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Abstract: Near-infrared (874–1734 nm) hyperspectral imaging technology combined with
chemometrics was used to identify parental and hybrid okra seeds. A total of 1740 okra seeds
of three different varieties, which contained the male parent xiaolusi, the female parent xianzhi,
and the hybrid seed penzai, were collected, and all of the samples were randomly divided into
the calibration set and the prediction set in a ratio of 2:1. Principal component analysis (PCA) was
applied to explore the separability of different seeds based on the spectral characteristics of okra
seeds. Fourteen and 86 characteristic wavelengths were extracted by using the successive projection
algorithm (SPA) and competitive adaptive reweighted sampling (CARS), respectively. Another 14
characteristic wavelengths were extracted by using CARS combined with SPA. Partial least squares
discriminant analysis (PLS-DA) and support vector machine (SVM) were developed based on the
characteristic wavelength and full-band spectroscopy. The experimental results showed that the SVM
discriminant model worked well and that the correct recognition rate was over 93.62% based on
full-band spectroscopy. As for the discriminative model that was based on characteristic wavelength,
the SVM model based on the CARS algorithm was better than the other two models. Combining
the CARS+SVM calibration model and image processing technology, a pseudo-color map of sample
prediction was generated, which could intuitively identify the species of okra seeds. The whole
process provided a new idea for agricultural breeding in the rapid screening and identification of
hybrid okra seeds.
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1. Introduction

Okra (Abelmoschus esculentu (L.) Moench), known as a supervising versatile vegetable, has been
widely cultivated all over the world. It is a powerhouse of various nutrients, such as protein, cellulose,
unsaturated fatty acids, and minerals, such as iron, calcium, manganese, potassium, zinc, and so on [1].
Additionally, it is low in calories and fat free [2]. It has been discovered that okra seeds are rich in
flavonoids and polyphenols, all of which have strong anti-oxidative, anti-fatigue, and anti-cancer
abilities [3–6]. Screening and identification of seeds has always been an important part of the
agricultural breeding process. Breeding specialists typically cross-fertilize different pure lineages
of the desired trait to produce offspring heterosis. At present, many studies have focused on the
breeding of okra, which includes hybridization breeding [7–9]. Hybrid okra seeds have heterosis
values that can rapidly increase productivity, improve the quality of okra as a food, and so on [7].
However, the process of obtaining hybrid okra seeds is time-consuming and laborious. Breeding
experts often have to plant hybrids to a certain stage in order to screen the seeds [8,9]. They used plant
characteristics, such as plant height, leaf width, and fruit length to select the optimal hybrid offspring.
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Spectroscopic and spectral imaging techniques provide comprehensive structural information on
the components and properties of samples at the molecular level [10]. Nowadays, near-infrared
hyperspectral technology has been widely used in food detection and the identification of
varieties [11–15]. Near-infrared hyperspectral imaging is a fast nondestructive detection technology
combining machine vision and visible/near-infrared spectroscopy. With the help of near-infrared
hyperspectral imaging, the spatial and spectral information of the samples can be contained
simultaneously. Hundreds of contiguous wavebands for each spatial position of the sample make up
the near-infrared hyperspectral images [16]. The spatial and spectral information that represents the
external and internal information of the sample is provided in hypercube form and it is possible to
obtain multiple sample spectra in a single scan [17,18]. So, it is very effective at detecting the seeds of
hybrid okra by near-infrared hyperspectral imaging. Because different kinds of seeds contain different
material information, seeds can be classified by near-infrared hyperspectral imaging combined with
chemometrics. Yiying Zhao et al. (2017) identified the varieties of maize seeds using hyperspectral
imaging and chemometrics [19]. They also studied the influence of calibration sample size on
classification accuracy and obtained satisfactory results while using the radial basis function neural
networks (RBFNN) model with a calibration accuracy of 93.85% and a prediction accuracy of 91.00%.
Apart from pure seed classification, there are some studies that are focused on the spectral changes of
seeds with different treatments. Xuping Feng et al. (2017) used near-infrared hyperspectral imaging
technology and multidimensional data processing and analysis methods to distinguish transgenic
maize seeds, and they managed to achieve a classification accuracy of up to 99.43% with the partial
least squares discriminant analysis [20]. Min Huang et al. (2016) used near-infrared hyperspectral
imaging to distinguish corn seeds of different years. They applied model updating to update the
least squares support vector machines (LSSVM) model and the classification accuracy reached 94.40%,
which was 10.30% higher than that of non-updated models [13]. Santosh Shrestha et al. (2016) used
near-infrared hyperspectral imaging of a single tomato seed combined with multidimensional data
processing methods to analyze the quality of tomato [21]. Junfeng Gao et al. (2013) used near-infrared
hyperspectral imaging to distinguish jatropha seeds from different geographical environments, with an
identification rate of 93.75% [22]. To our knowledge, there is no research on the classification of hybrid
okra seeds with the help of near-infrared hyperspectral imaging. Because of its small size, we can
obtain a large amount of okra seed information at the same time, which is convenient for analysis
and processing. In this study, a total of 1740 okra seed samples of three different related varieties
were collected.

