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Featured Application: This paper proposes a new super-resolution reconstruction method for
infrared images, which makes a contribution to the research in infrared image processing and
image reconstruction.

Abstract: Owing to the limitations of the imaging principle as well as the properties of imaging
systems, infrared images often have some drawbacks, including low resolution, a lack of detail,
and indistinct edges. Therefore, it is essential to improve infrared image quality. Considering the
information of neighbors, a description of sparse edges, and by avoiding staircase artifacts, a new
super-resolution reconstruction (SRR) method is proposed for infrared images, which is based
on fractional order total variation (FTV) with quaternion total variation and the Lp quasinorm.
Our proposed method improves the sparsity exploitation of FTV, and efficiently preserves image
structures. Furthermore, we adopt the plug-and-play alternating direction method of multipliers
(ADMM) and the fast Fourier transform (FFT) theory for the proposed method to improve
the efficiency and robustness of our algorithm; in addition, an accelerated step is adopted.
Our experimental results show that the proposed method leads to excellent performances in terms of
an objective evaluation and the subjective visual effect.

Keywords: super-resolution; infrared image; quaternion fractional order TV; Lp quasinorm;
plug-and-play ADMM

1. Introduction

Because of the imaging principle and other properties of infrared imaging systems, infrared
images have low resolution with unclear edges; consequently, infrared images are not suitable for
many applications. Considering this, it is considerably important to improve the quality of infrared
images. There are currently two approaches to improve the resolution of infrared images: hardware
and software approaches. For example, one hardware approach involves increasing the number of
pixels per unit area, while another hardware approach involves increasing the size of the imaging
system chip. These aforementioned hardware methods are not only difficult to implement, but also
incur significant costs; thus, in recent years, various software approaches have been developed for the
super-resolution reconstruction (SRR) of infrared images.

The objective of these image SRR software approaches is to recover a high-resolution (HR)
image using one or multiple low-resolution (LR) images. In general, the image SRR methods can be

Appl. Sci. 2018, 8, 1864; doi:10.3390/app8101864 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9185-157X
https://orcid.org/0000-0002-4148-3331
http://www.mdpi.com/2076-3417/8/10/1864?type=check_update&version=1
http://dx.doi.org/10.3390/app8101864
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 1864 2 of 23

classified into three types, including interpolation-based [1], learning-based, and regularization-based
methods. The interpolation-based methods involve the construction of an HR image by projecting
LR images onto reference images. Ur and Gross [2] proposed a method based on a non-uniformity
interpolation from a set of spatially shifted LR images by utilizing the generalized multichannel
sampling theorem of Papoulis [3] and Brown [4]. Zhang et al. developed an SR algorithm based
on a bivariate rational fractal interpolation model, which achieved competitive performance with
finer detail and sharper edges [5]. However, in methods based on interpolation, the optimality of the
entire reconstruction algorithm is not guaranteed. In recent years, learning-based SRR has become
a hot topic for research; in learning-based methods, the relationship between HR and LR images is
obtained by learning the training samples and reconstructing the HR images based on the obtained
relationship. In another study, Freeman et al. obtained the relationship between HR and LR image
blocks using the Markov random field [6]. Donoho proposed the concept of sparse representation,
which is a new method of signal representation [7]. Yang et al. proposed a super-resolution (SR)
method based on this sparse representation [8,9]. Rajput et al. proposed an SR model based on the
iterative sparsity and locality-constrained representation [10]; Huang et al. proposed a method which
utilized an effective way to transform the large nonlinear feature space of LR images into a group
of linear subspaces with mixture prior models in the training phase [11]. Though learning-based
methods can achieve an excellent image visual effect, their high computational complexity limits its
application. In contrast, methods based on regularization can capture the primary information and
intrinsic geometry of an image with a small number of coefficients. In general, methods based on an
integer-order partial differential equation (PDE) have obtained good results for image reconstruction;
among these methods, a well-known method is total variation (TV) regularization [12,13], which not
only eliminates noise, but also preserves the edges of the image well. However, first-order TV assumes
images to be piece-wise constant, which introduces staircase artifacts; to address this limitation, several
high-order variational methods have been proposed [14–19]. For example, Lysaker, Lundervold, and
Tai first replaced the first-order TV by a second-order TV [20]. In addition, Chan, Esedoglu, and Park
proposed the fourth-order TV combined with the Chambolle duality method to solve the issue of
staircase artifacts [15]. Bredies, Kunisch, and Pock proposed total generalized variation (TGV) based
on the combination of TV regularization with higher-order derivatives [21]; although these improved
methods can alleviate the staircase artifacts, they might lead to “spots” effects on the processed image.
In order to balance the staircase artifacts and “spots” effects, Zhang and Wei proposed a method
based on the fractional-order gradient; in particular, in their method, they replaced the integer-order
gradient with a fractional-order gradient [22]. Their research shows that using a fractional differential
operator with 0 < v < 1 order to process the image not only appropriately processes the noise and edge
information, but also enhances the texture and preserves the information related to the smooth region
of the image. In fact, for noisy images, the conventional super-resolution way is to denoise the image
as a pre-processing step and then super-resolve the de-noised image. Some new methods have been
proposed [23–25], such as the median filter transform (MFT) with parallelogram shaped windows [23],
which could be effectively used to integrate SR and image denoising to provide improved results in
comparison to the conventional way.

In the case of SRR, another primary problem that needs to be addressed is the blocking artifact.
To reduce the blocking artifact in a reconstructed image, Ren et al. proposed a fractional TV image SRR
method [26,27]; their method involves using three parts: the integer-order TV item, the fractional-order
TV (FTV) item, and the data fidelity item. The integer-order TV item can maintain the discontinuity
and structure of the image, while the FTV item can suitably handle non-local information, such as
the texture of the image. Thus, their method can slightly reduce the staircase artifacts in an image.
To overcome the insufficiency of dealing with detail and texture information in the typical TV approach,
Chen, Zhang, and Li proposed a two-dimensional (2D) compressive sensing sparse method for image
reconstruction [28]. Their method introduces the FTV regularization term. In addition, to achieve
elastic sparse representation, the discrete wavelet and curvelet transform regularization terms are
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combined into the cost function. Furthermore, Zachevsky and Zeevi proposed an SRR method
based on the PDE of fractional Brownian motion to enhance the random texture information in an
image [29]; this method is global and does not require image patches. Fractional Brownian motion is a
stochastic process with self-similarity, which can significantly characterize natural texture information;
consequently, it can effectively enhance the texture information of an image while enlarging it. Recently,
Laghrib et al. proposed a non-convex fractional order variational model for image super-resolution;
the use of the non-convex data fitting term can efficiently reduce complex noise such as impulse noise,
while the fractional order regularization term can preserve image features like edges and texture much
better [30].

