, our method can handle uncertainties of magnitudes that are unknown, a 

priori, through an adaptive law approach. By comparing our approach to [22], we found that the 

adaptive algorithm is capable of compensating for the drag terms leading to clear improvements in 

the results. 

2. System Description 

While the right and left (3 and 4) motors of the quadcopter rotate in the clockwise direction, the 

other motors rotate in counterclockwise direction (Figure 1). Each motor is located at a distance L  

from the center of mass o . 

 

Figure 1. Schematic of the geometric configuration of the quadcopter unmanned aerial vehicle (UAV). 

Assuming the control variables can be described as 
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where 
i
τ  and 

i
T  represent the torque and thrust force produced by the thi  motor, respectively; 

1
U  is the total thrust; 

2 3 4
, ,U U U  are the torques in φ,θ,ψ  directions, which correspond to roll, 

pitch, and yaw Euler angles, respectively (Figure 1). 

Thrust force and torque are related to the rotational speed as follows: 

2

i
Ω

i
T b= , (2) 

= 2

i
Ω

i
d , (3) 

where ,b d  represent the thrust and drag coefficients, and 
i
 represents the rotational speed of the 

thi  motor. 

Inserting Equations (2) and (3) into (1) yields 

 =


=


=
 =

2 2 2 2

1 1 2 3 4

2 2

2 3 4

2 2

3 1 2

2 2 2 2

4 1 2 3 4

(Ω +Ω +Ω +Ω )

(Ω -Ω )

(Ω -Ω )

(Ω +Ω -Ω -Ω )

U b

U b

U b

U d

. (4) 

The quadcopter dynamic model has previously been formulated as follows [22,24]: 

2 φ

3 θ

4 ψ

φ ( )θψ θΩ φ

θ ( )φψ φΩ θ

ψ ( )φθ

x y z T

y z x T

z x y

I U I I J K

I U I I J K

I U I I K 

 = + − − −


= + − − −


= + − −

, (5) 

where , ,
x y z
I I I  represent the moments of inertia along the , ,x y z  directions, respectively; 

  
, ,K K K  are drag coefficients; 

T
J  is the moment of inertia of each motor, and 

3 4 1 2
Ω=Ω +Ω -Ω -Ω . 

We consider drag terms as disturbances, and they can be compensated by adaptive law, which 

is discussed in the “nonlinear observer for fault diagnosis” section. By defining the state vector 

φ θ ψ φ θ ψTx  =   , control input vector =   2 3 4

Tu U U U , and output vector 

[φ θ ψ φ θ ψ]Ty = , Equation (5) can be described in the state equation as 

( ) ( ) ( , ) ( ) ( )

( )
d

x t Ax t p x u Bu t E d t

y Cx t

 = + + +


=
, (6) 

where 
d
E  is disturbance matrix, ( ) sd t R  is disturbance vector, 

 
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. When an actuator fault 

occurs, Equation (6) can be described as 



Appl. Sci. 2018, 8, 1893 4 of 13 

( ) ( ) ( , ) ( ) ( ) ( )

( )
d

x t Ax t p x u Bu t Ff t E d t

y Cx t

 = + + + +


=
, (7) 

where F  is the fault matrix, and ( ) lf t R  is an actuator fault vector. 

3. Nonlinear Observer for Fault Diagnosis 

3.1. Standard Thau Observer for Fault Detection 

According to the state Equation (7), the two following conditions must be met by the Thau 

observer design: 

C1 the pair ( , )C A  is observable. 

C2 the nonlinear term ( , )p x u  is continuously differentiable and assumed to be Lipschitz, with 

a constant  , i.e., −  −
1 2 1 2

( ( ), ( )) ( ( ), ( ))p x t u t p x t u t x x . 