The purpose of this study was to investigate four goals: (1) to examine the feasibility of using
near infrared range (NIR) hyperspectral imaging techniques to identify the related hybrid okra seeds;
(2) to select optimal characteristic wavelengths that identify the differences among hybrid okra seeds
and their parent; (3) to build optimal discrimination models based on characteristic wavelengths, thus
simplifying the prediction model and speeding up the operation; and, (4) to visualize the classification
results of okra seeds in the form of a pseudo-color image by developing image processing algorithms.

2. Materials and Methods

2.1. Okra Seed Samples Preparation

The hybrid okra seeds used in this study and their parents were provided by the Zhejiang
Academy of Agricultural Sciences, Zhejiang, China. All seeds were planted in the same block, line by
line; planting conditions were strictly consistent, and all okra seeds were harvested at the same time
in 2017. Then, all of the okra seeds were put into plastic bags and sealed in a plastic box to prevent
moisture absorption during storage. The impact of environmental factors on seeds was eliminated
as much as possible. The 1740 okra seeds included three different varieties: xiaolusi representing the
father, xianzhi representing the mother, and penzai representing the hybrid progeny. Each variety
had 580 seeds. All of the seeds were of normal quality with no apparent damage in appearance.



Appl. Sci. 2018, 8, 1793 3 of 13

Seed varieties were coded as 1, 2, and 3 for data processing. All of the samples were randomly divided
into calibration and prediction sets in a ratio of 2:1. Therefore, 1160 okra seeds were used as the
modeling set and 580 okra seeds were used as the prediction set. Okra seeds were evenly placed on a
black plastic sheet.

2.2. Near-Infrared Hyperspectral Imaging

A laboratory-built hyperspectral imaging system was used to acquire hyperspectral images of
okra seeds. The whole system includes the following equipment: an imaging spectrograph (ImSpector
N17E; Spectral Imaging Ltd., Oulu, Finland); a high-performance CCD camera (C8484-05; Hamamatsu,
Hamamatsu City, Japan) coupled with a camera lens (OLES22; Specim, Spectral Imaging Ltd.,
Oulu, Finland); two 150 W tungsten halogen lamps (Fiber-Lite DC950 Illuminator; Dolan Jenner
Industries Inc., Boxborough, MA, USA); a mobile platform controlled by a stepper motor (Isuzu
Optics Corp., Taiwan, China); and, a computer equipped with the data acquisition software (Xenics
N17E, Isuzu Optics Corp., Taiwan, China) that controls the motor speed, exposure time, and so on.
Next, a non-deformable and clear image should be obtained by the system. The spectral range of the
hyperspectral imaging system whose spectral resolution is 5 nm is 874–1734 nm. The camera has 320 ×
256 (spatial × spectral) pixels. In order to obtain clear and usable spectral images, relevant parameters
of the test system need to be set before spectral collection. The height of the objective lens was set to
15 cm, the exposure time was set to 3 ms, and the moving speed of the platform was set to 15 mm/s.
Before the spectral data and imaging process, the raw hyperspectral images should be corrected.
The white reference image was acquired by using a white Teflon tile with nearly 100% reflectance.
The black reference image was acquired by covering the lens completely with its opaque cap when the
lights were all turned off. The calibrated image was calculated while using the following equation:

IC =
Iraw − Idark

Iwhite − Idark
(1)

where Iraw is the raw hyperspectral image; Idark is the dark reference image and Iwhite is the white
reference image; IC is the calibrated hyperspectral image.

