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Featured Application: This work addresses issues related to fault-tolerant control of quadcopter
UAVs.

Abstract: Fault diagnosis (FD) is one of the main roles of fault-tolerant control (FTC) systems. An FD
should not only identify the presence of a fault, but also quantify its magnitude and location. In this
work, we present a robust fault diagnosis method for quadcopter unmanned aerial vehicle (UAV)
actuator faults. The state equation of the quadcopter UAV is examined as a nonlinear system.
An adaptive sliding mode Thau observer (ASMTO) method is proposed to estimate the fault
magnitude through an adaptive algorithm. We then obtain the design matrices and parameters
using the linear matrix inequalities (LMI) technique. Finally, experimental results are presented to
show the advantages of the proposed algorithm. Unlike previous research on quadcopter UAV FD
systems, our study is based on ASMTO and can, therefore, determine the time variability of a fault in
the presence of external disturbances.

Keywords: fault diagnosis; quadcopter UAV; fault-tolerant control; sliding mode observer; Thau
observer

1. Introduction

Quadcopter unmanned aerial vehicles (UAVs) have been used in a variety of applications, due to
their numerous advantages, such as small size, agility, low cost, mechanical simplicity, and indoor and
outdoor operability, which have led to their increased popularity compared to other UAV systems.
As a result, they have been investigated and tested in a range of environments and applications which
include target tracking [1,2], fault detection and fault-tolerant control [3,4], and formation flight [5,6].

Particularly the topic of fault-tolerant control (FTC) has received a large amount of attention
in the community, which led to quadcopter UAVs that are less error-prone and, thus, more reliable
during flight. In general, there are two types of FTC: passive and active. Several studies investigated
passive FTCs [7,8], which have the advantage that they do not require any fault diagnosis scheme,
but the resulting disadvantage is that they have a lower fault tolerance [9]. To overcome this limitation,
active FTCs have been introduced to improve said fault tolerance. Fault diagnosis (FD) is the essential
requirement for active FTCs to determine the location and magnitude of faults. Through FD, active
FTCs can be designed to compensate the effect of faults and, thus, improve flight control and stability,
which makes FD the main task of active FTCs.

The FD approach has been studied by numerous authors. Freddi et al. [10,11] investigated
a model-based fault diagnosis which can be used to monitor sensor faults and detect actuator
faults. In this method, residuals are used to distinguish between system and observer outputs,
but these methods are inaccurate and unsuitable for quantifying the magnitude of a fault. Ma and
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Zhang [12,13] proposed a method for fault estimation based on a Kalman filter, but their approach is
of insufficient robustness with regard to disturbances if the transfer matrices are inaccurate. Several
effective approaches, such as sliding mode observer [14,15], neural network [16,17], and adaptive
observer [18,19], have been investigated, but none of these approaches focused on a real quadcopter
UAV. Moreover, recent studies [20,21] used fuzzy methods for fault diagnosis problems, but these
approaches do not focus on real quadcopters, and may be overly complex to implement in a flight
controller. Only few studies focused on the problem of fault diagnosis in a real quadcopter UAV,
verified through real flight data. While [4] used an actuator fault estimation with an adaptive observer
based on H∞, and demonstrated the effectiveness of the proposed scheme, this method may not be
sufficiently robust to external disturbances because the underlying mathematical model neglects both
nonlinear terms and external disturbances. The most recent application of an adaptive Thau observer
(ATO) for actuator fault diagnosis was proposed in [22]. While this approach is capable of handling
model uncertainties in the nonlinear quadcopter model, it is rather complex and time-consuming
because it uses system identification to find the drag terms, and the filter to eliminate sensor noise.

In the present study, we try to overcome these limitations by combining a sliding mode
observer based on Walcott–Zak observer design [23], with ATO to handle the actuator fault diagnosis.
This method is capable of accounting for time-varying actuator faults. We then derive the Lyapunov
stability and other conditions to obtain the desired matrices and associated parameters. Finally,
a straightforward method based on linear matrix inequalities (LMI) is proposed to allow relaxing
the derived conditions, which is a useful feature in flight controllers. Unlike previous methods,
our approach is simple and not overly time-consuming, which makes it amenable for use in real
quadcopters. Moreover, our method can handle uncertainties of magnitudes that are unknown,
a priori, through an adaptive law approach. By comparing our approach to [22], we found that the
adaptive algorithm is capable of compensating for the drag terms leading to clear improvements in
the results.

