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Abstract: This paper presents a robust change detection algorithm for high-resolution panchromatic
imagery using a proposed dual-dense convolutional network (DCN). In this work, a joint structure of
two deep convolutional networks with dense connectivity in convolution layers is designed in order
to accomplish change detection for satellite images acquired at different times. The proposed network
model detects pixel-wise temporal change based on local characteristics by incorporating information
from neighboring pixels. Dense connection in convolution layers is designed to reuse preceding
feature maps by connecting them to all subsequent layers. Dual networks are incorporated by
measuring the dissimilarity of two temporal images. In the proposed algorithm for change detection,
a contrastive loss function is used in a learning stage by running over multiple pairs of samples.
According to our evaluation, we found that the proposed framework achieves better detection
performance than conventional algorithms, in area under the curve (AUC) of 0.97, percentage correct
classification (PCC) of 99%, and Kappa of 69, on average.
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1. Introduction

Change detection is a challenging task in remote sensing for identifying changed areas between
two images acquired at different times from the same geographical area. It has been widely used in
both civil and military fields such as agricultural monitoring, urban planning, environment monitoring,
and reconnaissance. In general, change detection is performed in three steps. First, a preprocessing
step is commonly used to conduct registration of two images and to correct geometric and radiometric
distortions. In the second step, a feature map is extracted, for example, a difference image is computed
in order to generate change features with the assumption that two images are not perfectly registered
for all of the pixels. Lastly, a classification or clustering algorithm is driven in order to distinguish
changed pixels and unchanged pixels based on statistical characteristics.

For change detection, many manually designed features such as a difference image (DI) [1–7],
local change vector [8], and texture vector [9–11] have been proposed. In further classification analysis,
an unsupervised change detection was proposed based on fuzzy c-mean (FCM) clustering [12,13].
The optimization algorithm based on Markov random field (MRF) and genetic algorithm was employed
so as to optimize the FCM. On the other hand, a supervised learning algorithm was presented based
on an active learning and MRF in order to detect change areas [14]. In addition, a support vector
machine (SVM) has widely been used to perform binary classification based on texture information
and change vector analysis [9,15–17]. Since the classification process mainly depends on extracted
features, the selection of handcrafted features for effective image representation is known to be crucial.
In general, handcrafted features in change detection are sensitive due to geometric and radiometric
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distortions, as well as imperfect registration. All of those mentioned classification algorithms would be
reasonably good for training data sets. However, those algorithms are not able to incorporate accurate
and reliable statistical characteristics for a huge amount of data sets, and thus would not yield good
detection performance for new data sets.

Recently, a deep convolution neural network (DCNN) was developed to produce a hierarchy
feature-maps via learned filters, and it can automatically learn a complex feature space from a huge
amount of image data. The DCNN can achieve superior performance compared to conventional
classification algorithms with handcrafted features. Recently, several change detection methods using
deep learning algorithms have been proposed [18–20]. A difference image is fed into the deep neural
networks as input data [18]. In addition, the neighboring features on each pixel on the difference image
are taken as inputs. The restricted Boltzmann machine (RBM) is used for pre-training and is then
unrolled in order to create a deep neural network. On the other hand, the change detection is performed
by combining a sparse autoencoder, convolutional neural network (CNN), and unsupervised clustering
algorithm [19]. In addition, a log-ratio map was used and transformed by a sparse autoencoder into
a suitable feature space. A change detection map is directly extracted from the two images using a
pre-trained CNN [20]. A unique higher dimensional feature map is produced by the CNN through
different convolutional layers. The change map is computed using pixel-wise Euclidean distance of
hyper dimensional features. Another change detection algorithm has also been proposed that adopts a
log-ratio difference [21]. It is used as a feature input for detecting changes between multi-temporal
synthetic aperture radar (SAR) images. In addition, a deep neural network was developed by stacking
RBMs to learn and recognize changed pixels and unchanged pixels. In addition, a combined algorithm
with the deep belief networks (DBNs) and change analysis are presented to highlight changes [22].
The presented algorithm merges and vectorizes local pixel features into DBN inputs. Then, the DBN
model is established in order to capture key information for discrimination and to suppress irrelevant
variations. An unsupervised clustering algorithm is then used to classify changed and unchanged
pixels. Another approach utilizes joint features for change detection [23]. This work proposed an
efficient change rule with a reliable expression of difference information. It learns the reliable change
rule by recording the change information for a long-term sequence of remote sensing data with long
short-term memory (LSTM) model. As mentioned above, all of the deep learning-based change
detection algorithms yield relatively good performance. However, most of them still rely on the
difference image as a feature input of their networks, resulting in them being sensitive to noisy
conditions caused by geometric, radiometric distortions, and different viewing angles. In order to
solve these problems, an alternative approach for change detection was developed by measuring
similarity. A Siamese convolutional network was proposed to detect changed areas for optical aerial
images [24]. The Siamese convolutional network with shared weights learns to extract features directly
from image pairs. This work uses shared weights that are dependent from those of two branch
networks. The shared weights can reduce parameters to be optimized, resulting in faster convergence.
However, this model is also less flexible, which leads to overfitting due to shared weights with some
other neurons.