2.3. Spectral Collection

After near-infrared hyperspectral imaging acquisition, the spectral information of the whole
images was collected. The spectral data of the okra seeds were collected at the wavelength range
of 874–1734 nm. However, due to the influence of the surrounding environment and the optical
equipment, the noise of the front and back ends of the spectrum was obvious. So, the obvious front
and the rear bands of the noise were removed and the spectral data between 975.01–1645.82 nm was
selected to obtain the average spectral image of the three kinds of okra seeds. To obtain the relevant
information of okra seeds, the background and the region of interest should be segmented. The average
spectrum of okra seeds was calculated by using the pixel’s spectrum of the region of interest. Firstly,
the smoothed spectra were collected by applying wavelet transform (WT) which used Daubechies
8 with decomposition scale 3 to the raw spectra [20]. Then, image segmentation was performed
based on the different reflectance values between the background and the seeds. Finally, the averaged
spectrum of okra seeds was collected for further analysis and all of these processes were conducted in
MATLAB (2013b).

2.4. Multivariate Data Analysis

Three different methods were used in the present study: principal component analysis (PCA),
partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM). Seed
morphology was first used to explore the feasibility of seed classification of hybrid okra. PCA
analysis was carried out to visually show the differences between different kinds of seeds by their
average spectral characteristics. Since the full band spectrum contains a lot of redundant information,
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two methods of extracting the characteristic wavelengths were adopted in this study: successive
projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS). In addition to the
14 characteristic wavelengths extracted by SPA, CARS extracts 86 characteristic wavelengths—almost
half of the total 200 bands. Thus, in order to reduce the number of characteristic wavelengths
and to ensure the simplification of the models, SPA was used again to extract the characteristic
wavelengths based on CARS. Next, the PLS-DA and SVM models that are based on the full spectrum
and characteristic wavelengths were built. Finally, CARS-SPA-SVM combined with the image
processing algorithm was used to draw the predicted pseudo-color map to show the classification
results more intuitively.

PCA is a commonly used and effective data reduction compression algorithm and it has been used
in NIR spectroscopy identification [23]. Its basic principle is to convert multiple related variables in the
original data into a new comprehensive variable (principal component) through linear transformation.
The main components of the first few contributions in the new variable cover the main information
of the original data. Therefore, this article preserves the first three principal components and
compares three types of okra seeds by comparing the spatial distribution of the samples on three
principal components.

PLS-DA is a pattern recognition method that is widely used and classified by spectral data [24,25].
In this paper, the spectral data of the sample was used as the independent variable X, the class number
was used as the dependent variable Y, and the PLS-DA model was established in the Unscrambler
X 10.1 by the retention one method, and the prediction set sample was predicted based on this
classification model. According to the absolute value of the difference between the sequence number
of the sample and the predicted value of the model, the discriminant accuracy of the modeling set,
and the prediction set was calculated. As the N value had a decimal number, the set threshold was 0.5
in the actual calculation. The parameters of the model were determined by the sum of the predicted
residual squares.

SVM is a machine learning algorithm that is based on statistical learning Vapnik–Chervonenkis
(VC) dimension theory and the structural risk minimization principle [26,27]. It can be used for
qualitative and quantitative analysis of data. SVM maps the input space into high-dimensional space
through the kernel function; it constructs the optimal classification plane to separate the two classes
accurately and correctly, and it introduces the penalty coefficient and the relaxation coefficient (c, g) to
make the correction. This ensures that that the classification interval of the two classes is the largest
and it thus ensures minimum risk. SVM is widely used in data classification and analysis. In this
paper, the model set and prediction set of MATLAB 2013b are input, the SVM program to identify the
species of okra seed is run, and radial basis function (RBF) is used as a kernel function of the SVM
model. The optimal (c, g) parameter combination is determined by the grid search method in the range
of 2–8 to 28 optimization, and the accuracy of the output model is identified.

The quality of these classification models is evaluated by the classification recognition rate. If the
predicted value obtained by these models is the same as the value that we have coded, we believe that
the identification is correct. Furthermore, the classification recognition rate is calculated by identifying
the ratio between the number of okra seeds whose identification is correct and the number of whole
okra seeds.