From the above conditions, the state Equation (7), based on Thau observer, can be constructed 

as [20]: 

ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( ( ) ( ))

ˆ ˆ( )

 = + + + −


=

x t Ax t p x u Bu t K y t y t

y Cx t
, (8) 

where K  is the observer gain matrix which is determined by 

Lemma 1. [11]: If the given observer gain matrix in Equation (8) satisfies 

−=


1 TK P C , (9) 

then matrix 

P  can be obtained from the Lyapunov equation 

+ − + =
  

 0T T TA P P A C C C P , (10) 

where   is a positive constant such that 


0P , and the state space model Equation (6) is an asymptotic 

estimation with 
→ →

= − =ˆlim ( ) lim( ( ) ( )) 0
t t
e t x t x t . 

3.2. Adaptive Sliding Mode Thau Observer for Fault Diagnosis 

The following conditions and lemmas are given for the ASMTO design: 

C3 ( )f t  and ( )f t  are norm-bounded, . .,i e 
1

( ) ,f t f  
2

( )f t f , with 
1
f , 

2
f  > 0. 

C4 There exists an unknown constant that satisfies ( )d t N . 

Lemma 2. For a given symmetric matrix  0P  and scalar  0 , the following inequality must be satisfied: 

− + 


11
2 T T Tx y x Px y P y . (11) 

Lemma 3. If C2 holds, there exists a matrix  0P  such that 

( )−  + 2

1 2
2 ( , ) ( , )T T Te P p x u p x u e PPe e e . (12) 

If all the above conditions and lemmas hold, then the ASMTO has a form 

ˆˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( )

 = + + + + + −


=

d
x t Ax t p x u Bu t E v t Ff t K y t y t

y Cx t
, (13) 
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where ˆˆ ˆ( ) , ( ) , ( )  
qn lx t R f t R y t R  are the observer state vector, fault estimation of ( )f t , and 

observer output vector, respectively. K  is the Thau observer gain matrix and ( )v t  is given by the 

following algorithm: 

=

= −


1

1

1

( ) ( )

( )
( ) ( )

( )

y

y

y

n t F e t

F e t
v t n t

F e t

, (14) 

where   is a constant and 
1
F  is discussed in the “stability analysis” section. 

3.3 Stability Analysis 

Denote 

= −

= −

= −

= −

ˆ( ) ( )

( ) ( )

ˆ( ) ( )

ˆ( ) ( )

x

y

f

e x t x t

n t n t N

e y t y t

e f t f t

. (15) 

Then, the error dynamics can be obtained from (7), (13), and (15) as 

( )

( )

= − + −

+ + −

ˆ( ) ( , ) ( , )

( ) ( )

x x

f d

e t A KC e p x u p x u

Fe E v t d t
. (16) 

Theorem 1. For a given observer gain, K , if there exist matrices 
1

0, 0,T TP P G G F=  =  , and 
2
F  such 

that 

( ) ( ) − + − + +
 

 +
 
 







2 0
01

0

T
P A KC A KC P PP I

G
, (17) 

=
 1

1T

d
E P FC , (18) 

=
 2

1TF P FC , (19) 

where   is positive constant, then, the fault estimation algorithm can be described as 

2
ˆ ˆ( ) ( )= − + 

y
f t F e f t , (20) 

where   is the learning rate matrix,  =   0T . 

Remark 1. The adaptive law in Equation (20) uses both error dynamics and fault vector information. While 

the proportional term can lead to a rapid improvement in system response, the fault vector can eliminate the 

error of estimation. 

Proof. Considering the following Lyapunov function. 

1 11 1
( ) T T T

x x f f
V t e Pe e e n n

 

− −= +  +  (21) 

Then, its time derivative 
.

( )V t  is 
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( )

1 1

1
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Using Theorem 1, Lemma 2, and Lemma 3, one can see that 
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1

1

2

1

2 1

1 max

2 ˆ2 ( ) ( ) ( )

2 ˆ2 ( ) ( ) ( )

ˆ2 ( )

ˆ ˆ( ) ( )

( )

−

−

−

−

+ 

= +  − + 

=

 +

 +

T T

x f f

T T

x f f y

T

f

T T

f f

T

f f

e t PFe t e f t

e t PFe t e F e f t

e f t

e Ge f t G f t

e Ge f G








, 
(23) 
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−
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(24) 

where 
max
  is the maximum eigenvalue of the associated matrix. 