In contrast, the TV method can only minimize horizontal and vertical gradients, reducing image
noise in the horizontal and vertical directions, whereas the four-direction gradient regularization
approach can reduce noise in the 45◦ and 135◦ directions, thereby improving the quality of image
reconstruction [31,32]. Based on the four-direction TV (TV4) proposed by Sakurai et al. [31], Wu et al.
presented a four-directional fractional-order TV (FTV4) [33], which applies the fractional-order
difference operator to alleviate the staircase artifacts in TV4 and improve its denoising ability.

In the typical reconstruction method, the TV is based on the L1 norm; however, in practice,
many non-convex reconstruction methods outperform the L1 norm sparse constrained reconstruction
method. Chartrand first proposed the non-convex optimization problem with the Lp quasinorm
minimization (0 < p < 1) as the objective function [34,35]. Further, Sidky et al. replaced the L1 norm
with the Lp norm in the minimization function and proposed a total p-variation (TpV) minimization
algorithm [36]. Recently, Zhang et al. developed a reliable method which was performed in terms of
the modulation transfer function, noise power spectrum, and noise equivalent quanta under different
Lp-norm priors in sparse-view X-ray CT reconstruction, and concluded that the best noise-resolution
performance is achieved when p is between 0.8 and 1 [37]. Although using the Lp norm leads to
non-convex optimization problems, it might allow efficient image reconstruction with a few projection
datasets for radiation dose reduction [38].

In this study, we explore the quaternion total variation and Lp quasinorm relaxation to improve the
sparsity exploitation of FTV; our proposed method is referred to as the quaternion fractional TV with Lp

quasinorm (FTV4Lp), which is efficiently solved through plug-and-play alternating direction method
of multipliers (ADMM) [39–43] in conjunction with non-convex p-shrinkage mapping. The novelty of
our work is three-fold. First, the FTV4Lp method is far less restrictive than the TV4 and FTV4 methods
for infrared image reconstruction; it not only shows good performance in terms of detail preservation
by incorporating high-order image derivatives, but also achieves accurate measurement of the sparsity
potential from the regularity prior. Second, an efficient iterative algorithm is proposed to optimize the
plug-and-play ADMM with a fast and stable convergence result. Third, fast and efficient closed-form
solutions are investigated and derived for computationally complex sub-minimization problems using
fast Fourier transforms (FFT).

The remainder of this paper is organized as follows. Section 2 briefly introduces the FTV method,
TV4 method, and constrained TVp minimization method. Section 3 describes the proposed method
as well as the fast plug-and-play ADMM algorithm for infrared image SRR. Then, in Section 4,
our experiments and results are described. Finally, Sections 5 and 6 present our discussion and
conclusions, respectively.

2. Related Works

2.1. Fractional Total Variation

The v-order FTV is defined as follows:

FTV(F) = ‖∇v
1F‖1 + ‖∇v

2F‖1, (1)

where ∇v
1 and ∇v

2 represent the gradient operator of the image in the horizontal and vertical directions,
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respectively; these can be defined as follows [44]:

(∇v
1F)i,j =

K−1

∑
k=0

(−1)kCv
k Fi−k,j, (∇v

2F)i,j =
K−1

∑
k=0

Cv
k Fi,j−k, (2)

where Cv
k = Γ(v+1)

Γ(k+1)Γ(v−k+1) and Γ(x) =
∫ +∞

0 tx−1e−tdt is the Gamma function.
The use of FTV can make the edges of an image more prominent while retaining the texture of the

image. Moreover, because it handles pixels in the smooth region effectively, FTV is useful for avoiding
staircase artifacts.

2.2. Four-Directional Total Variation

In 2011, Sakurai et al. proposed an extension of TV referred to as TV4 [31] in which both diagonal
and back diagonal directional components are included in the typical TV model. TV4 can be defined as

TV4(F) = ∑
i,j
(|Fi+1,j − Fi,j|+ |Fi,j+1 − Fi,j|+ |Fi+1,j+1 − Fi,j|+ |Fi+1,j − Fi,j+1|). (3)

Further, based on TV4, Liao et al. improved the boundary conditions and provided a complete
mathematical proof for both anisotropic and isotropic cases [32]:

TV4A(F ′) = ∑
i,j
(|F ′i+1,j − F ′i,j|+ |F ′i,j+1 − F ′i,j|+ |F ′i+1,j+1 − F ′i,j|+ |F ′i+1,j − F ′i,j+1|), (4)

TV4I(F ′) = ∑
i,j
[(F ′i+1,j − F ′i,j)

2 + (F ′i,j+1 − F ′i,j)
2 + (F ′i+1,j+1 − F ′i,j)

2 + (F ′i+1,j − F ′i,j+1)
2]

1
2 , (5)

where F ′ ∈ R(m+2)×(n+2), and TV4A(F ′) and TV4I(F ′) represent the anisotropic TV4 and isotropic TV4,
respectively.

Compared with the typical TV, TV4 involves four-dimensional components of the spatial domain;
these components consider the entire neighborhood information of every pixel, and thus, contain more
structural information of the image.

2.3. Sparse Total Variation Based on Lp Quasinorm

Compared with the L1 norm, the Lp quasinorm has one more degree of freedom; therefore,
it can better characterize sparse gradient information. The contours of the anisotropic total variation
(ATV) RApTV(F) = ‖Kh ∗ F‖p

p + ‖Kv ∗ F‖p
p (0 < p ≤ 2) based on the Lp quasinorm are shown in

Figure 1, where the L1 and L2 norms are special cases of the Lp norm. The Lp norm is defined as

‖F‖p = (∑N
i=1 ∑N

j=1 |Fij|p)
1
p , while the Lp quasinorm is defined as ‖F‖p

p = ∑N
i=1 ∑N

j=1 |Fij|p. In Figure 1,
white Gaussian noise is added to the image with a standard deviation of σ; as can be seen from the
figure, the intersection of the L2 norm contours and fidelity term 1

2‖F −G‖2
2 is not sparse, whereas the

intersection of the L1 norm contours and fidelity term is sparse, but is susceptible to noise pollution.
In contrast, the contours of the Lp quasinorm are more robust to noise.