In order to overcome the problems described above, this paper proposes a dual-dense
convolutional network for recognizing pixel-wise change based on dissimilarity analysis of
neighborhood pixels on high resolution panchromatic (PAN) images. In this proposed algorithm,
two fully convolutional neural networks are employed to measure dissimilarity of neighborhood
pixels. Furthermore, dense connection in convolution layers is applied to reuse preceding feature maps
by connecting them to all subsequent layers. It is proposed to enhance a feature-map representation.
While the conventional change detection algorithm [24] and conventional Siamese network use shared
weights, the proposed algorithm removes shared weights in order to obtain independent optimal
weights for two points of input data. So, each network can independently learn for optimal weights,
called the “dual-dense convolutional network (dual-DCN)”. During its training, the dual-DCN is
driven to learn more robust different representations to better distinguish different types of changes.
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The proposed algorithm gives better performance compared to conventional methods in qualitative
and quantitative evaluation. It yields AUC of 0.97, PCC of 99%, and Kappa of 69 on average.

The rest of this paper is organized into five sections: In Section 2, the conventional convolutional
neural network and problem statements will be described. Section 3 presents the proposed algorithm in
detail. Section 4 will present and analyze experiment results. Finally, we conclude it in the last section.

2. Convolutional Neural Network and Problem Statement

The convolutional neural networks (CNNs) are a category of neural networks which are very
effective in image recognition, classification, and so on [25]. The CNN is one of the deep learning
approaches that is composed of multiple convolutional and nonlinearity layers with optional pooling,
followed by fully-connected layers, as shown in Figure 1.
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Figure 1. Traditional convolutional neural network (CNN) architecture.

Let I be an image (m × n × c) to be input, where m, n, and c are the height, width, and channel
numbers of the image, respectively. In the convolutional layers, I is convolved by 2D k kernels and
mapped by a nonlinearity function, called rectified linear units (ReLU), to build k feature-maps (F).
The feature-map output of the lth layer is connected to the input of the (l + 1)th convolution and
pooling layer. The final feature-maps are connected to a fully-connected layer. The last layer of
fully-connected layer produces the class probability output (Pclass). A cross-entropy function is then
used to compute an objective loss. All of the weighting parameters of the network can be trained using
the backpropagation algorithm.

