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Abstract: This paper presents the dynamic analytical solution of a piezoelectric stack utilized in an
actuator and a generator based on the linear piezo-elasticity theory. The solutions for two different
kinds of piezoelectric stacks under external load were obtained using the displacement method.
The effects of load frequency and load amplitude on the dynamic characteristics of the stacks were
discussed. The analytical solutions were validated using the available experimental results in special
cases. The proposed model is able not only to predict the output properties of the devices, but also to
reflect the inner electrical and mechanical components, which is helpful for designing piezoelectric
actuators and generators in a comprehensive manner.
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1. Introduction

The piezoelectric stack is an excellent smart device that is formed of multiple piezoelectric
layers connected in parallel electrically and in series mechanically [1–3]. Similar to laminated
piezoelectric beams [4–10], piezoelectric plates [11,12], cement-based piezoelectric composites [13–18],
and piezoelectric shells [19,20], piezoelectric stack actuators and generators increase displacement
output and power output, attracting a lot of attention.

In the past few decades, two kinds of models have been proposed to help understand and design
piezoelectric stack devices. The models of the first kind are finite element models (FEMs) [21–26]. These
models usually employ a commercial software package, such as ANSYS, to assist the performance
analysis. They can establish an actual three-dimensional model to perform comprehensive numerical
simulation. The models of the second kind are theoretical models, including a simplified model that
requires the operating frequency to be far from the resonance frequency [27–30], the single degree of
freedom model [31,32], the equivalent circuit model [33–38], the model based on the principle of energy
conservation [39], the electromechanical impedance model [40], the simple distributed-parameter
model [41], and the simplified transfer matrix model [42]. These models greatly promote the
development and application of piezoelectric stacks in various engineering fields, such as energy
harvesting from human motion [32–34,43], railway and roadway traffic-induced vibration [44,45], fuel
injectors [46,47], and ultrasonic transducers [48–50].

However, in comparison to FEMs, most of the theoretical models of piezoelectric stacks in
previous works generally assume that the electric field is spatially constant, which is inaccurate when
the piezoelectric layer is thick. In addition, these theoretical models mainly focus on displacement
and power outputs, while neglecting the inner electrical and mechanical components. There are some
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insufficiencies in designing the integrated performance of piezoelectric stack devices. For example, in
the electromechanical impedance model [40], the piezoelectric stack was first treated as a monolithic
element to solve the mechanical properties. Then, it was treated as multiple individual wafers and the
middle values of every wafer were approximately adopted to calculate the electrical properties. In the
single degree of freedom model [32], the piezoelectric stack was simplified as a spring-mass system
to calculate the power output. These two models adopted the spatially constant assumption in the
electric field, and did not involve the continuity of displacement and stress between the two layers,
which do not reflect the inner electromechanical coupling behavior of the piezoelectric stack. To give
accurate theoretical guidance for designing the piezoelectric stack, an improved theoretical model is of
great significance.

Piezo-elasticity theory has been successfully used to study piezoelectric composite structures,
including piezoelectric curved actuators [51,52], multi-layer piezoelectric cantilever [4,6] and
cement-based piezoelectric composites [15,53], functionally graded piezoelectric beams [54,55], and
laminated piezoelectric hollow spheres [56]. In addition, assuming the electric field to be spatially
varying rather than spatially constant is more accurate for describing the electric field [57,58], which
is still not well-applied in the analysis of piezoelectric stacks. These advantages of the methods can
effectively supplement existing theories about the piezoelectric stack.

This study aims to obtain the dynamic analytical solution of the piezoelectric stack utilized in
an actuator and generator based on the linear piezo-elasticity theory. The remaining sections are
organized as follows: the basic equations for piezoelectric stacks are given in Section 2; in Section 3, by
using the displacement method, the dynamic analytical solutions of two different kinds of piezoelectric
stacks under external load are derived; in Section 4, the dynamic analytical solutions are verified using
the results from other related experimental investigations, and the effects of load frequency and load
amplitude on the dynamic characteristics of the stacks are investigated; finally, some conclusions are
provided in Section 5.

