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Abstract: Deep learning has been well-known for a couple of years, and it indicates incredible
possibilities for unsupervised learning of representations with the clustering algorithm. The forms of
Convolution Neural Networks (CNN) are now state-of-the-art for many recognition and clustering
tasks. However, with the perpetual incrementation of digital images, there exist more and more
redundant, irrelevant, and noisy samples which cause CNN running to gradually decrease, and its
clustering accuracy decreases concurrently. To conquer these issues, we proposed an effective
clustering method for a large-scale image dataset which combines CNN and a Fuzzy-Rough C-Mean
(FRCM) clustering algorithm. The main idea is that first a high-level representation, learned by
multi-layers of CNN with one clustering layer, produce the initial cluster center, then during training
image clusters, and representations, are updating jointly. FRCM is utilized to update the cluster
centers in the forward pass, while the parameters of proposed CNN are updated by the backward
pass based on Stochastic Gradient Descent (SGD). The concept of the rough set of lower and boundary
approximations deal with uncertainty, vagueness, and incompleteness in cluster definition, and fuzzy
sets enable efficient handling of overlapping partitions in the noisy environment. The experiment
results show that the proposed FRCM based unsupervised CNN clustering method is better than the
standard K-Mean, Fuzzy C-Mean, FRCM and also other deep-learning-based clustering algorithms
on large-scale image data.

Keywords: unsupervised clustering; convolution neural network; fuzzy learning; rough sets

1. Introduction

Image clustering [1–13] is a consequential research field in image processing and computer
vision applications. Nowadays, it has come into an age of big data (with many novel and portable
digital devices). Every day millions of data are produced and worldwide a large number of digital
images are uploaded to the cloud for storage or sharing. With more and more data being generated,
efficiently consolidating the large-scale image data is becoming a demanding problem. However,
many researchers focus on decreasing data from a large-scale dataset [14] and feature encoding [15] for
large-scale image clustering. The reason for this is the existence of many redundant and noise samples
among the entire large data [16].

Unsupervised clustering is an essential machine-learning technique that is utilized to discover
the common natural cluster structure of an unlabeled dataset [17]. Therefore, a great clustering
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algorithm ought to depend as little as possible on earlier learning, which is typically not available
before cluster analysis.

Distinctive clustering techniques such as hierarchical clustering [18–20], centroid-based
clustering [1–5,21,22], graph theoretical approaches [23,24], and the density-based approach [25] have
been broadly applied for image clustering. However, with the data quality increasing, another basic
issue of data uncertainty unavoidably occurs: the big data themselves may contain a high measure
of uncertainty, vagueness, and overlapping among clusters that is therefore a huge challenge to the
clustering task.

To overcome the above issues, two main mathematical tools of granular computing [26], rough set
theory and fuzzy set theory, have been introduced into the clustering method to expose uncertainties
among the raw data [27–31], which expand the clustering from hard-partition to soft-partition and
in this manner shape an essential branch of the data clustering [32–34]. For example, Fuzzy C-Mean
(FCM) clustering [35,36], Rough C-Mean (RCM) clustering [37,38], Hybrid Rough-Fuzzy clustering [27],
and Fuzzy-Rough C-Mean (FRCM) clustering [39]. FCM is one prominent clustering algorithm
generally utilized in the applied field by appointing a fuzzy membership to each sample and presenting
a fuzziness weighting exponent. RCM describes a cluster by a center and pair of lower and upper
approximations, which are weighed against diverse parameters in computing the new center in the
algorithm. FRCM is the incorporation of rough set theory and fuzzy set theory in which each cluster is
represented by a center, a crisp lower approximation and a fuzzy boundary in this algorithm, and the
new center is a weighting average of the boundary and lower approximation.

In our paper, we introduce FRCM-based unsupervised convolution neural network (CNN)
clustering. A key component of our approach is the reliable noise-free samples that are selected
by FRCM algorithm, during updating of cluster centers. The concept of fuzzy sets enables efficient
handling of overlapping partitions and rough sets deal with the uncertainty of robust data.

Deep learning (DL) has become a hot topic in the last couple of years. Deep learning is a
developing and intense model that permits large-scale task-driven features to learn from big data.
These improvements were obtained with supervised learning, whereas our goal is unsupervised image
data clustering.

A lot of remarkable deep-learning-based architectures have been proposed recently, such as
the Deep Belief Network, Deep Boltzmann Machine, Deep Autoencoder, and Convolutional Neural
Network (CNNs). However, the most well-known network architectures for image/video applications
is CNN, including CNN based AlexNet [40], ResNet [41], VGG (Visual Geometry Group) [42], and FCN
(Fully Convolutional Networks for semantic segmentation) [43]. Since they were introduced into deep
learning, the CNNs have demonstrated a state-of-the-art accuracy in large-scale image classification.
CNN based architectures play an important role in the processing of image data due to their unique
structure in the phase of feature representation, given a sufficiently large labeled training set.