In light of the abovementioned considerations, previous research extended the ATV based on the
L1 norm to TVp(F) [36] as given by Equation (6):

TVp(F) = ‖∇1F‖p
p + ‖∇2F‖p

p (0 < p < 1), (6)

where TVp(F) represents the ATV sparse regularization term based on the Lp quasinorm.
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Figure 1. Feasible domain of RApTV(F): (a) p = 2, (b) p = 1 and (c) 0 < p < 1.

3. Proposed Method

In this study, we propose an SRR method for infrared images based on the quaternion FTV with
the Lp quasinorm:

F = arg min
F

1
2
‖SHF −G‖2

2 + µFTV4Lp (µ > 0), (7)

where H is a circulant matrix that represents the convolution for the anti-aliasing filter. S is a binary
sampling matrix, where the rows are subsets of the identity matrix. Further, G is an observation image,
while F represents the corresponding original image. FTV4Lp(F) represents the quaternion FTV with
the Lp quasinorm, which is defined as follows:

FTV4Lp(F) = ‖K1 ∗ F‖p
p + ‖K2 ∗ F‖p

p + ‖K3 ∗ F‖p
p + ‖K4 ∗ F‖p

p, (8)

where 0 < p < 1 represents the Lp quasinorm. Ki (i = 1, 2, 3, 4) represents the convolution kernels
along the horizontal, vertical, back diagonal, and diagonal directions, respectively; these are defined
as follows:

K1 = c, K2 = cT, K3 = diag(c), K4 = f liplr(diag(c)), (9)

where c ∈ R1,N and cv
k = (−1)kCv

k ; in addition, f liplr(A) is a function that returns A with its columns
flipped in the left–right direction. The coefficient cv

k can be obtained as follows:

cv
0 = 1, cv

k = (1− v + 1
k

)cv
k−1, k = 1, 2, .... (10)

Thus, the proposed SRR method can be represented by

F = arg min
F

1
2
‖SHF −G‖2

2 + µ(‖K1 ∗ F‖p
p + ‖K2 ∗ F‖p

p + ‖K3 ∗ F‖p
p + ‖K4 ∗ F‖p

p). (11)

Furthermore, it can be rewritten as

F = arg min
F

1
2
‖SHF −G‖2

2 + µ
4

∑
i=1
‖Ki ∗ F‖p

p. (12)

To solve the FTV4Lp(F) model in the framework of the plug-and-play ADMM, an assistant
variable Z is required to convert the unconstrained problem given by Equation (12) into the
constrained problem:

(F, Z) = arg min
F,Z

1
2
‖SHF −G‖2

2 + µ
4

∑
i=1
‖Ki ∗ Z‖p

p, s.t. Z = F. (13)

Consequently, the corresponding augmented Lagrangian function is as follows:
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Lρ(F, Z, Y) =
1
2
‖SHF −G‖2

2 + µ
4

∑
i=1
‖Ki ∗ Z‖p

p

+ 〈Y , (F − Z)〉+ ρ

2
‖F − Z‖2

2,

(14)

where 〈A, B〉 = ∑n
i=1 ∑n

i=1 aijbij is the inner product of matrices A and B. Y is a Lagrange multiplier,
and ρ > 0 is a penalty parameter.

The minimizer of Equation (13) is the saddle point of Lρ, which can be found by solving the
following sequence of sub-problems:

F(k+1) = arg min
F

1
2
‖SHF −G‖2

2 + 〈Y (k), (F − Z(k))〉+ ρ

2
‖F − Z(k)‖2

2

= arg min
F

1
2
‖SHF −G‖2

2 +
ρ

2
‖F − (Z(k) − Y (k)

ρ
)‖2

2,
(15)

Z(k+1) = arg min
Z

µ
4

∑
i=1
‖Ki ∗ Z‖p

p +
ρ

2
‖Z− (F(k+1) +

Y (k)

ρ
)‖2

2, (16)

Y (k+1) = Y (k) + ρ(F(k+1) − Z(k+1)). (17)

To solve the sub-problem of F, let W = SH. Then, Equation (15) can be represented as follows

F(k+1) = arg min
F

1
2
‖W F −G‖2

2 +
ρ

2
‖F − (Z(k) − Y (k)

ρ
)‖2

2. (18)

By setting the first-order derivative of F in Equation (18) as zero, we have

0 = WT(W F −G) + ρ[F − (Z(k) − Y (k)

ρ
)]. (19)

Accordingly, the solution is

F(k+1) = (WTW + ρI)−1(WTG + ρ(Z(k) − Y (k)

ρ
)). (20)

To solve the sub-problem Z, let Ẑ = F(k+1) + Y (k)

ρ . Then, Equation (16) can be transformed
as follows:

Z(k+1) = arg min
Z

ρ

2
‖Z− Ẑ‖2

2 + µ
4

∑
i=1
‖Ki ∗ Z‖p

p

= arg min
Z

1
2
‖Z− Ẑ‖2

2 +
µ

ρ

4

∑
i=1
‖Ki ∗ Z‖p

p.

(21)

Let λ = µ
ρ ; then, Equation (21) can be rewritten as

Z(k+1) = arg min
Z

1
2
‖Z− Ẑ‖2

2 + λ
4

∑
i=1
‖Ki ∗ Z‖p

p. (22)

By treating Z and Ẑ as the original and noisy images, respectively, Equation (22) is the standard
denoising model based on FTV4Lp(Z). Consequently, it can be replaced by using an image denoising
algorithm to yield

Z(k+1) = Dλ(Ẑ(k+1)), (23)



Appl. Sci. 2018, 8, 1864 7 of 23

where Dλ indicates the denoising process with the regularity parameter λ.
The proposed SRR algorithm is summarized in Algorithm 1.

