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Featured Application: Amelogenin exon 5 could have potential for application in dental
pulp capping.

Abstract: Enamel matrix derivative (EMD) is applied for periodontal therapy. We created a synthetic
amelogenin peptide (SP) derived from EMD, and have previously investigated the biological function
of SP. However, it is unknown whether SP affects odontoblastic differentiation. In this study,
we tested the effects of SP in the odontoblast-like cells, KN-3 cells. KN-3 cells were cultured with
SP (0 to 1000 ng/mL) and then cultured for 3, 8, 24, or 48 h in order to determine the effects of
SP on cell proliferation and detect its optimum concentration. KN-3 cells were treated with SP in
odontogenic differentiation medium cultured for 3 or 7 days. Odontogenic markers were measured
by the detection of alkaline phosphatase (ALP) activity and dentin sialo phosphoprotein (DSPP)
expression, the calcified nodule formation, and calcium deposition. The addition of SP significantly
promoted cell proliferation at 100 ng/mL, generating the greatest change in cell proliferation. SP also
showed increased odontogenic expression markers and mineralization. These results suggest that SP,
derived from EMD, could have potential for application in dental pulp capping.
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1. Introduction

Enamel matrix derivative (EMD) can induce the formation of hard tissue, such as alveolar
bone and cementum tissue [1,2]. EMD is applied for periodontal therapy and bone regeneration.
We previously showed that subcutaneous injections of EMD can induce the growth of cartilage tissue
and eosinophilic round bodies (ERBs) [3]. We further analyzed these ERBs by using MALDI-TOF, and
found fragments of exon 5 of amelogenin.

We synthesized a 7-amino acid (WYQNMIR) peptide based on these fragments and tested whether
the synthetic peptide (SP) would behave similarly to EMD [4]. We found that the SP could induce
bone-like tissue formation in artificial periodontal defects in rats [5,6]. Moreover, we found that SP
could enhance the cell proliferation of periodontal ligament (PDL) cells [7] and enhance osteoblastic
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differentiation in mesenchymal stem cells (MSCs) [8–10]. These findings also could help to clarify the
biological functions of amelogenin exon 5.

EMD induces anti-EMD antibodies [11]. Only peptides of greater than approximately ten residues
(or >5 kDa) can function as antigens [12,13]. SP is 7 amino acids long, with a mass of 1118 Da. Therefore,
SP has no effect with respect to inducing an immunological response.

Dental caries, tooth fractures, and other types of dental trauma induce tooth loss. Direct pulp
treatment requires materials that protect the pulp tissue but induce hard tissue formation, in order
to repair and maintain dental pulp tissues [14–19]. This requirement has led to the design and
introduction of new, bioactive agents for dental pulp tissue engineering materials.

To investigate dental pulp tissue regeneration, a rat odontoblast-like cell line, KN-3, was created
by Prof. Kitamura and Prof. Nishihara [20]. KN-3 cells showed high levels of odontogenic expression
and the ability to form calcium nodules [21]. KN-3 cells have also been used as an authentic control to
study the differentiation of induced pluripotent stem (iPS) cells and embryonic stem (ES) cells into
odontoblast-like cells [22,23].

The biological response to SP regarding odontogenic differentiation has not yet been investigated.
In the present study, we evaluated the odontogenic effects of SP in KN-3 cells.

2. Materials and Methods

2.1. Cell Culture

The rat odontoblast-like cell, KN-3, was provided by Prof. Chiaki Kitamura and Prof.
Tatsuji Nishimura (Kyushu Dental College). KN-3 cells were maintained as described previously.
Twenty KN-3 cells were cultured in normal medium comprising Eagle’s minimal essential medium
(α-MEM) with 10% FBS (Gibco BRL, Life Technologies, Grand Island, NY, USA), 500 U/mL penicillin,
500µg/mL streptomycin, and 25µg/mL amphotericin B (Nacalai Tesque, Kyoto, Japan). For differentiation
assays, KN-3 cells were incubated in medium containing 50 µM L-ascorbic acid 2-phosphate (Nacalai) and
10 mM β-glycerophosphate (Wako Pure Chemical Industries Ltd., Tokyo, Japan).