The performance of clustering greatly depends on (1) noise reduction and (2) feature
representational power. There have been few attempts to increase the performance of image clustering
by deep-networks-based feature representation learning. Nevertheless, deep-networks-based feature
representational learning does depend on much labeled training data, which is not accessible in
unsupervised clustering. To overcome this problem, the model can be pre-trained in view of existing
large-scale training image sets; the pre-trained model cannot fit the normal input data divider.

Various works have investigated consolidating image clustering with representation learning [44–47].
Hsu [44] proposed CNN-based joint clustering in which Mini-batch K-Mean is then executed to
assign cluster labels. However, it is a completely deterministic model that sheds no light on
data uncertainty reduction. Xie [45] proposed Auto-Encoder based deep-learning, figuring out
how to learn visual representations followed by conventional K-Mean to get the final cluster.
However, for high-dimensional data, the Auto-Encoder generally cannot learn representative features
appropriately. Dundar (CNN-CM) [46] and Yang (CNN-RC) [47,48] proposed CNN-based clustering
with connection Matrix and re-running clustering respectively. However, when the size of the image
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data is large then it devours high computation and memory complexity. Instead, an unnecessary
number of input data would increase the parameter fine-tuning frequency of CNNs; this could cause
the risk of uncertainties and over-fitting among the raw data [49,50]. Therefore, it is normal to reason
that there must be considerable noise and redundant data in large-scale data sets.

To overcome the above issues, the contribution of our work is that we can decrease the training
time and furthermore maintain and even improve the test accuracy by selecting noise-free data for
updating clusters by using the Fuzzy-Rough C-Mean (FRCM) algorithm. In this paper, we satisfy the
model with unsupervised CNN clustering and FRCM algorithm. Our proposed clustering algorithm
benefits from both CNNs and FRCM by merging one with the other; this is shown in Figure 1.
Unsupervised CNN clustering (UCNN) architecture is proposed, which can extract salient features to
produce the initial cluster centers. During the learning stage the cluster and representation are updating
simultaneously: cluster centers are updating based on robust free samples by FRCM algorithm in
forward-pass and the parameters of representation are updating in backward-pass on stochastic
gradient descent (SGD). The main idea behind our method is that good representations are beneficial
to image clustering and better clustering results beneficial for feature representations.

The main contributions of the proposed algorithm are as follows:

1. We present an FRCM-based unsupervised CNN clustering, which is robust to the uncertainties in
the training data and could achieve reliable performances even with noisy samples.

2. We propose a joint learning framework to simultaneously update the parameter of unsupervised
CNN and the cluster centroid iteratively.

3. We introduce FRCM with CNN to reduce the time complexity and increase cluster performance
by updating the cluster centers based on a reliable sample selection, which is a key component of
our method to ensure its success.

4. Extensive experiments on large-scale image datasets indicate that our strategy to enhance the
clustering accuracy, when compared with other non-fuzzy deep neural networks, show that
fuzzy learning is without a doubt a conceivable method to further improve the performance of
deep-learning-based clustering algorithms.

This paper is organized as follows: Section 2 deals with the implementation strategy of the
algorithm, Section 3 describes the experiment and results, Section 4 provides the threats to validity
and Section 5 provides the conclusion.
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2. Fuzzy Rough C-Mean Based Unsupervised CNN Clustering

2.1. The Problem of Deep-Learning-Based Clustering

In recent years, the clustering method with the deep neural network has gained additional interest
due to the success of supervised learning [46,48,51–68]. However, in most cases, clustering is handled
in the unsupervised form, making its application with deep learning more significant and requiring
more modeling effort and theoretical analysis.

Previously deep learning-based clustering algorithms have not focused on data uncertainty
reductions to increase the accuracy and decrease the time complexity.

Xie et al. [45] proposed the first deep-learning based clustering. Deep Embedded Clustering
(DEC) is based on auto-encoders as network architecture followed by conventional K-Means for final
clustering. The network model is fine-tuned using the cluster assignment hardening less and the
cluster centers are updated.

Yang et al. [64] also proposed the auto-encoder-based method followed by K-Mean clustering.
However, the network is jointly trained using a combination of the representation learning and
image clustering.

Lie et al. [58] proposed an idea almost identical to DEC except for using a conventional
auto-encoder. However, for high-dimensional data, the auto-encoder usually cannot learn
representation features well compared to CNN-based architectures.

Yang et al. [47] proposed a convolution neural network with re-running clustering (CNN-RC)
method. For clustering, a hierarchical clustering approach is utilized. Concerning the training part,
the network is jointly trained, and the cluster is updated in the forward pass, while representation
learning is in the backward pass. However, compared the centroid-based clustering, hierarchical
clustering devours high computation and memory complexity due to the size of image data which
becomes large.