Algorithm 1 Super-resolution using the plug-and-play ADMM (alternating direction method of
multipliers)
Initialize: ρ, µ, tol
While ‖PSNR(F(k+1), G)− PSNR(F(k), G)‖2/‖PSNR(F(k), G)‖2 > tol do

1. F(k+1) = arg minF
1
2‖SHF −G‖2

2 +
ρ
2‖F − (Z(k) − Y (k)

ρ )‖2
2

2. Z(k+1) = Dλ(Ẑ(k+1)), where Ẑ = F(k+1) + Y (k)

ρ , λ = µ
ρ

3. Y (k+1) = Y (k) + ρ(F(k+1) − Z(k+1))
4. k = k + 1

End

In addition, based on the fast ADMM algorithm proposed by Goldstein et al. [45], we adopt the
accelerated step α(k+1), variables Z̃(k+1), and dual variables Ỹ (k+1) as

α(k+1) =
1 +

√
1 + 4(α(k))2

2
, (24)

Z̃(k+1) = Z(k+1) +
α(k) − 1
α(k+1)

(Z(k+1) − Z(k)), (25)

Ỹ (k+1) = Y (k+1) +
α(k) − 1
α(k+1)

(Y (k+1) − Y (k)). (26)

Compared with the accelerated step proposed by Nesterov et al. [46,47] that utilizes an
accumulated history of the past iterates recursively, the abovementioned accelerated step only adopts
the traditional projection-like step that is evaluated at an auxiliary point obtained from the previous
two iterates and an explicit dynamically updated step size. After the accelerated step, the convergence
rate increases from O(1/k) to O(1/k2).

This algorithm, which is referred to as SRR using the fast plug-and-play ADMM, is summarized
in Algorithm 2.

Regarding the sub-problem Z, Equation (22) can be converted into the following constraint problem:

Z = arg min
Z

1
2
‖Z− Ẑ‖2

2 + λ
4

∑
i=1
‖Ti‖

p
p, s.t. Ti = Ki ∗ Z, (i = 1, 2, 3, 4). (27)

Accordingly, the augmented Lagrangian function is

Lρ(Z, T1, T2, T3, T4, V1, V2, V3, V4, ) =
1
2
‖Z− Ẑ‖2

2 + λ
4

∑
i=1
‖Ti‖

p
p

+
4

∑
i=1
〈Vi, (Ti − Ki ∗ Z)〉

+
η

2

4

∑
i=1
‖Ti − Ki ∗ Z‖2

2,

(28)

where Vi (i = 1, 2, 3, 4) is the Lagrange multiplier, and η > 0 is a penalty parameter. Furthermore,
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based on the ADMM algorithm, the sub-problem Z can be solved as follows:

Z(n+1) = arg min
Z

1
2
‖Z− Ẑ‖2

2 +
4

∑
i=1
〈V (n)

i , (T(n)
i − Ki ∗ Z)〉

+
η

2

4

∑
i=1
‖T(n)

i − Ki ∗ Z‖2
2

= arg min
Z

1
2
‖Z− Ẑ‖2

2 +
η

2

4

∑
i=1
‖T(n)

i − Ki ∗ Z +
V (n)

i
η
‖2

2.

(29)

Algorithm 2 Super-resolution using the fast plug-and-play ADMM
Initialize: ρ, µ, tol, τ ∈ (0, 1)
While ‖PSNR(F(k+1), G)− PSNR(F(k), G)‖2/‖PSNR(F(k), G)‖2 > tol do

1. F(k+1) = arg minF
1
2‖SHF −G‖2

2 +
ρ
2‖F − (Z̃(k) − Ỹ (k)

ρ )‖2
2

2. Z(k+1) = Dλ(Ẑ(k+1)), where Ẑ = F(k+1) + Ỹ (k)

ρ , λ = µ
ρ

3. Y (k+1) = Ỹ (k) + ρ(F(k+1) − Z(k+1))
4. c(k+1) = ρ−1‖Y (k+1) − Ỹ (k+1)‖2 + ρ‖Z(k+1) − Z̃(k+1)‖2

5. if c(k+1) ≤ τc(k), then

6. α(k+1) =
1+
√

1+4(α(k))2

2
7. Z̃(k+1) = Z(k+1) + α(k)−1

α(k+1) (Z(k+1) − Z(k))

8. Ỹ (k+1) = Y (k+1) + α(k)−1
α(k+1) (Y

(k+1) − Y (k))
9. else

10. α(k+1) = 1, Z̃(k+1) = Z(k+1), Ỹ (k+1) = Y (k+1)

11. c(k+1) = τ−1c(k)
12. endif
13. k = k + 1

End

By employing the convolution theorem [48], the 2D Fourier transform of Z can be obtained
as follows:

F (Z(n+1)) = arg min
Z

1
2
‖F (Z)−F (Ẑ)‖2

2

+
η

2

4

∑
i=1
‖F (T(n)

i )−F (Ki) ◦ F (Z) +
F (V (n)

i )

η
‖2

2,
(30)

where the symbol ◦ represents component-wise multiplication.
By setting the first-order derivative of Z in Equation (30) as zero, we have

0 = F (Z)−F (Ẑ) + η
4

∑
i=1
{[F (Ki)]

∗ ◦ [F (Ki) ◦ F (Z)−F (T(n)
i )−

F (V (n)
i )

η
]}, (31)

where [F (Ki)]
∗ is the conjugate map of F (Ki).

Then, Z can be obtained as follows:

Z(n+1) = F−1
F (Ẑ) + η ∑4

i=1{[F (Ki)]
∗ ◦ [F (T(n)

i ) +
F (V (n)

i )
η ]}

I + η ∑4
i=1[F (Ki)]∗ ◦ F (Ki)

, (32)

where F−1 represents the 2D inverse FFT operator; the division in the Equation (32) is component-wise
as well. In addition, the symbol I represents the matrix with all entries being 1.
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The sub-problem T is

T(n+1)
i = arg min

Ti
λ‖Ti‖

p
p +

η

2
‖T(n)

i − Ki ∗ Z +
V (n)

i
η
‖2

2. (33)

It can be solved using the soft threshold operator [35] as follows:

T(n+1)
i = shrinkp(Ki ∗ Z(n+1) −

V (n)
i
η

,
λ

η
), (34)

where
shrinkp(ξ,

1
β
) = max{|ξ| − βp−2|ξ|p−1, 0} · ξ

|ξ| . (35)

Lastly, the Lagrange multiplier can be updated as

V (n+1)
i = V (n)

i + η(T(n+1)
i − Ki ∗ Z(n+1)). (36)

Similar to Algorithm 2, we introduce the acceleration step b(n+1)
i , variables T̃(n+1)

i , and dual

variables Ṽ (n+1)
i :

T̃(n+1)
i = T(n+1)

i +
b(n)i − 1

b(n+1)
i

(T(n+1)
i − T(n)

i ), (37)

Ṽ (n+1)
i = V (n+1)

i +
b(n)i − 1

b(n+1)
i

(V (n+1)
i − V (n)

i ). (38)

In this manner, all the sub-problems of Equation (22) are solved independently. In all iterations,
the sub-problem of Z is the most time-consuming problem. Considering the special structure of the
differential matrices, we regard the differential operators as convolution operators. By introducing
the convolution theorem, the sub-problem is skillfully solved in the frequency domain. The entire
algorithm to solve Equation (22) is summarized in Algorithm 3.