2.2. Cell Proliferation Assay

KN-3 cells were cultured in normal medium. After 24 h, the medium was changed to normal culture
medium containing varying concentrations of SP (0 to 1000 ng/mL); KN-3 cells were incubated for 3, 8,
24, or 48 h. Cell proliferation was measured via the amount of formazan. We measured the absorbance
and analyzed results using the SoftMax Pro software (Molecular Devices, Sunnyvale, CA, USA).

2.3. Morphological Analysis

KN-3 cells were incubated in normal culture medium containing SP (0 to 1000 ng/mL) for 48 h.
The images were analyzed using the all-in-one fluorescence microscope (BZ-II, Keyence Corporation,
Osaka, Japan).

2.4. Alkaline Phosphatase (ALP) Activity Assay

KN-3 cells were cultured with osteogenic medium for 7 days, and measurements were made at
days 3 and 7. After cells were washed using PBS and lysed using 0.2% Triton X-100 (Sigma-Aldrich,
St. Louis, MO, USA), the activity of ALP was investigated by one-step p-nitro phenyl phosphate (pNPP)
(Pierce Biotechnology Inc., Rockford, IL, USA). ALP activity was normalized to the quantity of DNA.
DNA content was investigated by DNA assay kit (Invitrogen, Paisley, UK). Data were investigated
using the SoftMax Pro software.

2.5. Extracellular Matrix Mineralization

For measurements of calcium production, KN-3 cells were melted using 10% formic acid, and
then calcium deposition (Ca) was investigated by calcium detection kit (Wako). For qualitative
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histology, cells were then stained using 1% alizarin red. Calcified nodules were captured using a BZ-II
microscope (Keyence).

2.6. Quantitative Real-Time Polymerase Chain Reaction (PCR)

RNA was obtained using a kit (RNeasy Mini Kit; Qiagen, Venlo, The Netherlands). and then the
extracted RNA was transcribed into cDNA using a kit (Prime Script Reagent kit, Takara, Kyoto, Japan).
mRNA expression was examined by real-time polymerase chain reaction (PCR) assay. The expression
of dentin sialoprotein (DSPP; Rn02132391_s1) was investigated in accordance with standard protocols.

2.7. Immunofluorescence Staining

KN-3 cells were fixed by 70% ethanol. The cells were treated using 0.2% Triton X-100, after
which they were blocked using 3% bovine serum albumin (BSA) and then incubated using mouse
anti-rat DSPP antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). After cells were washed
with phosphate-buffered saline (PBS), they were incubated using a fluorescence-labeled secondary
anti-mouse antibody (Santa Cruz). The samples were stained using DAPI solution (Dojindo Laboratory,
Kumamoto, Japan). Images were captured using fluorescence microscope.

2.8. Statistical Analysis

Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the
Bonferroni post-hoc test using IBM SPSS. Significant differences (p < 0.05) were determined.

3. Results

3.1. Cell Proliferation

We first tested varying concentrations of SP on KN-3 cells to determine an effective concentration.
We found that 100 ng/mL of SP significantly promoted KN-3 proliferation at 8, 24, 48, and 72 h
(Figure 1A, p < 0.05). Based on these results, we chose 100 ng/mL SP as the optimal concentration for
subsequent experiments.

3.2. Cell Morphology

In the SP control group (0 ng/mL SP), the cell morphology exhibited round-shaped morphology.
On the other hand, the cell morphology exhibited spindle-shaped morphology in the SP 100 ng/mL
group. Figure 2 indicates that the effect of SP on cell morphology.

3.3. ALP Activity

ALP activity in the SP-treated group was significantly increased after 7 days, compared with cells
solely treated with differentiation media (Figure 3; p < 0.05).