Dundar [46] proposed a CNN with the connection matrix (CNN-CM) method; for clustering
K-Mean is utilized. A connection matrix is proposed that enables encouraging in additional side data
to help to learn the representation for clustering. In the view of learned features, a full-set K-Mean
is then performed to gather all images into their relating clusters. However, when the size of data
becomes large, the complexity of full-set K-Mean will increase.

Hu & Lin [44] proposed clustering CNN to achieve joint clustering and representation learning
with feature Drift Compensation for large-scale image data. They extracted the silent features from
one of the internal layers of CCNN. At first, initial cluster centroids are assumed from extracted
features of randomly picked k samples, and K-Mean is performed on the features extracted from the
input dataset to get corresponding cluster labels. Based on the assigned labels and labels predicted
by the Softmax layer, the network parameters can be updated. Further, the corresponding cluster
centroids are updated by extracted features of the mini-batch. However, the fuzzy modeling achieves
many advantages over the non-fuzzy method, such as robustness against uncertainties, vagueness,
and overlapping dataset.

2.2. Background of Fuzzy Rough C-Mean (FRCM)

Hu et al. [69] proposed a FRCM clustering algorithm, which is the development and combination
of FCM [70] and RCM [37,38]. As we know, FCM maps a membership over the range 0–1; each object
belongs to some or all of the clusters to some fuzzy degree. RCM classifies the object space into
three parts: lower approximation, boundary, and negative region. All the objects with RCM in the
lower approximation take the same weight and all the objects in the boundary take another weighting
index uniformly. In fact, the objects in the lower approximation definitely belong to a cluster, but the
objects in the boundary regions belong to a cluster to some extent and have different influences on
the centers and clusters, so different weighting values should be imposed on the boundary objects in
computing the new centers. Inspired by the above idea, FRCM [69] integrates the advantage of fuzzy
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set theory and rough set theory and incorporates fuzzy membership values of each sample to the
lower approximation and boundary area of a cluster. Let a set of image data I = {I1, I2, . . . , Inx} ∈ Rd,
where d is the dimension of the data points. Each cluster Cj (j = 1, 2, . . . , k) is regarded as a rough
set. It is categorized by the lower approximations Cj, the upper approximations Cj and the boundary

area CB
j = Cj − Cj, respectively. Let c = {c1, c2, . . . , ck} be a vector composed of k centers of clusters,

where cj ∈ Rd. The objects in lower approximation belong to a cluster categorically, however the
objects in the boundary regions belong to a cluster to some extent and have diverse effect on the centers
and clusters, so different weighting values ought to be imposed on the boundary objects in computing
the new centers.

Let u = {ui(j)}nx x k be a membership matrix, we can define that membership function as follows:

uij =


1,

1
∑k

s=1 (dij/dsj)
2/(m−1)

,

i = 1, 2, . . . , nx,

Ii ∈ Cj

Ii ∈ CB
j ,

j = 1, 2, . . . , k

(1)

The exponent m > 1 is utilized to change the weighting impact of membership values.
The new cluster center is computing as follows

c(l+1)
j =

∑nx
i=1

(
u(l)

ij

)m
Ii

∑nx
i=1

(
u(l)

ij

)m , j = 1, 2, . . . , k (2)

The objective function of FRCM is

J(l)m (u, c) = ∑nx
i=1 ∑k

j=1 (uij)
m‖Ii − cj‖2 (3)

The FRCM can be formulated as follows.

Input: Unlabeled data I, number of cluster k, threshold parameter T, exponent index m, stop criterion ε.
Output: membership matrix u, k cluster centers.

Step 0: Let l = 0, initialization the centers c(l)j , j = 1, 2, . . . , k using random sampling.

Step 1: Assign the data objects to the approximations

i. For a given data object Ii calculate its closest center c(l)h and A(l) as follows

d(l) = dist
(

Ii, c(l)h

)
= min

1≤j≤k
dist

(
Ii, c(l)j

)
(4)

A =
{
∀ s, s = 1, 2, . . . , k, s 6= h : d(l)

is − d(l)
ih ≤ T

}
ii. If A 6= ∅, then Ii ∈ Ch, Ii ∈ Cs, and Ii /∈ Cl , l = 1, 2, . . . , k.

If A 6= ∅, then Ii ∈ Ch, Ii ∈ Ch.

Step 2: Compute membership values using Equation (1).
Step 3: Compute new cluster center by using Equation (2).
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Step 4: Check convergence of the algorithm. If the algorithm has converged, stop, else l = l + 1 go to
Step 1.