2. System Description

While the right and left (3 and 4) motors of the quadcopter rotate in the clockwise direction,
the other motors rotate in counterclockwise direction (Figure 1). Each motor is located at a distance L
from the center of mass o.
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Figure 1. Schematic of the geometric configuration of the quadcopter unmanned aerial vehicle (UAV).

Assuming the control variables can be described as
U1 = T1 + T2 + T3 + T4

U2 = (T3 − T4)L
U3 = (T1 − T2)L
U4 = τ1 + τ2 − τ3 − τ4

, (1)



Appl. Sci. 2018, 8, 1893 3 of 12

where τi and Ti represent the torque and thrust force produced by the ith motor, respectively; U1 is the
total thrust; U2, U3, U4 are the torques in ϕ, θ,ψ directions, which correspond to roll, pitch, and yaw
Euler angles, respectively (Figure 1).

Thrust force and torque are related to the rotational speed as follows:

Ti = bΩ2
i , (2)

τi = dΩ2
i , (3)

where b, d represent the thrust and drag coefficients, and Ωi represents the rotational speed of the
ith motor.

Inserting Equations (2) and (3) into (1) yields
U1 = b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

U2 = b(Ω2
3 −Ω2

4)

U3 = b(Ω2
1 −Ω2

2)

U4 = d(Ω2
1 + Ω2

2 −Ω2
3 −Ω2

4)

. (4)

The quadcopter dynamic model has previously been formulated as follows [22,24]:
Ix

..
ϕ = U2 + (Iy − Iz)

.
θ

.
ψ− JT

.
θΩ− Kϕ

.
ϕ

Iy
..
θ = U3 + (Iz − Ix)

.
ϕ

.
ψ− JT

.
ϕΩ− Kθ

.
θ

Iz
..
ψ = U4 + (Ix − Iy)

.
ϕ

.
θ− Kψ

.
ψ

, (5)

where Ix, Iy, Iz represent the moments of inertia along the x, y, z directions, respectively; Kϕ, Kθ, Kψ
are drag coefficients; JT is the moment of inertia of each motor, and Ω = Ω3 + Ω4 −Ω1 −Ω2.

We consider drag terms as disturbances, and they can be compensated by adaptive law, which
is discussed in the “nonlinear observer for fault diagnosis” section. By defining the state vector
xT =

[
ϕ θ ψ

.
ϕ

.
θ

.
ψ
]
, control input vector uT =

[
U2 U3 U4

]
, and output vector

yT = [ ϕ θ ψ
.
ϕ

.
θ

.
ψ ], Equation (5) can be described in the state equation as{ .

x(t) = Ax(t) + p(x, u) + Bu(t) + Edd(t)
y = Cx(t)

, (6)

where Ed is disturbance matrix, d(t) ∈ Rs is disturbance vector, A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

B =



0 0 0
0 0 0
0 0 0

1/Ix 0 0
0 1/Iy 0
0 0 1/Iz


, C = I6×6, and p(x, u) =



0
0
0

(
.
θ

.
ψ(Iy − Iz)− JT

.
θΩ)/Ix

(
.
ϕ

.
ψ(Iz − Ix)− JT

.
ϕΩ)/Iy

.
ϕ

.
θ(Ix − Iy)/Iz


. When an

actuator fault occurs, Equation (6) can be described as{ .
x(t) = Ax(t) + p(x, u) + Bu(t) + F f (t) + Edd(t)
y = Cx(t)

, (7)
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where F is the fault matrix, and f (t) ∈ Rl is an actuator fault vector.