Algorithm 3 FTV4Lp denoising using the fast ADMM

Initialize: b(0)i , η, ϕ ∈ (0, 1) (i = 1, 2, 3, 4)
While ‖PSNR(Z(n+1), Ẑ)− PSNR(Z(n), Ẑ)‖2/‖PSNR(Z(n+1), Ẑ)‖2 > tol do

1. Z(n+1) = F−1 F (Ẑ)+η ∑4
i=1{[F (Ki)]

∗◦[F (T̃(n)
i )+

F (Ṽ(n)
i )

η ]}
I+η ∑4

i=1[F (Ki)]∗◦F (Ki)

2. T(n+1)
i = shrinkp(Ki ∗ Z(n+1) − Ṽ (n)

i
η , λ

η )

3. V (n+1)
i = Ṽ (n)

i + η(T(n+1)
i − Ki ∗ Z(n+1))

4. d(n+1)
i = η−1‖V (n+1)

i − Ṽ (n+1)
i ‖2 + η‖T(n+1)

i − T̃(n+1)
i ‖2

5. if d(i+1)
i < ϕd(n)i , i = 1, 2, 3, 4, then

6. b(n+1)
i =

1+
√

1+4(b(n)i )2

2

7. T̃(n+1)
i = T(n+1)

i +
b(n)i −1

b(n+1)
i

(T(n+1)
i − T(n)

i )

8. Ṽ (n+1)
i = V (n+1)

i +
b(n)i −1

b(n+1)
i

(V (n+1)
i − V (n)

i )

9. else
10. b(n+1)

i = 1, T̃(n+1)
i = T(n)

i , Ṽ (n+1)
i = V (n)

i , i = 1, 2, 3, 4
11. d(n+1)

i = ϕ−1d(n)i
12. endif
13. n = n + 1

End
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4. Experiments and Results

4.1. Materials and Method

To verify the performance of the proposed method, six test images were employed from the
infrared image databases of IRData (http://www.dgp.toronto.edu/~nmorris/data/IRData/) and LTIR
(http://www.cvl.isy.liu.se/research/datasets/ltir/version1.0); these images are shown in Figure 2.
Our experiments were performed on a PC with the Intel CPU 2.8 GHz and 8 GB RAM using
MATLAB R2014a. Six different SRR methods were adopted for comparison, including the Bicubic
method, the MFT method [23], the TV-based method [13], the TGV-based method [21], the TV4-based
method [31], and the FTV4-based method [33]. Among the six methods, the Bicubic method was
implemented by the function “imresize()” in the images toolbox of MATLAB; the MFT method used the
scripts provided in [23]; other methods were taken by self-produced scripts according to [13,21,31,33].

For the objective evaluation, we calculated the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [49]. These can be defined as follows:

PSNR(X, Y) = 10 log10
255× 255

1
N2 ∑N

i=1 ∑N
j=1(Xij − Yij)2

, (39)

SSIM(X, Y) =
(2uX uY + (255k1)

2)(2σXY + (255k2)
2)

(u2
X + u2

Y + (255k1)2)(σ2
X + σ2

Y + (255k2)2)
, (40)

where X and Y represent the ground truth and reconstructed image, respectively. uX and uY are the
mean values of X and Y , respectively. Further, σ2

X and σ2
Y are the variances in the X and Y , respectively.

σXY is the covariance of X and Y . The parameters k1 and k2 are set in a manner that ensures that the
denominator of SSIM is a non-zero number. In this study, we set k1 = 0.01 and k2 = 0.03.

Throughout all the experiments, we set the penalty parameters ρ = 1× 10−5, η = 1 and p = 0.5 of
the Lp quasinorm. The blur matrix H in Equation (7) is set as a corresponding matrix to the blur kernel
which is generated by the MATLAB built-in function “fspecial(‘gaussian’, 9, 1)”; S is set as a K-fold
downsampling operator which is generated by the MATLAB built-in function “downsample(X,K)”.

(a) (b) (c) 

(d) (e) (f)

Figure 2. HR infrared images: (a) birds, (b) streets, (c) crossroads, (d) building, (e) passerby, and (f) figure.

4.2. Comparison between Fast ADMM and Plug-and-Play ADMM

In order to verify the efficiency of the fast ADMM convergence, we adopted six images for
comparison with the plug-and-play ADMM. The images were down-sampled by two-fold and white
Gaussian noise was added to them. The standard deviation of the white Gaussian noise was set to 20.

http://www.dgp.toronto.edu/~nmorris/data/IRData/
http://www.cvl.isy.liu.se/research/datasets/ltir/version1.0


Appl. Sci. 2018, 8, 1864 11 of 23

The convergence performance of the two algorithms is presented in Figure 3. As indicated by
the curves in Figure 3, both the fast ADMM and plug-and-play ADMM algorithms are convergent.
However, introducing the fast ADMM significantly reduces the number of iterations.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3. Comparisons of the convergence between the fast ADMM and plug-and-play ADMM.
White Gaussian noise was added to the images: (a) birds, (b) streets, (c) crossroads, (d) buildings,
(e) passerby, and (f) figure.

4.3. Infrared Image SR Experiment Without Noise

In the experiment, the LR infrared images without noise were generated by applying the
down-sampling operator (two-fold, three-fold, four-fold). To evaluate the performance objectively,
PSNR and SSIM were calculated at various levels of the super-resolving operator (correspondingly, x2,
x3, and x4) and are listed in Table 1.

In the SRR of the LR images with the two-fold downsampled operator, the PSNR of the FTV4Lp

method is the highest among the sets of results; however, the average PSNR of the six pictures is
slightly higher than TGV, as well as being higher than the other methods. Furthermore, the SSIM of
FTV4Lp is good only in the image of birds; however, the overall SSIM is not as good as the TV4 and
TGV methods, even though TV4 has a lower PSNR in four pictures. As the super-resolving operator
increases, the results of FTV4Lp are superior to the other algorithms. In terms of the computation
time, the Bicubic method takes the shortest time, while MFT method takes the longest time, and the
proposed method takes almost the same time as the TV4 and FTV4 methods.