Changes on remote-sensed images can be detected by analyzing two registered images over
the same geographical area. For change detection, CNN could be employed to learn changed image
characteristics and detect changed areas on remote-sensed imagery. However, the difference image
(DI) or the feature fusion (FF) is widely used as an input feature of CNN, as shown in Figure 2.
The DI is extracted by image subtraction or log ratio. Then, the FF is constructed by concatenating
the two images. Note that these approaches are sensitive to noise as direct pixel-wise comparison
features; thus, the traditional CNNs with DI or FF features could be weak to distorted data. In practice,
distorted images and data are common in the remote sensing field. This distortion can be caused by
not only radiometric but also geometric and viewing angle factors. In general, a geometric distortion
is generated when satellites or aircrafts acquire images. In addition, image registration is required
to align two images, even over the same geographical area, in a pre-processing stage. However, it is
almost impossible to perfectly achieve distortion correction through automated methods. In addition,
a viewing angle difference in acquisition is another challenging issue in registration and change
detection. This problem cannot be resolved without precise 3-D building models, complicated
algorithms, and manual intervention. For robust change detection, a robust and stable classification
model is required that resolves all of the problems described above.
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Figure 2. Conventional approaches. (a) Difference Image (DI) + CNN and (b) Feature Fusion (FF)
+ CNN.

3. Change Detection with the Proposed Dual-Dense Convolutional Neural Network

In general, generic change detection algorithms consist of two phases: pre-processing and
change detection. Figure 3a depicts a general procedure of the conventional change detection
system. The pre-processing stage performs radiometric correction, geometric rectification, and image
registration. The registered images are then fed into a change detection algorithm in order to identify
changed areas with feature vectors, for example, a difference image. In the general change detection
systems, the radiometric correction and image registration stages are important and indispensable
for better performance. The radiometric correction is performed in order to alleviate distortion for
radiometric consistency. Then, the geometric correction is performed by aligning the global earth
coordinates with the corresponding image points. Even though two images are compensated using
multiple steps, they are still not perfectly registered, as they are independently processed with many
error factors. Thus, an additional registration between two images is frequently required in order to
reduce mis-alignment.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 14 
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In urban and mountainous areas in particular, most automatic image registration methods remain
ineffective. It would degrade performance of change detection by direct pixel-wise comparison using
the difference image. In order to resolve imperfect registration impacting on the change detection,
a dual-DCN, as shown in Figure 3b is proposed by employing a dissimilarity distance in order to
overcome the mis-alignment problem for better performance of change detection even without a
perfect image registration. The proposed algorithm employs two deep convolution networks to keep
all the information of the original data. The generic characteristics of the CNN handle some local
distortion and alignment, thus, the proposed algorithm absorbs the misalignment problem. In addition,
the dense connectivity in the convolution layer is introduced by reusing all preceding feature-maps to
enhance the feature-map representation.

3.1. Pre-Processing for Change Detection

As mentioned previously, an atmospheric correction is required to remove scattering and
absorption effects from the atmosphere to characterize the surface reflectance effects for a time-series
image analysis. This work uses KOMPSAT-3 images with product level 1G. In these images,
the radiometric correction has been done by converting the image pixel values (Digital Numbers/DNs)
to surface reflectance values. It involves the conversion of DNs to a radiance value, and then to
top-of-atmosphere (TOA) radiance. On the other hand, gain and offset values are provided by
KOMPSAT-3 to derive the TOA reflectance values [26]. After the atmosphere errors are corrected,
the geometric correction is performed in order to ensure that the pixels in the image are in their
proper geometric positions on the Earth’s surface. For our test images, geo-rectification and
orthorectification are each conducted. For the geo-rectification, ground control points (GCPs)
are identified in an unrectified image and correspond to their real coordinates to estimate the
parameters (polynomial coefficients) of polynomial functions by the least square fitting. In addition,
orthorectification can partly correct the image for image distortions caused by variations in the
terrain topography in tandem with non-optimal satellite sensor viewing angle. Optical distortions are
corrected, and terrain effects are corrected using coarse digital elevation model (DEM), namely shuttle
radar topography mission DEM (SRTM DEM) for KOMPSAT-3 imagery [26].