From Lemma 2, one can see that 

( ) ( )− −

− − −

− − −

−  = − 



+  



+  

 
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


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According to Lemma 3, we obtain 

− + −

+ −

 − + −

+ + 2

( )[ ( ) ( ) ] ( )

ˆ2 ( ) ( ( , ) ( , ))

( )[ ( ) ( )
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T T

x x

T

x

T T

x
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PP I e t

. (26) 

With (23), (24), (25), and (26), Equation (22) becomes 
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−

− − −

= − + −

+ +

+ +

+ +  

= − + −

+ +

+
+
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2

( ) ( )[ ( ) ( )

] ( )

( )

1
( ( ) ( ) ( ))
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where 2 1 2 1 1 1

1 max 2 max

1
( ) ( ))− − − −= +  f G f G  


,  =

 
( ) ( ) ( ) ,T T

x f
t e t e t  and 

( ) ( ) − + − + +
 

 =  +
 
 







2 0

1
0

T
P A KC A KC P PP I

G
. 

If  0 , then ( ) 0V t  for   
2

( )t , where = − 
min

( ) . This means that ( )( ), ( )
x y
e t e t  

converges to a small set, according to Lyapunov stability theory [25]. 

Remark 2. It is difficult to solve Equations (17)–(19) simultaneously, and this problem can be addressed using 

the LMI technique. Therefore, we modify Equations (18) and (19) to [25] 

 −
 

− 




1 1

1 1

0
( )

T

d

T T

d

I E P FC

E P FC I
, (28) 

 
− 

 
 −
  







2 2

2 2

1

0
1

( )

T

T T

I F P FC

F P FC I

. (29) 

4. Experimental Results 

4.1. Experimental Setup and Parameters 

For safety purposes, the quadcopter test bed was developed in the guidance, navigation, and 

control (GNC) lab (Figure 2). The fault diagnosis algorithm from Section 3 was tested on a DJI F450 

quadcopter. The algorithm was implemented on a Pixhawk2 flight controller using C++ program 

from Eclipse software [26]. The flight controller used firmware version 3.5. In the experimental setup, 

a remote control was used to inject faults by limiting the pulse width modulation (PWM) of the 

motors, which allowed us to switch between stabilized and fault modes. During testing, the Mission 

Planner (MP), a commercially available software, was used to monitor flight data through Xbee 

(Telemetry) communication [27]. Since the MP has some limitations with regard to parameter 

monitoring, the fault estimation data had to be obtained through a C++ program that writes them to 

a log file. The experimental procedure is summarized in Figure 3. 
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Figure 2. DJI F450 quadcopter. 

 

Figure 3. Experimental procedure. 

The DJI F450 parameter values are shown in Table 1. For the experiment, the matrices were 

chosen as follows: the fault matrix =F B , and the disturbance matrix =   1 1 1 1 1 1
T

d
E . The 

pair ( , )A C  is observable and condition C1 is satisfied, ( , )p x u  is continuously differentiable, and 

satisfies condition C2 as it only contains multiplications and divisions. Thus, all conditions are met, 

and the proposed scheme is applicable. 

Table 1. DJI F450 quadcopter parameters. 