2.3. FRUCNN Clustering Architecture

To enhance the performance of the clustering algorithm, we integrate unsupervised CNN
(UCNN) [71] with Fuzzy Rough C-Mean clustering to the proposed new clustering algorithm, which is
shown in Figure 1. It is generally divided into two parts such as the pre-clustering part and further
joint clustering and representation learning. During the learning stage, the clusters are updated by the
FRCM algorithm. The pre-clustering part, Figure 2 show the network architecture of our proposed
unsupervised convolutional neural network which contains multi-convolution with one clustering
layer. During the pre-clustering part, the size of multi-convolution layers depends on the size of the
dataset. For big data, it needs large-scale networks. For example, for image net [72] the unsupervised
CNN clusters consist of five convolutional layers received from the initial five convolutional layers
(Conv 1–Conv 5) of AlexNet [40], followed by three adjustment layers (Conv 6, Conv 7, and CConv)
with channel number 6144, 2048 and k, respectively, that supplant the fully connected (FC) layer
in AlexNet. The adjustment layers (Conv 6, Conv 7, and CConv) involve two convolutional layers
(Conv 6–Conv 7) with one clustering convolutional layer (CConv) with k clusters, all with 3× 3 kernels
followed by global max-pooling. The maximum value for each channel of the clustering convolutional
layer (CConv) is the output of the max-pooling so that the size is 1 × k. Finally, we join with a fully
connected layer (FC) and Softmax layer to extract the image features.
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Figure 2. A proposed unsupervised Convolution Neural Network (CNN) based network architecture,
that consists of few convolutional layers, followed by some adjustment to convolution layers with one
clustering convolution layer (CCnov), a fully connected layer, and Softmax layer.

2.4. Joint Clustering and Representation Learning

Suppose the unlabeled dataset contains nx images I = {I1, I2, . . . , Inx}. The main objective is to
group nx images into k clusters C = {C1, C2, . . . , Ck}. Let H = {h1, h2, . . . , hnx} be the set of extracted
features from the FC layer of UCNN using filters hi = f (WFC/Ii), where WFC represents the set of
parameters (weights) of FC layer. We use FRCM to update the clusters by using features extracted
from the FC layer as initial cluster centers.

In our proposed method, given an input image set, we first randomly pick k samples and extract
their features as an initial cluster centroid using the proposed UCNN with an initial pre-trained image
from the ImageNet datasets. FRCM is then performed to assign cluster labels to individual images
randomly sampled from the input set until all images are processed. Subsequently, the proposed
UCNN simultaneously updates the parameters of proposed UCNN and the centroids of image clusters
iteratively based on stochastic gradient descent.

In the learning part, the weight WFC and cluster centroid c will be updated simultaneously using
Algorithm 2, the cluster centroid is updated by using FRCM using Algorithm 1, and updating the
representation parameters by stochastic gradient descent (SGD).
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2.4.1. Pre-Processing Data for UCNN

Data argumentation is utilized to increase sample variety during the initial pre-clustering process.
After the initialization, we used ILSVRC12 training set of ImageNet [73] to pre-train the parameters of
Conv 1–Conv 5 in the AlexNet [40].

2.4.2. Cluster Centroid Updating

Let I = {I1, I2, . . . , Inx} be the set of nx images. Initially, k random images are selected from input
image set I and extract their features Hj using the pre-trained UCNN H(t)

j =
{

ht
1, ht

2, . . . , ht
k
}
∈ HFC

from FC layer as initial cluster centroid c in the initial iteration (i.e., t = 0) by UCNN network.
The Fuzzy-Rough C-Mean (FRCM) algorithm [39] is performed to update the cluster centroid by
objective function of FRCM, which is

Jm(u, h) = ∑nx
i=1 ∑k

j=1

(
uij
)m‖Ii − hj‖2 (5)

The exponent m > 1 is utilized to change the weighting impact of membership values.
Updated cluster centroid by FRCM is

ht+1
j = ct+1

j =
∑nx

i=1 (u
t
ij)

m Ii

∑nx
i=1 (u

t
ij)

m , j = 1, 2, . . . , k (6)

In iteration t, the jth-centroid ct
j that is assigned as a new sample h(t)j , where h(t)j represent the

extracted features for FC layer.

Algorithm 1 The Cluster Centroid Updating

Input:
Unlabeled Inx image dataset,
Number of cluster k,
Randomly select k image Ink from Inx,
Extract image feature from Ink images as the initial centroid.
Initial cluster center c, at t = 0,
Exponent index m,
Threshold parameter T,
Stop criterion ε.
Output:
Updated cluster centroid c,
Updated extracted features for FC layer.

1. Let t = 0, initialization the cluster center

c(o)j = h(o)j =
{

ho
1, ho

2, . . . , ho
k
}
∈ Ho

FC, j = {1, 2, . . . , k}.
2. Assign the data object to the approximation by Equation (4).

3. Compute u(t)
ij according to Equation (1).

4. Compute new cluster center ct+1
j according to Equation (6).

5. Check convergence of the algorithm. If the algorithm converged, stop, else t = t + 1 go to step 2.
6. Assigned features for FC layer as

h(t+1)
j = c(t+1)

j .