2.5. Software Tools

Evince version 4.6 Hyperspectral image analysis soft package (ITT, Visual Information Solutions,
Boulder, CO, USA) was used to analyze the hyperspectral image and MATLAB version R2013b
(The Math-Works, Natick, MA, USA) was used to conduct multivariate data analysis. In addition,
all of the graphs were designed using origin Pro 9.0 (Origin Lab Corporation, Northampton, MA, USA)
software. The model performance was evaluated by the classification accuracy of the calibration set
and the prediction.
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3. Results and Discussion

3.1. Spectroscopic Analysis

A spectral image of the okra seeds that belong to our selected region is shown in Figure 1a and
the trend of these lines that represent the components of the okra seeds is similar. Figure 1b shows the
average spectra of all the samples that comprise three different varieties. Obvious and slight differences
can be observed in Figure 1b. At the beginning and end of the band, the similarity between the male
parent named xiaolusi and the hybrid offspring named penzai is relatively high, and the seeds of the
female parent named xianzhi can be clearly distinguished from the other two species. In the middle
band, the three are similar in the wave valley of the average spectrum, but the reflectivity is different,
which can be used to separate the three different seeds. These changes may be due to the differences in
the chemical and molecular structure of the progeny that is caused by different genetic effects of the
parent, which all provide the basis for the subsequent chemometrics analysis [7,28]. Therefore, it is
necessary to use NIR spectroscopy combined with chemometrics to establish discriminant models for
the classification of seeds.
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Figure 1. Spectral image of the okra seeds that were extracted from region of interest (ROI) using
the near-infrared hyperspectral technology: (a) raw spectral image of all okra seeds; and, (b) average
spectral image of three different varieties of okra seeds.
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3.2. Principle Component Analysis of Spectral Data

In order to explore the separability of different okra seeds, the PCA program that could minimize
the interference of other useless data was applied to extract the critical components from the various
spectral data [10,29,30]. The three-dimensional (3D) principal component (PC) score plot of all the
samples is illustrated in Figure 2. All spectral data from a range of 975.01 to 1645.82 nm were analyzed
and the explained variance rate of the first three principal components was 99.36%, of which the
contribution rate of the first principal component (PC1) was 81.41%, the contribution rate of the second
principal component (PC2) was 16.59%, and the contribution rate of the third principal component
(PC3) was 1.36%. Such contribution rates explain the vast majority of variables. It was obvious that
the three different varieties distributed separately, but their borders were unclear and overlapped.
Distinguishing all three varieties of okra seeds was not easy by PCA. Conventional chemometric
methods, such as PCA, might not be suitable for analyzing the spectral data of okra seeds [16,31].
Therefore, it is essential to conduct more modeling analyses to identify different kinds of okra seeds.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 13 

and the explained variance rate of the first three principal components was 99.36%, of which the 

contribution rate of the first principal component (PC1) was 81.41%, the contribution rate of the 

second principal component (PC2) was 16.59%, and the contribution rate of the third principal 

component (PC3) was 1.36%. Such contribution rates explain the vast majority of variables. It was 

obvious that the three different varieties distributed separately, but their borders were unclear and 

overlapped. Distinguishing all three varieties of okra seeds was not easy by PCA. Conventional 

chemometric methods, such as PCA, might not be suitable for analyzing the spectral data of okra 

seeds [16,31]. Therefore, it is essential to conduct more modeling analyses to identify different kinds 

of okra seeds. 

 

Figure 2. The three-dimensional (3D) principal component (PC) score plot of three different varieties 

of okra seeds. 

3.3. Classification Results and Analysis by the Discrimination Models Based on the Full Spectrum 

Discrimination models which could classify the hybrid okra seeds were built based on the full 

spectrum. Firstly, PLS-DA and SVM were used to establish the discrimination models based on the 

full spectrum, and the accuracy of the classification recognition was used as an evaluation index of 

the model performance. As shown in Table 1, the classification ability of the SVM model, whose 

classification accuracy rate of the modeling set and the prediction set reached 99.31% and 93.62%, 

respectively, was obviously higher than that of the PLS-DA model. The correct recognition rate of the 

modeling set and the prediction set of the PLS-DA model reached 83.36% and 82.59%, respectively, 

which was also available for classification. Zhengjun Qiu et al. (2018) built SVM models to identify 

the variety of single rice seed [18]. Their accuracy of the training set and the test set reached 86.9% 

and 84.0%, respectively, which was not as good as our results. Xiaoling Yang et al. (2015) compared 

the classification results of waxy corn seeds while using the SVM model and the PLS-DA model [15]. 

They also found that the performance of SVM is better than PLS-DA on most types of selected input 

datasets. When comparing the classification results of the two discriminative methods, the 

differences may be due to the fact that the SVM model uses a radial basis function (RBF) as a kernel 

function, and it performs a grid search within the optimization range to obtain a global optimal 

parameter combination [26,27]. PLS-DA establishes a linear discriminant model, while the SVM 

Figure 2. The three-dimensional (3D) principal component (PC) score plot of three different varieties of
okra seeds.