For a visual comparison, we used the LR infrared images of birds, passerby, and a figure, which are
downsampled by four-fold in Figure 4.

Based on the results of the reconstruction of SR infrared images in Figures 5–7, the edges of images
reconstructed using the TV method are relatively clearer than the edges of images reconstructed using
the Bicubic and MFT methods; however, staircase artifacts can be observed in the smooth regions of
the images. The TGV, TV4, and FTV4 methods lead to improvements in terms of the staircase artifacts;
however, many obvious “spots” remain in the bird and passerby images. In contrast, our proposed
method performs better than the other four methods in terms of preserving image edges, as well as
reducing staircase artifacts and “spots” effects.
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Table 1. Infrared image super-resolution experiment without noise.

Scale Methods
Birds Streets Crossroads Building Passerby Figure

PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME

Bicubic 41.5182/0.9721/1.21 32.9263/0.9457/1.13 36.5022/0.9232/1.22 30.1821/0.9013/0.42 28.7295/0.8896/0.45 29.8727/0.9158/0.42
MFT 39.9770/0.9589/14.12 32.5524/0.9242/14.11 35.3001/0.8932/14.37 30.7722/0.8703/3.41 29.7348/0.8649/3.38 30.9509/0.9131/3.35
TV 44.7276/0.9795/5.17 34.9400/0.9579/5.59 38.0496/0.9397/3.94 30.7373/0.9252/4.66 30.3694/0.9160/2.44 30.3241/0.9051/3.26

x2 TGV 44.7736/0.9796/5.42 35.4694/0.9579/6.81 38.0221/0.9424/5.26 30.5078/0.9169/4.51 30.5050/0.9153/3.39 30.4419/0.9260/4.67
TV4 44.7961/0.9795/5.22 34.7658/0.9582/5.92 38.0153/0.9429/4.23 30.6604/0.9288/4.69 30.4546/0.9213/2.53 30.3677/0.9264/3.49

FTV4 44.7041/0.9796/5.27 35.2796/0.9538/6.27 37.7098/0.9301/4.87 30.6941/0.9104/3.71 30.4265/0.9049/3.36 30.4219/0.9168/4.28
FTV4Lp 44.7550/0.9797/5.35 35.6344/0.9529/6.73 37.9442/0.9330/5.09 30.7743/0.9158/3.66 30.4834/0.9159/3.16 30.4493/0.9173/4.43

Bicubic 37.1513/0.9394/0.54 28.7965/0.8825/0.48 33.0530/0.8585/0.53 28.0877/0.8082/0.21 27.0681/0.8154/0.19 27.9388/0.8781/0.17
MFT 36.4196/0.9301/7.99 29.1186/0.8634/8.02 32.8315/0.8409/8.09 28.6938/0.7787/2.34 27.9968/0.7991/2.33 28.7702/0.8728/2.31
TV 41.1106/0.9612/6.03 30.3813/0.8997/6.32 34.5684/0.8917/7.99 29.1007/0.8666/2.21 29.6232/0.8619/4.59 29.2977/0.9000/6.96

x3 TGV 41.1097/0.9598/7.91 30.8146/0.9075/7.95 34.4811/0.8854/8.26 29.1368/0.8661/5.77 29.6519/0.8586/4.95 29.3492/0.9027/7.11
TV4 41.1301/0.9604/6.52 30.8099/0.9069/6.71 34.5799/0.8844/8.04 29.1539/0.8646/3.54 29.6595/0.8665/4.77 29.3236/0.9028/7.02

FTV4 41.1607/0.9614/7.83 30.7514/0.9131/7.61 34.4296/0.8865/6.47 29.1519/0.8638/4.95 29.6681/0.8660/4.63 29.3436/0.9020/6.72
FTV4Lp 41.1893/0.9616/7.73 30.9374/0.9134/7.52 34.6363/0.8912/6.28 29.2023/0.8681/5.47 29.7043/0.8672/4.44 29.3833/0.9036/6.84

Bicubic 34.8044/0.9191/0.31 26.6343/0.8346/0.28 31.2378/0.8165/0.29 26.9581/0.7434/0.13 26.4070/0.7758/0.12 26.8174/0.8508/0.11
MFT 34.3885/0.9126/5.97 27.3433/0.8244/6.01 31.2548/0.8059/6.01 27.6403/0.7281/1.76 27.1317/0.7664/1.79 27.2690/0.8400/1.77
TV 38.6868/0.9431/7.07 28.4435/0.8735/7.29 32.9115/0.8570/7.39 28.3352/0.8208/4.09 28.9311/0.8237/5.99 28.6642/0.8825/6.37

x4 TGV 38.7952/0.9435/8.15 28.6927/0.8744/8.49 32.9974/0.8595/8.22 28.3306/0.8184/5.17 28.9412/0.8222/6.53 28.6391/0.8875/7.69
TV4 38.7323/0.9439/7.19 28.5615/0.8625/7.42 32.9795/0.8513/7.40 28.3469/0.8202/4.33 28.9319/0.8232/5.84 28.6768/0.8850/6.55

FTV4 38.7986/0.9439/7.32 28.5705/0.8747/8.23 32.9850/0.8598/7.81 28.3758/0.8208/4.89 28.9710/0.8222/5.59 28.6838/0.8851/7.23
FTV4Lp 38.8523/0.9440/7.39 28.7142/0.8766/8.11 33.0919/0.8601/7.95 28.3849/0.8211/5.01 29.0273/0.8237/5.73 28.7524/0.8884/7.12
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(a) (b) (c)

图 1: description of figure
Figure 4. Low-resolution (LR) infrared images down-sampled four-fold without noise: (a) birds,
(b) passerby, (c) figure.
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图 1: description of figureFigure 5. Super-resolution x4 results of the LR bird images without noise; (a–d,i–l) ground truth and
the results of the Bicubic, MFT, TV, TGV, TV4, FTV4, and FTV4Lp methods, respectively; (e–h,m–p)
enlarged details from the rectangles in (a–d,i–l), respectively.
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图 1: description of figureFigure 6. Super-resolution x4 results of the LR passerby images without noise; (a–d,i–l) ground truth
and the results of the Bicubic, MFT, TV, TGV, TV4, FTV4, and FTV4Lp methods, respectively; (e–h,m–p)
enlarged details from the rectangles in (a–d,i–l), respectively.
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图 1: description of figureFigure 7. Super-resolution x4 results of the LR figure images without noise; (a–d,i–l) ground truth and
the results of the Bicubic, MFT, TV, TGV, TV4, FTV4, and FTV4Lp methods, respectively; (e–h,m–p)
enlarged details from the rectangles in (a–d,i–l), respectively.