In general change detection systems, an image registration is applied in order to ensure that two
images become spatially aligned. Even though the correction of geometric distortion is performed,
the spatial alignment of two images could contain a relatively large error of up to ±6 pixels. In order
to overcome this distortion, automatic image registration is widely used. However, it requires high
computational load, and is furthermore not easy to obtain perfect registration. They impact the
performance of change detection algorithms, resulting in the possibility that a great deal of false
change areas could occur. The proposed dual-DCN is proposed so as to handle distortion problems
and simplify image registration. The dissimilarity distance of local characteristics is measured in order
to identify a change with the dense dual-DCN model.

3.2. Dual-Dense Convolutional Neural Network for Change Detection

In order to achieve accurate change detection without a perfect registration, this paper proposes a
dual-dense convolutional network (dual-DCN) with two deep convolutional networks, as shown in
Figure 4. This proposed network identifies the change areas by measuring the dissimilarity distance of
two inputs at the last stage for use of all the information of the two input images. Two branch networks,
N1 and N2, handle two input images acquired at different time instances, respectively. The proposed
network is based on CNN, thus, it can robustly conduct a pixel-wise change detection by inspecting
the neighboring pixels.
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A pair of images is cropped into two patches (40 × 40) by sliding in the raster scan order and
two cropped patches (I1 and I2) are fed into the proposed network. The center pixel of the cropped
patch is identified as changed or unchanged with the presence of a single dissimilar value between
the cropped two patches. The Siamese network proposed by Reference [24] extracts features from
an image pair. The pair of the convolutional networks is used to capture similarity characteristics by
sharing the weights of the two network paths.

However, the shared weights of Siamese network reduce the parameters optimized during
training for fast convergence. However, it is known to be frequently overfitted. Thus, the proposed
network does not employ the shared weights to provide more flexible optimization than a restricted
Siamese network. The parameters of each network branch of the proposed algorithm can be
independently optimized in order to avoid early overfitted convergence. In addition, the proposed
network employs dense connection [27] in the convolutional layers by reusing all the preceding
feature-maps, in order to enhance representation capability of the feature-maps, as shown in Figure 4.
The preceding feature maps are directly connected to all of the subsequent layers. The traditional CNN
connects the output of the (l − 1)th layer as input to the lth [28]. In the proposed dual-DCN model,
the lth layer receives all of the preceding feature-maps. The feature map of the lth layer at the rth dense
block and the ith network can be computed by

Fi
l,dr

= Hi
l−1,dr

([
Fi

0,dr
Fi

1,dr
, . . . , Fi

l−1,dr

])
, r = 0, 1; i = 1, 2 (1)

where
[

Fi
0,dr

, Fi
1,dr

, . . . , Fi
l−1,dr

]
indicates concatenation of the feature-maps of all of the previous layers,

layer 0, . . . , layer (l − 1). Each dense block is a group of convolution layers with the dense connectivity
to avoid variant sizes of the feature maps. H(·) plays a role in batch normalization (BN) [29],
3 × 3 convolution, and ReLU. The BN is used to normalize parameters change of the preceding
layers. The ReLU is used by thresholding at zero following 3 × 3 convolution. The convergence of
the stochastic gradient descent algorithm can be accelerated. G including 3 × 3 convolution followed
by ReLU is employed before a dense block in order to generate the feature-map F0. In the proposed
architecture, each dense block contains three H(·), including 64 feature maps of each layer. After a
dense block is performed, a down-sampling operation is applied to produce variety scales with
2 × 2 maximum pooling. Furthermore, the feature maps at the last convolutional layer are vectorized
and fed into the fully-connected layer consisting of 64 neurons and 0.5 drop-out. The probability
output, Oi, at the last stage is computed by the sigmoid function. Furthermore, Euclidean distance (D)
is employed in order to measure the dissimilarity between I1 and I2 computed by

D = O1 − O2
2 (2)
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When the value of D approaches 1, the center pixel of the 40 × 40 patch is set to a changed one,
otherwise, it is set to unchanged.