3. Nonlinear Observer for Fault Diagnosis

3.1. Standard Thau Observer for Fault Detection

According to the state Equation (7), the two following conditions must be met by the Thau
observer design:

C1 the pair (C, A) is observable.
C2 the nonlinear term p(x, u) is continuously differentiable and assumed to be Lipschitz, with a

constant γ, i.e., ‖p(x1(t), u(t))− p(x2(t), u(t))‖ ≤ γ‖x1 − x2‖.
From the above conditions, the state Equation (7), based on Thau observer, can be constructed

as [20]: { .
x̂(t) = Ax̂(t) + p(x̂, u) + Bu(t) + K(ŷ(t)− y(t))
ŷ = Cx̂(t)

, (8)

where K is the observer gain matrix which is determined by

Lemma 1. [11]: If the given observer gain matrix in Equation (8) satisfies

K = P−1
ε CT , (9)

then matrix Pε can be obtained from the Lyapunov equation

AT Pε + Pε A− CTC + εCT Pε = 0, (10)

where ε is a positive constant such that Pε ≥ 0, and the state space model Equation (6) is an asymptotic
estimation with lim

t→∞
e(t) = lim

t→∞
(x̂(t)− x(t)) = 0.

3.2. Adaptive Sliding Mode Thau Observer for Fault Diagnosis

The following conditions and lemmas are given for the ASMTO design:
C3 f (t) and

.
f (t) are norm-bounded, i.e., ‖ f (t)‖ ≤ f1, ‖

.
f (t)‖ ≤ f2, with f1, f2 > 0.

C4 There exists an unknown constant that satisfies ‖d(t)‖ ≤ N.

Lemma 2. For a given symmetric matrix P ≥ 0 and scalar µ > 0, the following inequality must be satisfied:

2xTy ≤ 1
µ

xT Px + µyT P−1y. (11)

Lemma 3. If C2 holds, there exists a matrix P ≥ 0 such that

2eT P(p(x1, u)− p(x2, u)) ≤ γ2eT PPe + eTe. (12)

If all the above conditions and lemmas hold, then the ASMTO has a form{ .
x̂(t) = Ax̂(t) + p(x̂, u) + Bu(t) + Edv(t) + F f̂ (t) + K(ŷ(t)− y(t))
ŷ = Cx̂(t)

, (13)

where x̂(t) ∈ Rn, f̂ (t) ∈ Rl , ŷ(t) ∈ Rq are the observer state vector, fault estimation of f (t),
and observer output vector, respectively. K is the Thau observer gain matrix and v(t) is given by the
following algorithm:
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.
n(t) = α‖F1ey(t)‖

v(t) = −n(t) F1ey(t)
‖F1ey(t)‖

, (14)

where α is a constant and F1 is discussed in the “stability analysis” section.

3.3. Stability Analysis

Denote
ex = x̂(t)− x(t)
ñ(t) = n(t)− N
ey = ŷ(t)− y(t)
e f = f̂ (t)− f (t)

. (15)

Then, the error dynamics can be obtained from (7), (13), and (15) as

.
ex(t) = (A− KC)ex + p(x̂, u)− p(x, u)

+Fe f + Ed(v(t)− d(t))
. (16)

Theorem 1. For a given observer gain, K , if there exist matrices P = PT > 0, G = GT > 0, F1, and F2

such that [
P(A− KC) + (A− KC)T P + γ2PP + I 0

0 σ+1
σ G

]
< 0, (17)

ET
d P =

1
σ

F1C, (18)

FT P =
1
σ

F2C, (19)

where σ is positive constant, then, the fault estimation algorithm can be described as

.
f̂ (t) = −ΓF2ey + σΓ f̂ (t), (20)

where Γ is the learning rate matrix, Γ = ΓT > 0.

Remark 1. The adaptive law in Equation (20) uses both error dynamics and fault vector information. While the
proportional term can lead to a rapid improvement in system response, the fault vector can eliminate the error
of estimation.

Proof. Considering the following Lyapunov function.

V(t) = eT
x Pex +

1
σ

eT
f Γ−1e f +

1
σ

ñTα−1ñ (21)

Then, its time derivative
.

V(t) is

.
V(t) =

.
eT

x (t)Pex(t) + eT
x (t)P

.
ex(t)

+ 2
σ eT

f (t)Γ
−1 .

e f (t) + 2
σ

.
n(t)α−1ñ(t)

= eT
x (t)

[
P(A− KC) + (A− KC)T P

]
ex(t)

+2eT
x (t)PEd(v(t)− d(t))

+2eT
x (t)PFe f (t) + 2

σ‖F1ey(t)‖(n(t)− N)

+2eT
x (t)P(p(x̂, u)− p(x, u))

+ 2
σ eT

f Γ−1
.
f̂ (t)− 2

σ eT
f Γ−1

.
f (t)