3.3. Classification Results and Analysis by the Discrimination Models Based on the Full Spectrum

Discrimination models which could classify the hybrid okra seeds were built based on the full
spectrum. Firstly, PLS-DA and SVM were used to establish the discrimination models based on the
full spectrum, and the accuracy of the classification recognition was used as an evaluation index of
the model performance. As shown in Table 1, the classification ability of the SVM model, whose
classification accuracy rate of the modeling set and the prediction set reached 99.31% and 93.62%,
respectively, was obviously higher than that of the PLS-DA model. The correct recognition rate of the
modeling set and the prediction set of the PLS-DA model reached 83.36% and 82.59%, respectively,
which was also available for classification. Zhengjun Qiu et al. (2018) built SVM models to identify
the variety of single rice seed [18]. Their accuracy of the training set and the test set reached 86.9%
and 84.0%, respectively, which was not as good as our results. Xiaoling Yang et al. (2015) compared
the classification results of waxy corn seeds while using the SVM model and the PLS-DA model [15].
They also found that the performance of SVM is better than PLS-DA on most types of selected input
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datasets. When comparing the classification results of the two discriminative methods, the differences
may be due to the fact that the SVM model uses a radial basis function (RBF) as a kernel function,
and it performs a grid search within the optimization range to obtain a global optimal parameter
combination [26,27]. PLS-DA establishes a linear discriminant model, while the SVM algorithm
establishes a non-linear model that can fully utilize the spectral information between different types
and establish a classification model [24]. Therefore, the classification effect is significantly better
than PLS-DA.

Table 1. Comparison of discrimination results obtained by partial least squares (PLS) and support
vector machine (SVM) models with the complete spectral data. PLS-DA: partial least squares
discriminant analysis.

Methods
Full Wavelength

Parameter Calibration Set Prediction Set

PLS-DA 9 83.36% 82.59%
SVM (256, 5.2780) 99.31% 93.62%

Note: PLS-DA model’s parameter means the optimal number of LVs; SVM model’s parameter means different
penalty parameters (c) and kernel function parameters (g), shown as (c, g).

3.4. Selection of Effective Wavelengths

The whole band of spectral data contains redundant information, and, in order to increase the
processing speed of the models and reduce the modeling time, two different algorithms that can
extract the characteristic wavelength were applied in this study. Furthermore, a combination of two
methods was used to obtain the optimal number of characteristic wavelengths. Figure 3a shows the
characteristic wavelengths which were extracted by the successive projection algorithm (SPA). SPA is a
forward feature variable selection method, which selects the combination of variables with minimal
redundancy information and minimal collinearity, and it therefore has a wide range of applications
in spectral feature wavelength selection [32–35]. Fourteen characteristic wavelengths were acquired.
The band found near 1065 nm is related to the O-H stretching vibration [36]. The spectral regions
which include 1041–1143 nm, 1211–1225 nm, 1360–1390 nm, and 1621–1654 nm are related to the C-H
stretching vibration [36]. The band at around 1472 nm is related to the N-H stretching vibration [36].
These groups exist in amino acids and other substances found in okra seeds, such as leucine, lysine,
valine, and phenylalanine [37], indicating that the selected characteristic wavelength is representative
and it can be used to establish an effective and reliable discriminant analysis model.

CARS, a characteristic wavelength selection method, is based on Monte Carlo sampling and PLS
regression coefficients. It was used to choose the optimal wavelengths. Initially, 86 characteristic
wavelengths were extracted from the 200 full-band wavelengths. Although there is a certain degree of
deletion for the whole band, it could be more concise. Figure 3b shows the distribution of characteristic
wavelengths that were selected by CARS. Therefore, in this study, in order to further reduce the
number of characteristic wavelengths, CARS was further screened in conjunction with SPA. Finally,
14 characteristic wavelengths were selected. The changes of the distribution of optimal wavelengths
are shown in Figure 3c. All of the bands that are selected by CAR + SPA are related to the stretching
vibration of the functional groups, which include N-H group, C-H group, and C=O group [36].
According to some studies, the unsaturated fatty acids, proteins, and hydrocarbons of okra seeds also
contain the corresponding functional groups [38].
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3.5. Classification Results and Analysis by the Discrimination Models Based on the Characteristic
Band Spectrum