7. End
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2.4.3. Representation Learning

By using unsupervised CNN, the features are extracted for FC layers to generate the features for
clustering by the output of the extracted local salient features from CConv layer [74]. To learn the
parameters θ(wri, wij) of FC and softmax layers of UCNN, we utilize SGD process [75] as in Figure 3,
where wri is the set of weights of layer FC and wij is the set of weights of softmax. In order to learn the
parameters of layers FC and softmax, we first define the objective function.

L =
1
2 ∑k

j=1 (ŷj − yj)
2 (7)

where k is denoted as the number of the cluster, ŷj is the predicted jth cluster label utilizing UCNN
and yj is the predicted jth cluster label by using FRCM that is used as a pseudo ground-truth to assist
the update of the UCNN clustering model. Then we compute the gradient of the objective function
w.r.t wri for updating the weights of FC. For this, first use the chain rule to calculate gradient w.r.t wij
as follows.

∂L
∂wij

=
∂L
∂ŷj
·
∂ŷj

∂uj
·

∂uj

∂wij
(8)

where uj is the activation function of the jth ReLU [76]. The partial derivative of L w.r.t ŷj is

∂L
∂ŷj

= ŷj − yj (9)

and the partial derivative of ReLU w.r.t its u is

∂yj

∂uj
= max

(
ŷj, 0

)
(10)

The partial derivative of uj = ∑k
i=1 wijhi w.r.t wij is

∂uj

∂wij
= hi (11)

Consequently, wij can be updated in the tth iteration by

w(t+1)
ij = w(t)

ij − η
(
ŷj − yj

)
·max

(
ŷj, 0

)
·h(t)i (12)

where η is the learning rate. Now by using chain rule to calculate gradient w.r.t wri as follows.

∂L
∂wri

= ∑k
j=1

(
∂L
∂ŷj
·
∂ŷj

∂uj
·

∂uj

∂hi new

)
· ∂hi
∂ui
· ∂ui
∂wm i

(13)

where
∂uj
∂hi

= wij, the derivative of ReLU hi w.r.t ui is

∂hi
∂ui

= max(hi , 0) (14)

and ∂ui
∂wr i

is

∂ui
∂wr i

=
∂ ∑k

r=1 wr i xr

∂wr i
= xr (15)
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Consequently wr i can be updated in the tth iteration by

w(t+1)
r i = w(t)

r i − η
k

∑
j=1

[ (
ŷj − yj

)
·max

(
ŷj, 0

)
·wij

]
·max

(
ht

i , 0
)
·xr

= w(t)
r i − η ∆ w(t)

r i

(16)

Equation (16) is the full gradient for updating the weights of FC layer.

Algorithm 2 Joint Cluster Centroid Updating and Representation Learning

Input:
Input image dataset I,
Randomly select k images dataset Ink,
Number of cluster k,
Learning rate η,
Max iteration τ,
Randomly pick k images from I and extract image features hj.

Then initial cluster centers, c(o)j = h(o)j ∈ Ho
FC

Output:
Final cluster centroid,
Final weight (wri, wij)

1. For t = 1 to τ to do.
2. Calculate yj cluster label using FRCM [39] as a ground-truth.

3. Update cluster centroid by using Algorithm 1.
4. Find predicted cluster label ŷj using updated cluster centroid in FC layer of UCNN network.

5. Update weight (wri and wij) by using Equations (12) and (16).

6. Fine tune (UCNN, k, ŷ) by using Equation (7).
7. End.Appl. Sci. 2018, 8, x  9 of 19 
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3. Experiments

3.1. Data Preparation

In this paper, MATLAB 2018a [77] was utilized as the programming tool. Table 1 is the description
of three publically available datasets on which the experiments were performed. We selected one
large-scale image dataset, ILSVRC12 in ImageNet [73], which consists of 1.2 million training images and
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50 thousand validation images of 256 × 256-pixel size collected from one thousand object categories.
Other than the large-scale image dataset, we additionally evaluated the performance of our proposed
approach on two smaller scale dataset; MNIST [78] and Youtube–Face (YTF) [79]. MNIST contains
60 thousand training images and 10 thousand testing images of hand-written digits of 28× 28-pixel size;
the digits are centered and the size is normalized. YTF consists of 10 thousand images 55 × 55-pixel
size. The images are cropped faces and then resized into a constant. The personal computer is equipped
and is used for experiments on all dataset with a commercial GPU card.

Table 1. Description of Datasets.

Dataset No of Sample No. of Classes Image Size

ILSVRC12 1,250,000 1000 256 × 256
MNIST 70,000 10 28 × 28

YTF 10,000 41 55 × 55

3.2. Performance Measure

We adopted four widely utilized clustering performance measures to evaluate the performance of
the proposed method, Normalized Mutual Information (NMI) [80], Clustering Accuracy (ACC) [81],
Mean of F-Measure (MFM), and Mean of Area Under the Curve (MAUC) [82].