2. Basic Equations

Two kinds of piezoelectric stacks are considered in the present paper, the piezoelectric stack under
a voltage load (Model A) and the piezoelectric stack under a uniformly distributed load (Model B),
as shown in Figure 1. The piezoelectric layers are connected in series mechanically, but in parallel
electrically. The number of piezoelectric layers is N. The thickness of piezoelectric layer i is determined
by hi − hi−1. Here, it should be noted that the thickness of the first layer is h1 − h0, and its upper and
lower surfaces are located at z = h1 and z = 0, respectively. To define the thickness of each layer using
the above formula, we let h0 = 0. All the piezoelectric layers are polarized in the z-direction. For
the even layers, the polarization direction is the positive z-direction, and the piezoelectric coefficient
is defined as +d33. For the odd layers, the polarization direction is the negative z-direction, and the
piezoelectric coefficient is defined as −d33.
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Figure 1. Schematic of the piezoelectric stack: (a) under a voltage load (Model A) and (b) under a 

uniformly distributed load (Model B). 
Figure 1. Schematic of the piezoelectric stack: (a) under a voltage load (Model A) and (b) under a
uniformly distributed load (Model B).
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According to the linear piezo-elasticity theory, in cases without body force and body charge, the
basic equations for piezoelectric material in the piezoelectric layer i can be written as:

ρPi
∂2uPi

∂t2 = ∂σzPi
∂z

σzPi = C33PiεzPi − e33iEzi

εzPi =
∂uPi
∂z

(1)


Dzi = e33iεzPi + κε

33iEzi

Ezi = −
∂φi
∂z

∂Dzi
∂z = 0

(2)

where ρPi is the density of the piezoelectric material; uPi, σzPi, and εzPi are the displacement, stress,
and strain in the z-direction, respectively; and Dzi, Ezi, and φi are the electric displacement, electric

field, and electric potential, respectively. C33Pi =
1

S33Pi
, e33i =

d33i
S33Pi

= d33iC33Pi, κε
33i = κσ

33i −
d2

33i
S33Pi

=

κσ
33i − d2

33iC33Pi, where S33Pi, d33i, and κσ
33i are the elastic constant, piezoelectric constant, and dielectric

constant, respectively. Here, e33i is taken as a plus or minus value similar to the definition of d33i.
That is, when the number of the layer is even, it is defined as +e33; when the number of the layer
is odd, it is defined as −e33. In addition, it should be noted that the third condition in Equation (2)
adopts a well-known quasi-static approximation in the absence of free charge density, which is the
Maxwell-Poisson equation of electrostatics [59–61].{

V(t) = V0ejωt (for Model A)

q(t) = q0ejωt (for Model B)
(3)

where V0 and q0 are the amplitude of the voltage and distributed load, respectively; q0 = F/S, F is the
amplitude of the axial force and S is the area of the cross-section of the piezoelectric stack; j =

√
−1;

ω = 2π f is the circular frequency; and t is the time.
The displacement upi and electric potential φi of the steady vibration can be expressed as:

uPi = uPi(z)ejωt , φi = φi(z)ejωt (4)

Substituting Equations (2)–(4) into Equation (1) yields:

∂2uPi(z)
∂z2 + k2

PiuPi(z) = 0 (5)

where k2
Pi =

ρPiω
2

C33Pi+e2
33i/κε

33i
.

The general solution of Equation (5) has the following form:

uPi(z) = APi sin kPiz + BPi cos kPiz (6)

Combining Equations (1), (2), and (6), the stress, electric displacement, and electric potential can
be obtained as:

σzPi(z) = pPi(APi cos kPiz− BPi sin kPiz) +
e2

33i
κε

33i
C1i

Dzi(z) = −e33iC1i
φi(z) =

e33i
κε

33i
(APi sin kPiz + BPi cos kPiz + C1iz + C0i)

(7)

where pPi = (C33Pi +
e2

33i
κε

33i
)kPi. The other parameters APi, BPi, C1i, and C0i are constants to

be determined.
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3. Dynamic Analytical Solutions of Piezoelectric Stacks

3.1. Model A: Piezoelectric Stack Subjected to a Voltage Load

Figure 1a is the schematic of a piezoelectric stack subjected to a voltage load. The mechanical and
electrical boundary conditions and continuous conditions can be written as follows:{

uP1|z=0 = 0
σzPN |z=hN

= − 1
S Zext

∂uPN
∂t

(8)

{
φi|z=hi−1

= 0 , φi|z=hi
= V(t) (i = 1, 3, 5, · · · )