4.4. Infrared Image Super-Resolution Experiment with Added White Gaussian Noise

In this experiment, the LR infrared images were generated by applying the two-fold
down-sampling operator after which white Gaussian noise of different variance (σ = 10, 20, 30, 40) was
added. In order to perform a fair comparison under noise, a denoising pre-processing step was added
to the Bicubic. To evaluate the performance of the various methods objectively, PSNR and SSIM were
calculated at the x2 super-resolving operator; these results are listed in Table 2.
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Table 2. Infrared image super-resolution x2 experiment with added white Gaussian noise.

σ
Image Birds Streets Crossroads Building Passerby Figure

Method PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME PSNR/SSIM/TIME

Bicubic 35.6726/0.8802/1.29 31.0675/0.8543/1.18 32.9044/0.8182/1.25 28.8987/0.8011/0.46 27.9384/0.8058/0.43 28.8868/0.8416/0.42
MFT 34.4803/0.8567/14.21 30.6493/0.8231/14.05 32.1554/0.7846/14.06 29.3813/0.7704/3.39 28.6170/0.7620/3.41 29.6157/0.8134/3.47
TV 35.8549/0.9101/7.39 30.2137/0.8259/9.01 32.3601/0.8010/7.94 28.5266/0.7889/3.81 28.5554/0.7808/3.69 28.4999/0.8066/4.57

10 TGV 36.4864/0.9200/9.51 31.2637/0.8473/9.12 32.8449/0.8329/9.91 28.6289/0.8045/5.63 28.7758/0.8090/3.97 28.7826/0.8522/4.84
TV4 36.1667/0.9112/7.91 30.5565/0.8566/9.26 32.8811/0.8350/8.53 28.2922/0.7913/4.42 28.9424/0.8088/3.77 28.8288/0.8625/4.61

FTV4 36.6335/0.9208/8.99 30.9376/0.8420/6.83 32.8552/0.8350/9.69 28.7223/0.8084/5.36 28.8201/0.8078/3.19 28.7438/0.8482/3.73
FTV4Lp 36.8411/0.9235/9.19 31.1747/0.8460/6.72 33.1289/0.8371/9.75 28.7996/0.8096/5.17 28.9227/0.8109/3.31 28.9178/0.8536/3.66

Bicubic 32.1685/0.7628/1.84 28.9532/0.7405/1.47 30.2125/0.7039/1.61 27.3990/0.6897/0.53 26.6925/0.6971/0.55 27.5348/0.7368/0.57
MFT 29.3399/0.6507/14.04 27.8230/0.6641/14.06 28.8784/0.6540/14.12 27.0624/0.6181/3.37 26.7077/0.6159/3.34 27.2849/0.6460/3.32
TV 32.8996/0.8606/8.04 27.6563/0.7922/9.76 30.5099/0.7766/9.25 27.2489/0.7351/4.56 27.4126/0.7518/4.75 27.1673/0.8032/4.83

20 TGV 34.0300/0.8999/8.69 28.6308/0.7930/10.02 30.7621/0.7884/10.20 27.2461/0.7336/5.18 27.4686/0.7573/5.02 27.6140/0.8240/5.11
TV4 34.2119/0.8831/8.12 28.5547/0.7916/9.84 30.9498/0.7817/9.41 27.4056/0.7366/4.71 27.6890/0.7454/4.80 27.5491/0.8102/4.92

FTV4 34.2706/0.9051/8.33 28.8064/0.8093/9.87 30.9581/0.7962/9.89 27.4718/0.7505/4.97 27.6019/0.7594/4.83 27.6711/0.8341/4.33
FTV4Lp 34.5904/0.9070/8.42 28.9493/0.8108/9.83 31.1237/0.7991/10.01 27.6153/0.7534/4.93 27.7028/0.7634/4.87 27.7936/0.8363/4.21

Bicubic 30.7781/0.7137/1.41 27.7853/0.6907/1.07 28.9800/0.6537/1.11 26.4825/0.6344/0.37 25.9925/0.6476/0.39 26.7646/0.6933/0.44
MFT 26.4628/0.5153/14.07 25.3406/0.5213/14.05 25.3922/0.4565/14.15 24.8090/0.4797/3.39 24.5078/0.4621/3.41 25.0201/0.5086/3.33
TV 31.3811/0.8400/8.55 26.4831/0.7594/10.74 29.2943/0.7495/10.38 26.5153/0.7030/5.50 26.6480/0.7249/5.16 26.2916/0.7730/5.88

30 TGV 31.9679/0.8694/9.43 27.6798/0.7852/11.31 29.6477/0.7685/11.83 26.5793/0.7104/6.09 26.9436/0.7481/7.79 26.7436/0.7943/8.43
TV4 32.7905/0.8802/8.81 27.1458/0.7708/10.91 29.7782/0.7620/10.64 26.6740/0.7070/5.65 27.0253/0.7265/5.67 26.6625/0.7971/6.13

FTV4 32.8566/0.8955/9.17 27.8190/0.7926/11.01 29.7936/0.7788/11.67 26.7652/0.7184/5.81 27.0149/0.7445/7.37 26.7941/0.8047/8.23
FTV4Lp 32.8829/0.8960/9.21 27.9662/0.7938/11.07 29.8715/0.7793/11.75 26.8374/0.7230/5.99 27.0329/0.7458/7.42 26.8842/0.8062/8.19

Bicubic 30.3607/0.7199/0.66 26.7067/0.6861/0.58 28.5104/0.6542/0.58 25.9892/0.6194/0.21 25.6699/0.6427/0.21 26.0773/0.6956/0.22
MFT 23.6372/0.3569/14.09 23.1254/0.3890/14.07 23.3740/0.3589/14.05 22.9193/0.3830/3.34 22.3551/0.3365/3.33 22.9204/0.3858/3.35
TV 31.2926/0.8734/9.37 24.7608/0.7625/11.33 28.7460/0.7603/11.61 26.0186/0.6971/6.59 26.0632/0.7340/6.45 25.2854/0.7931/6.71