NMI is defined as

NMI(C, Y) =
I(C, Y)√

H(C)H(Y)
(17)

where C is the class label, Y is the cluster label, H(.) stands for the Entropy and I(CY) = H(C)−H(C/Y)
denotes the mutual information between C and Y. A higher NMI is more consistent for
clustering results.

The Acc gives the same weight for each class. The final result is obtained by the average value of
the accuracy rate of each class independently. Acc is defined as.

Acc =
∑n

i=1 Acci

m
(18)

where m is the number of classes and Acci stands for the accuracy rate for the ith class.
Binary class problems are shown in Table 2 and donate categorized results of True and False. Here,

the minority class is considered positive and the majority class is considered negative. Several measures
can be deduced from the confusion matrix for the binary class problem.

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

F−Measure =
2× recall× Precision

recall + Precision
(21)

The mean F-Measure can be defined for multi-class problems as follows:

MFM =
∑m

i=1 (FM)i
m

(22)

where m is the total number of classes and i is the index for positive class.
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Mean AUC is the average of the pairwise AUC values of all pairs of classes which is defined as

MAUC =
2

m(m− 1) ∑i<j

(
AUC

(
Ci, Cj

))
=

2
m(m− 1) ∑

i<j

[
A
(
Ci, Cj

)
+ A

(
Cj, Ci

)] (23)

For two classes Ci & Cj, the value of AUC (Ci, Cj) represents the probability of being assigned to
the ith class by the classifier. A randomly selected sample from the first class (ith class) has a higher
probability to assign compared to a randomly selected sample from the second class (jth class) and
vice versa.

Table 2. Confusion Matrix.

Dataset Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positive (TP) False Negative (FN)
Actual Negative Class False Positive (FP) True Negative (TN)

3.3. Comparison Schemes

To analyze the performance of our approach on large-scale image dataset, we compared
our model into two parts. In the first part, we tested our method with seven clustering
models with two state-of-the-art clustering models including K-Mean [83] and Fuzzy C-Mean [84];
also five deep learning based clustering models including Deep Embedded Clustering (DEC) [45],
Deep Embedded Regularized Clustering (DEPICT) [53], Convolution Clustering for Unsupervised
Learning (CNN-CM) [46], Joint Unsupervised Learning of Deep Representations and image cluster
(JULE) [47] and CNN-Based Joint Clustering and Representation learning (CCNN) [44]. Besides the
seven cluster models, in the second part we applied three baseline schemes for performance evaluation.
Scheme 1: the proposed method without update cluster centroid by FRCM. Scheme 2: the proposed
method without iterative representation learning using updated cluster centroid. Scheme 3:
the proposed method with update cluster centroid and iterative representation learning simultaneously.

3.4. Implementation Details

We utilized AlexNet [40] pre-trained on the ILSVRC12 training set on ImageNet as our basic CNN
models to avoid turning any hyper-parameters utilizing the labeled data and also to accelerate the
convergence. Data augmentation was utilized to increase the sample variety during the pre-training
process. We considered that the number of convolutional layers depends on the size of the image in the
dataset. We selected ILSVRC12 in ImageNet [73] as large-scale image dataset. We demonstrated the
performance of our clustering method on ILSVRC12 validation set denoted as “ILSVRC12-Val” and
did not evaluate theILSVRC12 training set for fairness. The proposed unsupervised CNN clustering
for ImageNet is composed of five convolutional layers assumed from AlexNet [40], followed by two
adjustment layers with channel size 6144 & 2048 with 3× 3 kernel size and one clustering convolutional
layer with k channel size with 3 × 3 kernels followed by a global max-pooling with (1 × k) output,
where k is denoted as the number of clusters that replace the one fully connected layer and softmax
layer with k channel size.

We also evaluated the performance of our approach on two other image dataset: MNIST and
YTF. The image size of these datasets is substantially smaller than the ImageNet. So, we composed
two convolution layers adopted form AlexNet followed by one clustering convolution layer with one
fully connected (FC) layer and the other Softmax layer. The output of FC layer is considered the initial
centroid of clusters which is updated by utilizing the Fuzzy Rough C-Mean (FRCM) algorithm in the
forward pass and representation learning of cluster convolution, FC and softmax layers by backward
pass using SGD. The personal computer is utilized to compute all results with a commercial GPU card.
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3.5. Experimental Design

The experimental results analysis is mainly split into two parts. In the first part, FRUCNN is
tested on three benchmark large-scale image datasets with comparison to the other state-of-the-art
clustering methods and deep-learning-based clustering methods, and in the second part, we will
discuss three different schemes of FRUCNN and experimentally compare their performances in the
consequent test.

Table 3 shows the results of the performance measure (NMI, Acc, MFM, and MAUC) on four
datasets to demonstrate the effectiveness of our proposed approach. From the analysis of the results of
all performance measures, MNIST-Full and MNIST-Test show better results compared to ILSVRC12-
Val, and YTF. For further analysis of the results of large-scale dataset, we compared our proposed
approach to other state-of-the-art methods.