. (22)
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Using Theorem 1, Lemma 2, and Lemma 3, one can see that

2eT
x (t)PFe f (t) + 2

σ eT
f Γ−1

.
f̂ (t)

= 2eT
x (t)PFe f (t) + 2

σ eT
f Γ−1

(
−ΓF2ey + σΓ f̂ (t)

)
= 2eT

f f̂ (t)

≤ eT
f Ge f + f̂ T(t)G−1 f̂ (t)

≤ eT
f Ge f + f 2

1 λmax(G−1)

, (23)

2eT
x (t)PEd(v(t)− d(t))

= 2
σ

(
F1ey(t)

)T
(
−n(t) F1ey(t)

‖F1ey(t)‖ − d(t)
)

< − 2
σ‖F1ey(t)‖(n(t)− N)

, (24)

where λmax is the maximum eigenvalue of the associated matrix.
From Lemma 2, one can see that

− 2
σ eT

f (t)Γ
−1

.
f (t) = 2

σ

(
−eT

f (t)
)(

Γ−1
.
f (t)

)
≤ 1

σ (e
T
f (t)Ge f (t)

+
.
f

T
(t)Γ−1G−1Γ−1

.
f (t))

≤ 1
σ (e

T
f (t)Ge f (t)

+ f 2
2 λmax(Γ−1G−1Γ−1))

. (25)

According to Lemma 3, we obtain

eT
x (t)[P(A− KC) + (A− KC)T P]ex(t)

+2eT
x (t)P(p(x̂, u)− p(x, u))

≤ eT
x (t)[P(A− KC) + (A− KC)T P

+γ2PP + I]ex(t)

. (26)

With (23), (24), (25), and (26), Equation (22) becomes

.
V(t) = eT

x (t)[P(A− KC) + (A− KC)T P

+γ2PP + I]ex(t)

+eT
f Ge f + f 2

1 λmax(G−1)

+ 1
σ (e

T
f (t)Ge f (t) + f 2

2 λmax(Γ−1G−1Γ−1))

= eT
x (t)[P(A− KC) + (A− KC)T P

+ γ2PP + I]ex(t)
σ+1

σ eT
f (G)e f + η

≤ ξT(t)Θξ(t) + η

, (27)

where η = f 2
1 λmax(G−1) + 1

σ f 2
2 λmax(Γ−1G−1Γ−1)), ξ(t) =

[
eT

x (t) eT
f (t)

]
, and Θ =[

P(A− KC) + (A− KC)T P + γ2PP + I 0
0 σ+1

σ G

]
.

If Θ < 0, then
.

V(t) < 0 for σ‖ξ(t)‖2 > η, where σ = λmin(−Θ). This means that
(
ex(t), ey(t)

)
converges to a small set, according to Lyapunov stability theory [25]. �
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Remark 2. It is difficult to solve Equations (17)–(19) simultaneously, and this problem can be addressed using
the LMI technique. Therefore, we modify Equations (18) and (19) to [25][

η1 I ET
d P− F1C

(ET
d P− F1C)T

η1 I

]
> 0, (28)

[
η2 I FT P− 1

σ F2C

(FT P− 1
σ F2C)

T
η2 I

]
> 0. (29)

4. Experimental Results

4.1. Experimental Setup and Parameters

For safety purposes, the quadcopter test bed was developed in the guidance, navigation, and
control (GNC) lab (Figure 2). The fault diagnosis algorithm from Section 3 was tested on a DJI F450
quadcopter. The algorithm was implemented on a Pixhawk2 flight controller using C++ program
from Eclipse software [26]. The flight controller used firmware version 3.5. In the experimental
setup, a remote control was used to inject faults by limiting the pulse width modulation (PWM)
of the motors, which allowed us to switch between stabilized and fault modes. During testing,
the Mission Planner (MP), a commercially available software, was used to monitor flight data through
Xbee (Telemetry) communication [27]. Since the MP has some limitations with regard to parameter
monitoring, the fault estimation data had to be obtained through a C++ program that writes them to a
log file. The experimental procedure is summarized in Figure 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 13 
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The DJI F450 parameter values are shown in Table 1. For the experiment, the matrices were chosen

as follows: the fault matrix F = B, and the disturbance matrix Ed =
[

1 1 1 1 1 1
]T

. The pair
(A, C) is observable and condition C1 is satisfied, p(x, u) is continuously differentiable, and satisfies
condition C2 as it only contains multiplications and divisions. Thus, all conditions are met, and the
proposed scheme is applicable.