3.3. Training of the Proposed Dual-DCN for Change Detection

Given a training set consisting of image pairs, the proposed network can be end-to-end trained
by the backpropagation algorithm. For each image pair, let Y be a binary label of the ground truth in
which Y = 0 if both inputs are similar, and Y = 1 if both inputs are dissimilar. The proposed dual-DCN
is trained based on dissimilarity by computing the contrastive loss L(D, Y) as an objective function [30].
This loss function employs a partial loss function for similar and dissimilar of a pair image. It produces
a low value of D for unchanged pixels pair and high value for a pair of change pixels.

This proposed network is optimized using the stochastic gradient descent (SGD) optimizer.
Each mini-batch arises from a single image pair that contains many changes and many absences
of changes. The proposed algorithm randomly initializes all new layers by drawing weights from
Glorot uniform [31]. The learning rate, decay rate, and momentum are set to 0.01, 1 × 10−6 and 0.9,
respectively. The epoch number is set to 30.

4. Experimental Evaluation and Discussion

This paper uses a KOMPSAT-3 image dataset that was captured over South Korea.
The KOMPSAT-3 image data set is provided by the Korea Aerospace Research Institute. Note that
panchromatic band images which provide 0.7 m GSD are used for change detection. Figure 5 shows
the example of an overlapped panchromatic images (1214 × 886) of the training dataset. These images
were cropped by 40 × 40 sliding patch. The labels for the dataset were manually constructed for all of
the center pixels of cropped patch pair.
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Figure 6 shows the two panchromatic images of (29, 368 × 27, 388) and (29, 188 × 28, 140) used in
our experiments, which were acquired by KOMPSAT-3 on March 2014 and October 2015, respectively.
These two images were acquired not only at different time instances, but also with different viewing
angles. They have geometric misalignment of approximately ±6 pixels for overlapped area.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 14 
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Figure 6. PAN images of Seoul area, overlapped area denoted by blue lines. (Left image: March 2014,
right image: October 2015).

Figure 7 shows four selected urban areas from Figure 6, and they contain changed areas due to
building construction. In Area 1, there are two types of construction changes, under construction
changes and completed construction changes. Moreover, in certain areas, there are tall buildings,
which could lead to false changes in change detection due to differing viewing angles. Rather than
construction changes and tall buildings, we can find a forest area in Area 2. There are many tall
buildings in Area 3, and accurate detection is not easy due to a large different viewing angle.

Area 4 is used to assess the influence of change detection due to differing seasons for a forest
area. This case is challenging because the change due to the season should be disregarded for practical
applications. Note that the labels for four areas were manually obtained, as shown in Figure 7.

In order to evaluate the change detection performance of the proposed algorithm and conventional
algorithms, several metrics are used in this study, including receiver operating characteristic (ROC)
curve, area under the curve (AUC), percentage correct classification (PCC), and Kappa coefficient [32].
For existing algorithms, DI + CNN, FF + CNN, and Siamese network were implemented. This CNN
architecture includes 8 depth convolutional, 2 pooling, and 2 fully connected layers. For fair
comparison, the same parameters of training parameters, the number feature maps, and training
dataset were used in our evaluation.
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Figure 7. Four areas of Figure 6. (a) Input image for Area 1 (March 2014). (b) Input image for Area
1 (October 2015). (c) Ground truth for Area 1. (d) Input image for Area 2 (March 2014). (e) Input
image for Area 2 (October 2015). (f) Ground truth for Area 2. (g) Input image for Area 3 (March 2014).
(h) Image input for Area 3 (October 2015). (i) Ground truth for Area 3. (j) Input image for Area
4 (March 2014) (k) Input image for Area 4 (October 2015). (l) Ground truth for Area 4.