Table 3. Results of Performance Measures (NMI, Acc, MFM & AUC) of Proposed work (FRUCNN).

Dataset NMI (Normalized
Mutual Information)

ACC (Clustering
Accuracy)

MFM (Mean
of F-Measure)

MAUC (Mean of Area
Under the Curve)

ILSVRC12 0.401 0.456 0.400 0.412
MNIST-Full 0.919 0.971 0.870 0.924
MNIST-Test 0.920 0.974 0.910 0.945

YTF 0.891 0.783 0.650 0.736

FRUCNN, Fuzzy Rough C-Mean Based Unsupervised CNN Clustering.

In Table 4, the reported results are borrowed from the original paper; for those that did not show
the results, the corresponding results are found by re-running the code released by original papers.
We put dash marks (-) for the results that are not applied to obtain.

Table 4. Comparison between the Different Clustering Algorithms Based on Clustering Performance
(NMI & ACC).

Methods ILSVRC12-Val MNIST-Full MNIST-Test YTF

NMI ACC NMI ACC NMI ACC NMI ACC

K-Mean - - 0.500 0.534 0.501 0.547 0.776 0.601
FCM - - 0.613 0.657 0.615 0.660 0.779 0.632

DEC 0.155 - 0.816 0.844 0.827 0.859 0.446 0.371
DEPICT 0.371 - 0.917 0.965 0.915 0.963 0.802 0.621

CNN-CM 0.225 - 0.906 - 0.877 - - -
JULE 0.369 - 0.913 0.964 0.915 0.961 0.848 0.684

CCNN 0.375 - 0.876 - 0.916 - - -

FR-UCNN 0.401 0.456 0.919 0.971 0.920 0.974 0.891 0.783

Table 4 compares the NMI and ACC performances of the proposed clustering method with
other clustering methods with the parameters T = 0.05 and ε = 0.01. We will do the analysis of
the results in Table 4 of non-deep-learning based clustering algorithms; these are not applicable for
large-scale image dataset like ILRCVRC-12 in ImageNet. In another image dataset such as MNIST
and YTF, FCM performed better than K-Mean. When we do the comparison with the results of
deep-learning based clustering algorithms with the state-of-the-art clustering algorithms, at that point
all deep-learning based clustering algorithms outperform with a significant margin. The reason
behind this result that learning performs better is that feature representation of input images lead to
better clustering results. We also compare our proposed clustering method with other deep-learning
based clustering methods. The proposed FRUCNN achieves comparable performance upgrading
in NMI by 0.021–0.032, 0.002–0.013, 0.004–0.005 and 0.043–0.089 with DEPICT, JULE and CCNN
methods and significantly outperforms upgrading in NMI by 0.176–0.246. 0.013–0.103, 0.043–0.093
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and 0.445 with DEC and CNN-CM for all ILSVRC 12-Val, MNIST, and YTF datasets. The experiment
results demonstrate that the proposed FRUCNN approach performs better for image dataset for
numerous scales.

Table 5 compares the NMI and ACC performance on different schemes of the proposed method.
When we compare Schemes 1 and 2, the performance of clustering is improved with updating the
centroid with the assistance of the FRCM algorithm. When Scheme 2 is compared with Scheme
1, it handles the large-scale image data with less time complexity because of the reliable sample
selection for updating cluster centers by FRCM. The performance of Scheme 3, our proposed method,
significantly improves the cluster performance in NMI with 0.201, 0.289, and 0361, when compared
with only updating iteratively representation learning and in NMI with 0.191, 0.79, 0.068, and 0.151,
when compared the proposed method is updating only cluster centroid. In the analysis from the above
results, we achieved the better cluster performance with updating the cluster centers compared to
updating iteratively representation learning. The highest performance of Scheme 3 shows that the
combination of updating cluster centers and iterative representation learning simultaneously make a
great combination for achieving maximum clustering performance.

Table 5. Comparison between different Schemes of Proposed Method Based on Performance Measure
(NMI & ACC).

Methods ILSVRC12-Val MNIST-Full MNIST-Test YTF

NMI ACC NMI ACC NMI ACC NMI ACC

Scheme–1 0.200 0.256 0.630 0.651 0.640 0.663 0.530 0.500
Scheme–2 0.310 0.357 0.840 0.852 0.852 0.860 0.740 0.700
Scheme–3 0.401 0.456 0.919 0.971 0.920 0.974 0.891 0.783

3.5.1. Computational Time Comparison

To evaluate the efficiency of our clustering algorithm on image datasets, we compare the
computational time of our proposed FR-UCNN method with other compared algorithms, where we
set the number of epochs for parameters updating to 10. Table 6 illustrates the computational time for
FR-UCNN and other methods on all datasets. The comparison shows that our method consumed 3.1 h,
1.2 h, 0.16 h, and 0.5 h to obtain the clustering results of t ILSVRC12-Val, MNIST-Full, and MNIST-Test
respectively. Our method achieved better results compared to other methods except CCNN due to a
mini-batch based method with feature drift comparison which can effectively address the problem of
large-scale image dataset.