φi|z=hi−1
= V(t) , φi|z=hi

= 0 (i = 2, 4, 6, · · · ) (9)


uPi|z=hi+

= uP(i+1)

∣∣∣
z=hi−

σzPi|z=hi+
= σzP(i+1)

∣∣∣
z=hi−

(10)

where Zext is the external impedance acting on the stack. The external impedance Zext can be expressed
as [40]:

Zext = −
ks

ω
j + cs + ms jω + mrod jω (11)

where ks,cs,ms are the equivalent spring stiffness, damping, and mass; and mrod is the mass of the
output rod. Combining Equations (6) and (8), the constant BP1 in the first piezoelectric layer can be
found as:

BP1 = 0 (12)

Combining Equations (6), (7), (9), and (10) gives:
APi sin kPhi + BPi cos kPhi = AP(i+1) sin kPhi + BP(i+1) cos kPhi

pP(APi cos kPhi − BPi sin kPhi) +
e2

33
κε

33
C1i

= pP(AP(i+1) cos kPhi − BP(i+1) sin kPhi) +
e2

33
κε

33
C1(i+1)

(13a)



− |e33|
κε

33
(APi sin kPhi + BPi cos kPhi + C1ihi + C0i) = V0 (i = 1, 3, 5, · · · )

− |e33|
κε

33
(APi sin kPhi−1 + BPi cos kPhi−1 + C1ihi−1 + C0i) = 0 (i = 1, 3, 5, · · · )
|e33|
κε

33
(APi sin kPhi + BPi cos kPhi + C1ihi + C0i) = 0 (i = 2, 4, 6, · · · )

|e33|
κε

33
(APi sin kPhi−1 + BPi cos kPhi−1 + C1ihi−1 + C0i) = V0 (i = 2, 4, 6, · · · )

(13b)

By solving Equations (13a,b), the following equations can be obtained:{
APi = δ1

i AP1 + λ1
i V0

BPi = δ2
i AP1 + λ2

i V0
(14)

C1i = a1
i APi + b1

i BPi + V1
i V0 (15){

C0i = −(APi sin kPhi−1 + BPi cos kPhi−1 + C1ihi−1) (i = 1, 3, 5, · · · )
C0i = −(APi sin kPhi + BPi cos kPhi + C1ihi) (i = 2, 4, 6, · · · ) (16)

where 
δ1

1 = 1
δ2

1 = 0
δ1

i+1 = a6
i δ1

i + b6
i δ2

i
δ2

i+1 = a7
i δ1

i + b7
i δ2

i

,


λ1

1 = 0
λ2

1 = 0
λ1

i+1 = a6
i λ1

i + b6
i λ2

i + V4
i

λ2
i+1 = a7

i λ1
i + b7

i λ2
i + V5

i

(17)



Appl. Sci. 2018, 8, 1779 5 of 13


a =

e2
33

pPκε
33

a1
i = − sin kPhi−sin kPhi−1

hi−hi−1

b1
i = − cos kPhi−cos kPhi−1

hi−hi−1

V1
i =

−κε
33

|e33|(hi−hi−1)

(18)



a2
i = 1 + aa1

i+1 cos kPhi
b2

i = ab1
i+1 cos kPhi

a3
i = 1 + aa1

i cos kPhi
b3

i = ab1
i cos kPhi

V2
i = a cos kPhi(V1

i −V1
i+1)

(19)



a4
i = −aa1

i+1 sin kPhi
b4

i = 1− ab1
i+1 sin kPhi

a5
i = −aa1

i sin kPhi
b5

i = 1− ab1
i sin kPhi

V3
i = a sin kPhi(V1

i+1 −V1
i )

(20)



H1
i = a2

i b4
i − b2

i a4
i

a6
i = (a3

i b4
i − a5

i b2
i )/H1

i
b6

i = (b3
i b4

i − b5
i b2

i )/H1
i

V4
i = (V2

i b4
i −V3

i b2
i )/H1

i
a7

i = −(a3
i a4

i − a5
i a2

i )/H1
i

b7
i = −(b3

i a4
i − b5

i a2
i )/H1

i
V5

i = −(V2
i a4

i −V3
i a2

i )/H1
i

(21)

Substituting Equations (6), (7), (14), and (15) into Equation (8), AP1 can be determined as:

AP1 = −d0V0

d
(22)

where 

d0 = ( 1
S Zext jωλ1

N − λ2
N pP) sin kPhN + ( 1

S Zext jωλ2
N + λ1

N pP) cos kPhN

+
e2

33
κε

33
(a1

Nλ1
N + b1

Nλ2
N + V1

N)

d = ( 1
S Zext jωδ1

N − δ2
N pP) sin kPhN + ( 1

S Zext jωδ2
N + δ1

N pP) cos kPhN

+
e2

33
κε

33
(a1

Nδ1
N + b1

Nδ2
N)

(23)

For Model A, the electrical admittance Y can be expressed as:

Y =
1
Z

=
Itotal
V0

(24)

where Z is the electrical impedance and Itotal = −jωS|e33|
N
∑

i=1
C1i.

3.2. Model B: Piezoelectric Stack Subjected to a Uniformly Distributed Load

Figure 1b shows the configuration of a piezoelectric stack subjected to a uniformly distributed
load. It should be noted that Equations (8), (9), (10), and (12)–(21) for Model A are still valid for
Model B.

The mechanical and electrical boundary conditions in Model B can be given as:

σzPN |z=hN
= −q(t) (25)
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V(t) = jRωS|e33|
N

∑
i=1

C1iejωt = V0ejωt (26)

where

V0 = jRωS|e33|
N

∑
i=1

C1i (27)

Combining Equations (14), (15), and (27), C1i can be obtained:

C1i = ci AP1 (28)

where ci can be determined using the following set of equations:

ci − (a1
i λ1

i + b1
i λ2

i + V1
i )jRωS|e33|

N

∑
i=1

ci = a1
i δ1

i + b1
i δ2

i (i = 1, 2, 3, · · · , N) (29)

Substituting Equations (7), (14), (27), and (28) into Equation (25), AP1 can be determined to be:

AP1 = − q0

d1
(30)

where

d1 = pP[(δ
1
N + λ1

N jRωS|e33|
N
∑

i=1
ci) cos kPhN

−(δ2
N + λ2

N jRωS|e33|
N
∑

i=1
ci) sin kPhN ] +

e2
33

κε
33

cN

(31)

4. Comparison and Discussion

In the previous sections, the exact solutions of the mechanical components and electric components
of piezoelectric stacks were obtained. In order to gain a comprehensive understanding, the present
theoretical results are compared with experimental results from other investigations.

First, comparisons between the present theoretical results and experimental findings for a
piezoelectric stack subjected to a voltage load were conducted. Flint et al. [40] conducted an
experimental study on the electric-mechanical behavior of piezoelectric stack actuators. In their
investigation, the Physik Instrumente P-245.70 type stack actuator was adopted, whose geometry
information and material parameters can be found in Table 1. The number of total layers and the
thickness of each layer in the stack are 182 and 0.5 mm, respectively. In the present analysis, the
analytical model and the parameters of the stack used by Flint et al. [40] were adopted. Figures 2
and 3 give the magnitude and phase of the coupled impedance changing with the loading frequency,
respectively. In the calculation, the elastic constant C33P and the dielectric constant κσ

33 are replaced
with their complex forms, i.e., C33P

∗ = C33P(1 + ηm j) and κσ
33
∗ = κσ

33(1 + ηe j), to take into account
the mechanical and dielectric losses. Here, ηm and ηe are the mechanical and dielectric loss factors,
as listed in Table 1. From Figures 2 and 3, it can be found that the present analytical results match
well with the experimental results for both the magnitude and phase of the coupled impedance. The
difference is that the predicted resonance and anti-resonance frequencies are slightly lower than in
the experimental data. Figure 4 gives the relationship between the output displacement amplitude
and the external voltage frequency for different voltage amplitudes. It is obvious that the resonance
frequency corresponds well with the above findings. In addition, the output displacement amplitude
increases linearly with the increase of the external voltage amplitude.
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Table 1. Geometric and material parameters of the piezoelectric stack.