Table 1. DJI F450 quadcopter parameters.

Parameter Description Value

L Arm length 0.225 m
b Thrust coefficient 9.8× 10−6 N/m2

d Drag coefficient 1.6× 10−7

m Mass 2 kg
Ix; Iy; Iz Moments of inertia 0.0035; 0.0035; 0.005 kg·m2

JT Rotor inertia 2.8× 10−6 kg·m2

We used the following learning rate Γ = diag(0.005, 0.005, 0.005) and sampling
time T = 0.0025 s for the experimental test bed. The matrices obtained
from the ASMTO are F1 =

[
101.77 101.77 101.77 101.77 101.77 101.77

]
,

F2 =

 −26 5 5 13, 946 5 5
5 −24 5 5 12, 887 5
3 3 −16 3 3 8701

 G = 100 × I6×6, K =



100 0 0 1 0 0
0 100 0 0 1 0
0 0 100 0 0 1
1 0 0 100 0 0
0 1 0 0 100 0
0 0 1 0 0 100


, P =



101.8 0.04 0.04 −0.19 0.04 0.04
0.04 101.81 0.04 0.04 −0.19 0.04
0.04 0.04 101.8 0.04 0.04 −0.19
−0.19 0.04 0.04 101.8 0.04 0.04
0.04 −0.19 0.04 0.04 101.8 0.04
0.04 0.04 −0.19 0.04 0.04 101.8


.

The 30% partial loss fault is injected artificially into motor 1 by limiting the PWM of the motor at
time t = 7 s. This is achieved by changing from stabilized mode to fault mode using the remote control.
The fault percentage is user-controllable, and can be set in the C++ program. The moments of motors
M2, M3, and M4 remained zero while the moment of motor M1 decreases because of the actuator fault
(Figure 4).
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4.2. Robust Fault Diagnosis Result

The in-flight attitude response is shown in Figure 5. While Figure 6 shows the fault offset
estimations M1 to M4, the real value and fault offset estimation for M1 are shown in Figure 7. It can
be seen from Figure 6 that the estimation values of M2, M3, and M4 are affected by that of M1 from
7 to 18 s and, then, they converge to zero. Moreover, from the Figure 7, we see that the fault offset
estimation value using ASMTO converges to the desired value with high accuracy. Figure 8 compares
the real controller output offset and its estimation. From this Figure, we see that the estimation value
can smoothly track the real one. Although ASMTO does not use noise filtering and identification
technique for drag terms, which is presented in [20], the estimation values still obtain the high accuracy
and smooth tracking.
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Remark 3. From Equations (15) and (20), it is easy to show that

.
e f = −ΓF2ey + σΓe f + σΓ f (t)−

.
f (t). (30)

The speed with which the estimation converges depends on the fault characteristics and the
ASMTO design parameters. From Equation (30), we can see that Γ and σ need to be tuned in order to
obtain better estimations that are adapted to the fault characteristics. Normally, the value of σ would
be fixed in this algorithm.

Remark 4. Since the moments of roll and pitch are at least one order of magnitude larger than the moment of
yaw, the latter has a larger error in its fault estimation. We resolved this problem by using an amplification and
reduction technique [22].

Remark 5. The fault-tolerant controller was not the main focus of this paper, and we only used an attitude
controller for the actuator fault diagnosis. Cases with more than one actuator fault were considered to be beyond
the scope of this work, and were excluded mainly due to safety concerns. Moreover, the partial loss fault should
be smaller than the nominal thrust of the quadcopter.

5. Conclusions

In this paper, a robust fault diagnosis method based on a Thau observer has been investigated
for use on a quadcopter UAV under actuator fault, using a nonlinear modelling approach. Contrary
to previous studies, the proposed scheme not only detects time-varying faults, but also works with
an unknown upper bound of the associated disturbances. The stability of the error system could
be demonstrated under the presence of an actuator fault. The experimental results could prove the
effectiveness of this new method. In our future work, we will attempt to relax Equations (17)–(19)
and implement an FTC for an attitude and position controller that will be based on the actuator fault
estimation information.
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