Table 6. Computational Time Comparison of FRUCNN with compared methods.

Methods/Data ILSVRC12-Val MNIST-Full MNIST-Test YTF

DEC - - - 0.4 h
DEPICT - 2.7 h 0.41 h 0.6 h

CNN-CM 3.2 h 2.9 h 0.33 h 0.9 h
JULE 5.1 h 3.1 h 0.40 h 1.1 h

CCNN 1.2 h - - -

FR-UCNN 3.1 h 1.2 h 0.16 h 0.5 h

3.5.2. Performance on Number of Cluster (k)

Figure 4 shows the NMI performance on the different number of k clusters w.r.t ILSVRC12-Val
and MNIST-Full dataset. First, the ILSVRC12-Val dataset at k = 1 accomplishes the best NMI
performance. The performance is decreasing with the number of k increasing. Let k = 1 be the
good choice for ILSVRC12-Val, however the computation time is too long for fine-tuning the learning
representation. We will consider the computational time and performance results together, at that
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point the best choice is k = 10 or less for the ILSVRC12-Val dataset. Secondly, for the MNIST-Full
dataset, at k = 9 accomplishes the highest NMI performance as expected. When we compare the
performance MNIST-Full dataset with k = 9 and k = 10 then k = 9 accomplishes better performance as
the handwriting digits 4 and 9 consider the same cluster. For both datasets, k = 9 or 10 seems to be a
reasonable choice for good NMI performance with much less computation.
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3.5.3. Performance on Number of Epochs

Figure 5 demonstrates the importance of our proposed approach by comparing the different
number of epochs on MNIST-train dataset using (t-SNE) [85] visualization, with true cluster labels
shown in different colors. It can be seen from visualizations that the clusters are becoming increasingly
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Figure 6 also shows the comparison of NMI performance with respect to the different number
of epochs on four data sets. We evaluate the performance of our proposed method; the clustering
performance gradually increases with the number of epochs increasing for updating parameters.
We also analyze from Figure 6 that the performance is stable after the number of epochs is 25 for
ILSVRS12-Val and MNIST dataset and clustering performance is stable for YTF dataset after the
number of epochs is 30. After the analysis of Figures 4 and 6, the best choice for ILSVRC12 is k = 10
with epochs 25 and for MNIST and YTF k = 9 or 10 with epochs 30.
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4. Threats to Validity

Some potential threats to validity exist in our experimental study. Dataset quality might be the
most important threat to the external validity, which refers to the generalizability of our experimental
results. To guarantee the representativeness of our experiment, we utilized ImageNet, MNIST and
YTF image dataset s, which are usually utilized for clustering techniques.

Our unsupervised CNN clustering method adopts an initial pre-trained CNN model from
ImageNet to predict cluster labels; it can generally lead to consistent convergence performance.
In addition, Fuzzy Rough C-Mean clustering is utilized for updating cluster centroid with CNN
architecture. Although Fuzzy C-Mean clustering is certain to converge, there is no hypothetical
guarantee for the convergence of the FRCM clustering approach.

We implement a broadly utilized metric NMI (Normalized Mutual Information) matrix and ACC
(Average) to evaluate the clustering performance. NMI is more reliable for clustering results compared
with other performance measures. To avoid the internal threat, all implementation is cross-checked
by our research group. There is no hypothetical guarantee of convergence (just like the other existing
deep-learning-based clustering models) for large image datasets. Our experiment results show that
our approach can achieve a good convergence performance.

5. Conclusions

In this paper, we provided image clustering using extracted from convolutional clustering layers
in a Convolution Neural Network (CNN). This provides a state-of-the-art performance; we have
shown that with our proposed unsupervised CNN clustering based on Fuzzy Rough C-Mean (FRCM)
algorithm, performance can be improved for robust large-scale image dataset based on the iteration
between an updating cluster centroid using FRCM algorithm and an unsupervised CNN clustering
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fine-tuning. An unsupervised CNN clustering can extract silent features from the convolutional
clustering layer to produce the initial cluster center. During the training process, the cluster and
representation are trained jointly; the cluster center is updated step-by-step by FRCM algorithm
during the forward pass and learned representation in backward pass. We also show that reliable
sample selection for updating cluster centroids by the FRCM algorithm is the key component to
its success. Empirical studies with other non-fuzzy CNN reveal that fuzzy and rough learning
with CNN demonstrates the strength of the proposed method on several image datasets. But the
defect is that too many parameters need to adjusted, and in future we need to work to make the
parameters self-adaptive.
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