Parameters Symbol Actuator [40] Generator [32]

Elastic constant (elastic modulus) C33P

(
×109N/m2

)
32.7 44

Piezoelectric constant d33
(
×10−12C/N

)
427 650

Dielectric constant κσ
33/ε0 (nF/m) 2203 6802

Density ρP (kg/m2) 7800 5750
Number of layers N 182 130
Layer thickness hP (mm) 0.5 0.123

Stack area S (mm2) 78.5 25
Stack length L (mm) 91 16

Spring stiffness ks

(
×106N/m2

)
9.66 ~

Spring damping cs 0.01 ~
Spring mass ms (g) 7.3 ~

Output rod mass mrod (g) 0.4 ~
Mechanical loss factor ηm 8.33 × 10−3 ~
Dielectric loss factor ηe 15 × 10−3 ~

ε0 = 8.85× 10−12F/m , permittivity of free space.
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When an external voltage with amplitude V0 = 2 V is applied, Figures 5 and 6 give the influence
of the external voltage frequency on the distribution of stress σzP(z) and displacement uP(z) along
the axial direction, respectively. Here, it should be noted that when the voltage frequency is far from
the resonance frequency, the mechanical loss, dielectric loss, as well as the spring damping can be
neglected because their effects are very limited. Such an analysis is simpler and clearer for exhibiting
the above mechanical components. However, when the voltage frequency is near the resonance
frequency (fr = 5626 Hz), these factors need to be considered to avoid the singularity condition. In
this case, the amplitudes of stress σzP(z) and displacement uP(z) are addressed. In addition, some
data are scaled down in these figures to better present the results within one graph. Figure 5 shows
that the individual layers are either all compressed or all stretched at some frequencies. At some
special frequencies, however, such as 3000 Hz, one part is compressed and the other is stretched.
These two parts are divided by a nodal point, which is approximately z = 52 mm. Figure 6 shows
that the individual layers can generate either all positive or all negative displacement uP(z) at some
frequencies. In addition, from Figures 5 and 6, it also can be found that the amplitudes of the stress
σzP(z) and displacement uP(z) will reach the maximum values near the resonance frequency. Figure 7
shows the influence of the voltage amplitude on the distribution of the displacement uP(z) along the
axial direction with an external voltage frequency of f = 2000 Hz. It is clear that the displacement
uP(z) changes linearly along the axial direction.
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with V0 = 2 V.
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Figure 7. Influence of the voltage amplitude on the distribution of displacement uP(z) along the axial
direction with voltage frequency f = 2000 Hz.

Second, comparisons between the present analytical results and the experimental results for
a piezoelectric stack subjected to a uniformly distributed load were conducted. Feenstra et al. [32]
performed experimental testing on the energy harvesting performance of a 130-layer mechanically
amplified piezoelectric stack, whose geometric and material parameters can also be found in Table 1.
The cross-section and total thickness of the stack are 25 mm2 and 16 mm, respectively. Figure 8 shows
the voltage amplitude changing with the load resistor where the load frequency f = 5 Hz. It can be
seen from Figure 8 that the present theoretical results correspond well with the experimental results of
the voltage amplitude. Figure 8 also shows that as the load resistor increases, the voltage amplitude
approaches a constant value. This constant is the open circuit voltage amplitude. Figure 9 shows
the average power changing with the load resistor. It can be seen from Figure 9 that for a given load
frequency, a matching load resistor can be determined whose value corresponds to the maximum
average power. The matching load resistor decreases as the load frequency increases.
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5. Conclusions

Based on the linear piezo-elasticity theory, an exact theoretical analysis for two different kinds
of piezoelectric stacks was conducted, and the dynamic analytical solutions were derived using the
displacement method. The present solutions were verified with other related experimental results in
special cases. The present solutions can be used for the synthetical analysis of the mechanical behaviors
and electrical characteristics of piezoelectric stack actuators and generators. Some conclusions can be
drawn as follows:

For the piezoelectric stack actuator, it was found that: (1) the output displacement amplitude
increases linearly with the increase of the external voltage amplitude; (2) the individual layers are either
all compressed or all stretched at some frequencies, while at some special frequencies there is a nodal
point that divides the actuator into the compressed and stretched parts; and (3) the individual layers
can generate either all positive or all negative displacement uP(z) at some frequencies. In addition, the
generated amplitudes of stress σzP(z) and displacement uP(z) can reach the maximum values near the
resonance frequency.

For the piezoelectric stack generator, it was found that: (1) the voltage amplitude approaches the
open circuit voltage amplitude with the increase of the load resistor; (2) the matching load resistor can
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be determined to be the resistance corresponding to the maximum average power, and the matching
load resistor decreases as the load frequency increases.
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