Parameter Description Value 

L  Arm length 0.225  m 

b  Thrust coefficient − 69.8 10  N/m2  

d  Drag coefficient − 71.6 10  

m Mass 2  kg 

; ;
x y z
I I I  Moments of inertia 0.0035; 0.0035; 0.005  kg·m2 

T
J  Rotor inertia − 62.8 10  kg·m2 

We used the following learning rate  = (0.005,0.005,0.005)diag  and sampling time 

= 0.0025 sT  for the experimental test bed. The matrices obtained from the ASMTO are 

− 
 

=   = −   
 − 

1 2

26 5 5 13,946 5 5

101.77 101.77 101.77 101.77 101.77 101.77 , 5 24 5 5 12,887 5

3 3 16 3 3 8701

F F
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6 6

100 0 0 1 0 0 101.8 0.04 0.04 0.19 0.04 0.04

0 100 0 0 1 0 0.04 101.81 0.04 0.04 0.19 0.04

0 0 100 0 0 1 0.04 0.04 101.8 0.04 0.04 0.19
100 , ,

1 0 0 100 0 0 0.19 0.04 0.04 101.8 0.04 0.04

0 1 0 0 100 0 0.04 0.19 0.

0 0 1 0 0 100

G I K P


− 
 

− 
  −

=  = = 
− 

  −
 
  

04 0.04 101.8 0.04

0.04 0.04 0.19 0.04 0.04 101.8

 
 
 
 
 
 
 
 

−  

. 

The 30% partial loss fault is injected artificially into motor 1 by limiting the PWM of the motor 

at time t = 7 s. This is achieved by changing from stabilized mode to fault mode using the remote 

control. The fault percentage is user-controllable, and can be set in the C++ program. The moments 

of motors M2, M3, and M4 remained zero while the moment of motor M1 decreases because of the 

actuator fault (Figure 4). 

 

Figure 4. Motor offsets caused by the fault. 

4.2. Robust Fault Diagnosis Result 

The in-flight attitude response is shown in Figure 5. While Figure 6 shows the fault offset 

estimations M1 to M4, the real value and fault offset estimation for M1 are shown in Figure 7. It can 

be seen from Figure 6 that the estimation values of M2, M3, and M4 are affected by that of M1 from 

7 to 18 s and, then, they converge to zero. Moreover, from the Figure 7, we see that the fault offset 

estimation value using ASMTO converges to the desired value with high accuracy. Figure 8 compares 

the real controller output offset and its estimation. From this Figure, we see that the estimation value 

can smoothly track the real one. Although ASMTO does not use noise filtering and identification 

technique for drag terms, which is presented in [20], the estimation values still obtain the high 

accuracy and smooth tracking. 
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Figure 5. The attitude angles. 

 

Figure 6. Fault estimation. 

 

Figure 7. M1 offset by fault and its estimation. 
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Figure 8. Controller output offset by fault and its estimation. 

Remark 3. From Equations (15) and (20), it is easy to show that 

2
( ) ( )

f y f
e F e e f t f t = − +  +  − . (30) 

The speed with which the estimation converges depends on the fault characteristics and the 

ASMTO design parameters. From Equation (30), we can see that   and   need to be tuned in order 

to obtain better estimations that are adapted to the fault characteristics. Normally, the value of   

would be fixed in this algorithm. 

Remark 4. Since the moments of roll and pitch are at least one order of magnitude larger than the moment of yaw, 

the latter has a larger error in its fault estimation. We resolved this problem by using an amplification and reduction 

technique [22]. 

Remark 5. The fault-tolerant controller was not the main focus of this paper, and we only used an attitude controller 

for the actuator fault diagnosis. Cases with more than one actuator fault were considered to be beyond the scope of 

this work, and were excluded mainly due to safety concerns. Moreover, the partial loss fault should be smaller than 

the nominal thrust of the quadcopter. 

5. Conclusions 

In this paper, a robust fault diagnosis method based on a Thau observer has been investigated 

for use on a quadcopter UAV under actuator fault, using a nonlinear modelling approach. Contrary 

to previous studies, the proposed scheme not only detects time-varying faults, but also works with 

an unknown upper bound of the associated disturbances. The stability of the error system could be 

demonstrated under the presence of an actuator fault. The experimental results could prove the 

effectiveness of this new method. In our future work, we will attempt to relax Equations (17)–(19) 

and implement an FTC for an attitude and position controller that will be based on the actuator fault 

estimation information. 
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