Discrimination models were built based on the characteristic wavelengths to simplify the
complexity and increase the operating speed. When it came to practical breeding applications,
a detection device of hybrid okra seeds required faster processing speed and a more reliable model.
SPA, CARS, and CAR + SPA were used to select the optimal wavelengths. The classification results
using the SVM model were superior to the PLS-DA classification results that are shown in Table 2,
and the CARS algorithm had better discrimination results than SPA and CARS + SPA. This may be
because CARS extracts much larger characteristic wavelengths than the other two, and the spectrum
contained sufficient active ingredients. Many studies have shown that there are differences in the
internal content between the hybrid seeds and the parent, and near-infrared hyperspectral imaging
could obtain the internal information of the okra seeds [1,2,20,22,24]. The classification accuracy rate
of the prediction set of the SVM model that is based on CARS (94.83%) was even higher than the SVM
model based on the whole band spectrum. However, the accuracy of the established classification
discrimination model based on the characteristic wavelength was lower than the models based on
the full spectrum. This was particularly evident in the classification results of the PLS-DA model.
When comparing the two classification models based on SPA and CARS + SPA, the recognition rate
was over 79%. After the characteristic wavelengths were extracted by CARS + SPA, SVM was used
to establish the model whose classification accuracy rate of the modeling set and the prediction set
reached 97.41% and 92.24%, respectively, which provided a new reference method for the breeding
identification of hybrid okra seeds. Yiying Zhao et al. (2018) used SVM models to classify the variety
of maize seeds [19]. Based on the optimal wavelengths, they achieved 93.85% calibration accuracy
and 91.00% prediction accuracy, which was worse than our model. Wenwen Kong et al. (2013)
established classification models to classify rice seed cultivar [39]. Their SVM models based on optimal
wavelengths achieved classification accuracy rates of 97.30% and 89.47% for the modeling set and
the prediction set, respectively, which was almost as good as our models. The good effect of CARS
indicates that most of the spectral bands are valid for the classification of okra seeds. Excessive deletion
of spectral data is likely to result in the loss of a lot of classification information, thus causing the other
two methods to be unsatisfactory.

Table 2. Discrimination results of the PLS-DA and SVM models based on characteristic wavelength.
SPA: successive projection algorithm; CARS: competitive adaptive reweighted sampling.

Methods PLS-DA SVM

SPA
Parameter 8 Parameter (256, 27.8576)

Calibration Set 79.74% Calibration Set 95.34%
Prediction Set 79.48% Prediction Set 91.55%

CARS+SPA
Parameter 9 Parameter (256, 48.5029)

Calibration Set 81.47% Calibration Set 97.41%
Prediction Set 79.31% Prediction Set 92.24%

CARS
Parameter 9 Parameter (256, 9.1896)

Calibration Set 84.40% Calibration Set 98.71%
Prediction Set 82.41% Prediction Set 94.83%

Note: PLS-DA model’s parameter means the optimal number of LVs; SVM model’s parameter means different
penalty parameters (c) and kernel function parameters (g), shown as (c, g).

The results show that the near-infrared hyperspectral technology, when combined with the
chemometrics method, can identify different kinds of okra seeds quickly and effectively and the
SVM model has a good classification effect. Since okra seeds and their offspring were used as
research subjects, there was a transmission of genetic information between parents and their offspring.
Therefore, there was some overlap between the content of hybrid seeds and the content of material
between parents, which forms a barrier to the identification of spectral classifications.
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3.6. Visual Prediction of Okra Seeds

Hyperspectral images contain the spectral and spatial information of the samples simultaneously,
and there is a certain correspondence that can be used by image processing technology between spectral
and spatial information. In order to verify the performance of the classification model, the okra seed
prediction maps were plotted based on the average spectrum of each seed in the hyperspectral image.
The combination of the model and the image processing technology can generate a pseudo-color map
for predicting the type of the sample, and distinguish different sample types with different colors,
as well as to visualize the classification results intuitively. Because of the large amount of data in the
full spectrum, the computational complexity is high, which is not conducive to the rapid prediction of
the sample. Therefore, this paper selected the SVM model based on the optimal wavelengths extracted
by the CARS algorithm as the classification model. The average spectrum of each okra seed in the
hyperspectral image was taken as input, and the three different types of okra seeds were selected to
be 686 grains in total. The original seed map and prediction map are shown in Figure 4. In Figure 4,
blue refers to the female parent (xianzhi), yellow refers to the father (xiaolusi), and red refers to the
hybrid seed (penzai). Comparing Figure 4a,b, the three different kinds of okra seeds can hardly be
distinguished by the naked eye in the original map. There were some misjudgments in the classification
images of the three okra seeds, but the overall correct discrimination rate is 91.41%. Affected by factors
such as hyperspectral image segmentation algorithms and image resolution, the okra seeds in the
visualized pseudo-color map have undergone some deformation, but most of them are still intact and
they do not affect the identification and analysis. This method can be used to make rough preliminary
judgments on the species of hybrid okra seeds, which provides a new method for the rapid and
accurate screening of seeds in the process of cross breeding.
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4. Conclusions