3.4. Extracellular Matrix Mineralization

Calcified nodules were increased in the SP-treated group. Calcium deposition in the SP-treated
group significantly increased after 7 days (p < 0.05). Figure 4 indicates that the effect of SP on
extracellular matrix mineralization in KN-3 cells. Figure 4A shows the effect of SP on calcified
nodule formation by Alizarin red staining. Figure 4B shows the effect of SP on extracellular
matrix mineralization.
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Figure 1. Effect of synthetic peptide (SP) on KN-3 cell proliferation. KN-3 cells were treated with 0 to 
1000 ng/mL SP diluted in 100 µL culture medium. Cell proliferation was measured at 3, 8, 24, and 48 
h. Significant differences (*, p > 0.05) were determined in comparison with the control (0 ng/mL SP). 
(A) 3 h, (B) 8 h, (C) 24 h, (D) 48. 
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3.5. mRNA Expression of Dentin Sialoprotein (DSPP)

DSPP was significantly enhanced in the SP group at 1, 3, and 5 h (p < 0.05). Figure 5 indicates that
the effect of SP on mRNA expression of DSPP.
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3.6. Immunofluorescence Expression of DSPP

Sigillary of mRNA expression, the fluorescent intensity of DSPP by immunofluorescence staining
was enhanced in the SP group. Figure 6 indicates that the effect of SP on immunofluorescence
expression of DSPP in KN-3 cells.
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4. Discussion

In this study, we found that SP enhances the proliferation and odontogenic differentiation of
KN-3 cells.

EMD and amelogenin peptide promote the proliferation of dental tissue cells, such as PDL
fibroblasts and bone marrow stromal cells (BMSCs) [24,25]. In a previous study, we showed that SP,
derived from EMD, can also promote cell proliferation of human BMSCs [8]. However, the effects of
SP on proliferation in odontoblasts had not been previously investigated.
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We showed that SP promotes KN-3 proliferation at 100 ng/mL, similar to the optimal
concentration for PDL stem cells [10]. Therefore, we further examined the odontogenic differentiation
at this concentration of SP (100 ng/mL).

ALP is considered to be an odontogenic marker [26]. We found that SP enhanced ALP activity,
which is similar to the effect of EMD in hard tissues and the effect of SP in KN-3 cells. Therefore, SP
can also induce odontogenic differentiation in KN-3 cells.

We quantified calcium levels in cultures of KN-3 cells by using alizarin red staining and
investigation of extracellular matrix calcium deposition. Alizarin red staining is performed for the
detection of calcified nodules formed by osteoblasts or odontoblasts [27]. We qualitatively and
quantitatively determined changes in mineralization in response to treatment with SP. We found
that SP enhanced mineralized nodule formation stained with Alizarin red and calcium deposition in
cultures treated for 7 days, compared with untreated cultures. Our previous study showed that SP can
also promote mineralization of PDL stem cells [16]. Our results suggest that SP can be used for the
dentin formation for earlier protection of dental pulp tissue.

We also investigated the effect of SP on odontogenic differentiation. We found that it impacted
the levels of DSPP, which is a noncollagenous dentin matrix protein that is known as an early-stage
marker of odontoblastic differentiation [28,29]. KN-3 cells cultured for 1–12 h expressed high levels of
DSPP [30]. This exhibited that KN-3 cells have the ability to differentiate into odontoblasts. In this
study, we showed that DSPP expression was upregulated by SP in KN-3 cells. These results indicate
that SP promotes odontoblastic differentiation.

5. Conclusions

We found that SP, an amelogenin peptide derived from EMD, can enhance the proliferation,
odontogenic differentiation, and formation of calcified nodules of KN-3 cells in vitro. Our findings
suggest that SP could be a new biomaterial in dental pulp therapy. Moreover, the present study
partially clarified the function of amelogenin exon 5 in odontogenesis.
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