Figure 8 shows detection results for four areas with the exiting algorithms and the proposed
algorithm. As shown in Figure 8, the proposed algorithm and FF + CNN generate better detection
accuracy for Area 1. On the other hand, DI + CNN and Siamese network produce many false positives
for the area. For urban surfaces, it is relatively difficult to handle the misalignment and the different
viewing angle impacts because there exists tall buildings and complex constructions, resulting in
the fact that false detections are likely to be performed. For Area 2, FF + CNN and DI + CNN yield
more false positives, particularly in forest and urban areas. Moreover, Siamese net achieves a better
detection result than other conventional algorithms. However, many false positives are still detected
in certain areas. Overall, the proposed dual-DCN gives proper change detection performance, even in
different viewing angle conditions. For Area 3, the proposed algorithm is still able to properly detect
the changes.
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Figure 8. Detection results for four areas with the existing algorithms and proposed algorithm.
(a) FF+ CNN, (b) DI + CNN, (c) Siamese network, and (d) the proposed dual-DCN.

The other algorithms result in more false positives. Note that input images for Area 4 were
acquired in difference seasons for a forest area. For the test data, Siamese net produces some false
positives. As shown in Figure 8, the proposed algorithm yields a better detection result with the
proposed dual-DCN. The proposed algorithm can alleviate the impacts of distortions caused by
imperfect geometric correction and different viewing angles. As mentioned previously, the proposed
dual-DCN was designed to learn the dissimilarity of two local images in order to avoid false changes.
That is why the false positive rate is relatively lower by the proposed algorithm. In contrast,
DI + CNN and FF + CNN yield higher false positive rates, particularly for Areas 2 and 3. Moreover,
the Siamese network produces higher false positives in Area 1, due to less optimized parameters.
Figure 9 shows that the proposed algorithm can give better ROC than the conventional algorithms.
According to ROC curves, the proposed dual-DCN shows better quantitative detection performance in
AUC of 0.97, on average, as tabulated in Table 1. FF + CNN is slightly better in AUC than the proposed
dual-DCN for Area 2, because it has better true positive for this case. However, the proposed algorithm
has a lower false positive rate than FF + CNN. Table 1 summarizes the PCC and Kappa values of
different methods for the three areas. As shown in Table 1, the proposed algorithm achieves higher
PCC and Kappa values. We can say that the proposed dual dense convolutional network architecture
has the ability to identify both changed and unchanged areas by disregarding irrelevant variations
and false changes, even in cases of complicated urban surfaces, geometric distortion, and different
viewing angles.
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Table 1. Quantitative assessments of the existing and proposed algorithms.

Metrics Algorithms Area 1 Area 2 Area 3 Avg

AUC

FF + CNN 0.95 0.95 0.98 0.96
DI + CNN 0.70 0.68 0.88 0.75

Siamese net 0.96 0.92 0.91 0.93
The proposed 0.99 0.93 0.99 0.97

PCC (%)

FF + CNN 97 92 98 96
DI + CNN 94 97 97 96

Siamese net 96 98 99 98
The proposed 98 99 99 99

Kappa

FF + CNN 78 19 47 48
DI + CNN 30 32 28 30

Siamese net 52 35 68 52
The proposed 78 60 69 69

Regarding time complexity, the proposed DCN requires more computational complexity than the
single architecture using FF + CNN and DI + CNN by a factor of approximately two with sequential
machines. However, the proposed dual-DCN can work in parallel, thus, throughput can be enhanced
with a parallel machine such as GPU. In addition, the proposed also takes about 20% more running
time than the Siamese network because it includes additional preceding of feature maps.
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5. Conclusions

In this paper, we presented a robust change detection algorithm for high-resolution panchromatic
imagery. The proposed algorithm learns and analyzes the dissimilarity of two input images with
the densely convolutional network by incorporating local information. We found that the proposed
algorithm achieves higher detection accuracy, even with noisy conditions such as geometric distortion
and different viewing angles in qualitative and quantitative analysis. Further work can be conducted
to extend the framework for other modalities such as multi-spectrum images and SAR data.
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