In this study, three types of okra seeds were identified using near-infrared hyperspectral imaging
technology. A total of 1740 okra seeds were selected as the samples, of which 1160 seeds were used
as the modeling set and 580 seeds were used as the prediction set. The PCA method was used to
process the spectral data to initially observe the classification of the three types of okra seeds. Fourteen
characteristic wavelengths were selected using the SPA algorithm, and 86 characteristic wavelengths
were extracted using the CARS algorithm. Fourteen characteristic wavelengths were further extracted
using the SPA algorithm based on the wavelengths that were extracted by CARS to simplify the models.
PLS-DA and SVM discriminant models that were based on the full spectrum and the optimal spectrum
were established. When compared with the two algorithms, the SVM algorithm is more effective at
classifying the hybrid okra seeds. The recognition rate of the modeling set and the prediction set
of the full-band discrimination model reached 99.31% and 93.62%, respectively. The characteristic
wavelengths that were extracted by using CARS had a better modeling effect. The recognition rates of
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the modeling set and the prediction set reached 98.71% and 94.83%, respectively. Using the CARS +
SVM model combined with image processing techniques, a pseudo-color map of category classification
was generated to identify different kinds of okra seeds. The results show that the near-infrared
hyperspectral image technology combined with chemometrics can identify the species of okra’s parent
and hybrid offspring, and provide methods and ideas for the later rapid detection methods of okra
hybrid breeding. Future experiments will focus on expanding the information on the number of
species of okra seeds to form a spectroscopic database of okra seeds to improve the reliability and
stability of the classification and identification model, so as to classify the hybrid okra seeds more
quickly and efficiently.

Author Contributions: X.F. designed the entire core architecture and J.Z. and X.L. performed the experiments;
J.Z. summarized and processed the data; J.Z. wrote the article; Y.H. is a principle investigator for this project and a
corresponding author.

Funding: This research was funded by the National Key R&D program of China (2016YFD0300606), and National
Natural Science Foundation of China (Grant No. 31801257).

Acknowledgments: We are thankful to the Zhejiang Academy of Agricultural Sciences, Zhejiang, China for
technical support in the process of obtaining the hybrid seeds. I also want to thank my girlfriend Ling Lu for her
spiritual support and I am happy to have such a wonderful research life.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Kumar, P.S.; Sreeparvathy, S. Studies on heterosis in okra (Abelmoschus esculentus (L.) Moench). Electron. J.
Plant Breed. 2010, 1, 1431–1433.

2. Reddy, M.T.; Babu, K.H.; Ganesh, M.; Begum, H.; Babu, J.D. Exploitation of hybrid vigour for yield and its
components in okra [Abelmoschus esculentus (L.) Moench]. Am. J. Agric. Sci. Technol. 2013, 1, 1–17. [CrossRef]

3. Adelakun, O.E.; Oyelade, O.J.; Adeomowaye, B.I.; Adeyemi, I.A.; Van, D.V.M. Chemical composition and
the antioxidative properties of nigerian okra seed (Abelmoschus esculentus Moench) flour. Food Chem. Toxic.
2009, 47, 1123–1126. [CrossRef]

4. Arapitsas, P. Identification and quantification of polyphenolic compounds from okra seeds and skins.
Food Chem. 2008, 110, 1041–1045. [CrossRef] [PubMed]

5. Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and anti-fatigue constituents of
okra. Nutrients 2015, 7, 8846–8858. [CrossRef] [PubMed]

6. Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant activity of extract and its major constituents from okra
seed on rat hepatocytes injured by carbon tetrachloride. Biomed. Res. Int. 2015, 2014, 341291. [CrossRef]
[PubMed]

7. Maciel, G.M.; Luz, J.M.; Campos, S.F.; Finzi, R.R.; Azevedo, B.N.; Maciel, G.M.; Luz, J.M.; Campos, S.F.;
Finzi, R.R.; Azevedo, B.N. Heterosis in okra hybrids obtained by hybridization of two methods: Traditional
and experimental. Hort. Bras. 2017, 35, 119–123. [CrossRef]

8. Seth, T.; Chattopadhyay, A.; Chatterjee, S.; Dutta, S.; Singh, B. Selecting parental lines among cultivated and
wild species of okra for hybridization aiming at YVMV disease resistance. J. Agric. Sci. Technol. 2016, 18,
751–762.