40 TGV 31.3805/0.8815/11.63 26.3790/0.7634/12.87 28.7441/0.7571/12.83 26.0268/0.6954/7.04 26.3372/0.7324/9.23 26.0076/0.7914/9.67
TV4 31.5538/0.8561/10.11 26.1763/0.7489/11.65 28.8661/0.7385/11.93 26.1177/0.6826/6.84 26.4900/0.7197/6.97 25.9695/0.7736/7.23

FTV4 31.6938/0.8877/11.51 26.6877/0.7541/12.21 29.0502/0.7659/12.45 26.0611/0.6871/6.69 26.4998/0.7438/8.99 26.0720/0.7939/8.97
FTV4Lp 31.7369/0.8884/11.42 26.8589/0.7682/12.44 29.0878/0.7666/12.61 26.1189/0.6972/6.72 26.5164/0.7449/8.96 26.1203/0.7953/9.44
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As is clear from Table 2, all the results of the TV-based method are poor. When σ = 10,
the reconstruction results of MFT, TGV and TV4 in the streets, building, passerby and figure images
are slightly superior to the proposed method; however, when σ ≥ 20, their reconstruction results are
worse than the proposed method. Furthermore, although the FTV4-based method has no obvious
advantage in the SRR with added white Gaussian noise at any particular level, its average result is still
superior to the other three methods and is only slightly inferior to the proposed method. In addition,
the computation time of all methods becomes significantly longer with an increasing amount of added
white Gaussian noise, and the Bicubic method still takes the shortest amount of time among all methods.
The proposed method takes almost the same amount of time as the FTV4 method, and longer than the
TV4 method. Therefore, considering the PSNR, SSIM, and computation time, the proposed method
performs significantly better than the other six methods in most cases. In Figure 8, three infrared
images, which have added white Gaussian noise (σ = 20) and were down-sampled by two-fold are
shown as examples; the visual effects can still be observed in these images.

From the reconstructed images in Figures 9–11, it can be observed that the images reconstructed
using the Bicubic, MFT, and TV-based methods still contain considerable noise. In contrast, though the
noise in the images reconstructed using the TGV-based method is reduced, some of the reconstructed
images are significantly distorted compared with the original HR images. Furthermore, in the case
of the TV4 reconstruction results, aside from image distortions, there are obvious “spots”; overall,
the visual effect of reconstruction is poor. Finally, in terms of visual effects, the FTV4-based and
proposed methods provide outstanding results; however, in terms of noise suppression, the results of
the proposed method are superior.

1

(a) (b) (c)

图 1: description of figure
Figure 8. LR infrared images down-sampled by two-fold with added white Gaussian noise (σ = 20):
(a) birds, (b) passerby, (c) figure.
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Figure 9. Super-resolution x2 results of the LR bird images with added white Gaussian noise (σ = 20);
(a–d,i–l) ground truth and the results of the Bicubic, MFT, TV, TGV, TV4, FTV4, and FTV4Lp methods,
respectively; (e–h,m–p) enlarged details from the rectangles in (a–d,i–l), respectively.
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Figure 10. Super-resolution x2 results of the LR passerby images with added white Gaussian noise
(σ = 20); (a–d,i–l) ground truth and the results of the Bicubic, MFT, TV, TGV, TV4, FTV4 and FTV4Lp
methods, respectively; (e–h,m–p) enlarged details from the rectangles in (a–d,i–l), respectively.



Appl. Sci. 2018, 8, 1864 20 of 23

11

ground truth amplified ground truth

(a)

图 1: description of figure
(a)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(b)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(c)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(d)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(e)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(f)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(g)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(h)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(i)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(j)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(k)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(l)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(m)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(n)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(o)

1

ground truth amplified ground truth

(a)

图 1: description of figure
(p)

图 1: description of figure
Figure 11. Super-resolution x2 results of the LR figure images with added white Gaussian noise
(σ = 20); (a–d,i–l) ground truth and the results of the Bicubic, MFT, TV, TGV, TV4, FTV4 and FTV4Lp
methods, respectively; (e–h,m–p) enlarged details from the rectangles in (a–d,i–l), respectively.

5. Discussion

By extending to the quaternion TV and using the Lp quasinorm constraint based on the FTV
method, the proposed method fully utilizes image correlation in four directions and combines it with
the Lp quasinorm constraint to perform image reconstruction well, even in the presence of noise
interference.

For the Bicubic and MFT methods, for both the noise-free and the added noise images,
the reconstruction results are over-smoothed and the details are unclear.

Though the TV method preserves the edge and detail information of an image because of its
piece-wise smooth processing, its results often include staircase artifacts. In contrast, because of the
constraints of the image with the first-order and second-order gradients, the TGV-based method
effectively reduces staircase artifacts; however, it also leads to over-smoothing and image distortion.

Without added white Gaussian noise, the TV4-based and FTV4-based methods show a “spots”
effect in some images. Moreover, the TV4-based method has a similar “painting” effect under white
Gaussian noisy conditions, which results in a large distortion relative to the original image. With white
Gaussian noise, the visual effects of the FTV4 reconstruction are close to those of the proposed FTV4Lp
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reconstruction; however, based on the experimental data analysis, the objective evaluation of the
former is inferior to that of the FTV4Lp reconstruction.

Furthermore, after introducing a fast ADMM algorithm, the number of ADMM iterations is
significantly reduced, which improves the efficiency of the algorithm.

6. Conclusions

In this study, a fast SRR algorithm was proposed to improve the FTV by employing quaternion
and Lp quasinorm constraints. Because more neighbor observed information is considered in the
proposed method, the SRR performance improves. Furthermore, by using the plug-and-play ADMM,
the entire optimization problem is decoupled into several sub-problems that are considerably easier to
solve. In our study, the differential operators are regarded as convolution operators; in this manner,
the proposed model can be solved in the frequency domain using convolution theorem, thus avoiding
large-scale matrix calculations.

We performed experiments on several infrared images; Our obtained results show that the
proposed method outperforms the typical methods, including those based on TV, TGV, TV4, and FTV4.

Because the proposed model only focuses on the directions of FTV, it can be expanded to other
models, such as the quaternion overlapping group sparse FTV model.
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