9. Das, S.; Chattopadhyay, A.; Dutta, S.; Chattopadhyay, S.B.; Hazra, P. Breeding okra for higher productivity
and yellow vein mosaic tolerance. Int. J. Veg. Sci. 2013, 19, 58–77. [CrossRef]

10. Yin, W.; Zhang, C.; Zhu, H.; Zhao, Y.; He, Y. Application of near-infrared hyperspectral imaging to
discriminate different geographical origins of chinese wolfberries. PLoS ONE 2017, 12, e0180534. [CrossRef]
[PubMed]

11. Rodríguez-Pulido, F.J.; Barbin, D.F.; Sun, D.W.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. Grape seed
characterization by NIR hyperspectral imaging. Postharvest Biol. Technol. 2013, 76, 74–82. [CrossRef]

12. Sun, J.; Jiang, S.; Mao, H.; Wu, X.; Li, Q. Classification of black beans using visible and near infrared
hyperspectral imaging. Int. J. Food Prop. 2016, 19, 1687–1695. [CrossRef]

http://dx.doi.org/10.7726/ajast.2013.1001
http://dx.doi.org/10.1016/j.fct.2009.01.036
http://dx.doi.org/10.1016/j.foodchem.2008.03.014
http://www.ncbi.nlm.nih.gov/pubmed/26047300
http://dx.doi.org/10.3390/nu7105435
http://www.ncbi.nlm.nih.gov/pubmed/26516905
http://dx.doi.org/10.1155/2014/341291
http://www.ncbi.nlm.nih.gov/pubmed/24719856
http://dx.doi.org/10.1590/s0102-053620170118
http://dx.doi.org/10.1080/19315260.2012.675024
http://dx.doi.org/10.1371/journal.pone.0180534
http://www.ncbi.nlm.nih.gov/pubmed/28704423
http://dx.doi.org/10.1016/j.postharvbio.2012.09.007
http://dx.doi.org/10.1080/10942912.2015.1055760


Appl. Sci. 2018, 8, 1793 12 of 13

13. Huang, M.; Tang, J.; Yang, B.; Zhu, Q. Classification of maize seeds of different years based on hyperspectral
imaging and model updating. Comput. Electron. Agric. 2016, 122, 139–145. [CrossRef]

14. Serranti, S.; Cesare, D.; Marini, F.; Bonifazi, G. Classification of oat and goat kernels using nir hyperspectral
imaging. Talanta 2013, 103, 276–284. [CrossRef] [PubMed]

15. Yang, X.; Hong, H.; You, Z.; Cheng, F. Spectral and image integrated analysis of hyperspectral data for waxy
corn seed variety classification. Sensors 2015, 15, 15578–15594. [CrossRef] [PubMed]

16. Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey., G.; Frias, J.M. Hyperspectral imaging—An emerging
process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598.
[CrossRef]

17. Zhang, C.; Wang, Q.; Liu, F.; He, Y.; Xiao, Y. Rapid and non-destructive measurement of spinach pigments
content during storage using hyperspectral imaging with chemometrics. Measurement 2017, 97, 149–155.
[CrossRef]

18. Qiu, Z.; Chen, J.; Zhao, Y.; Zhu, S.; He, Y.; Zhang, C. Variety identification of single rice seed using
hyperspectral imaging combined with convolutional neural network. Appl. Sci. 2018, 8, 212. [CrossRef]

19. Zhao, Y.; Zhu, S.; Zhang, C.; Feng, X.; Feng, L.; He, Y. Application of hyperspectral imaging and chemometrics
for variety classification of maize seeds. RSC Adv. 2018, 8, 1337–1345. [CrossRef]

20. Feng, X.; Zhao, Y.; Zhang, C.; Cheng, P.; He, Y. Discrimination of transgenic maize kernel using nir
hyperspectral imaging and multivariate data analysis. Sensors 2017, 17, 1894. [CrossRef] [PubMed]
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