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Abstract: This work presents a novel shot boundary detection (SBD) method based on the
Place-centric deep network (PlaceNet), with the aim of using video shots and image queries for
video searching (VS) and fingerprint detection. The SBD method has three stages. In the first stage,
we employed Local Binary Pattern-Singular Value Decomposition (LBP-SVD) features for candidate
shot boundaries selection. In the second stage, we used the PlaceNet to select the shot boundary by
semantic labels. In the third stage, we used the Scale-Invariant Feature Transform (SIFT) descriptor
to eliminate falsely detected boundaries. The experimental results show that our SBD method is
effective on a series of SBD datasets. In addition, video searching experiments are conducted by
using one query image instead of video sequences. The results under several image transitions by
using shot fingerprints have shown good precision.

Keywords: video searching; video fingerprint; shot boundary detection; PlaceNet; image query;
LBP-SVD; SIFT

1. Introduction

With videos becoming more popular, important, and pervasive, video tasks, such as searching,
retrieving, tracking, summarization, object detection, and copy detection, are becoming more
challenging. Video searching (VS) has been a challenging research topic since the mid-1990s, and video
copy detection (VCD) also started at that time [1]. Video fingerprinting is widely employed in
VS and VCD. The tendency of VCD has been focused on the extraction of robust fingerprints.
The state-of-the-art VCD methods are mostly based on video sequences, and image-query-based
VS/VCD technology is still imperfect. Therefore, developing robust fingerprints for VS/VCD by using
image queries has great importance.

Video content analysis is the most basic process for different video applications. Table 1 lists some
common video features. It describes the characteristics of those features and lists their robustness and
frailty for video fingerprint detection.

Most of the features are visual content features, such as color-based, gradient-based,
and transform-coefficients-based features, that are global features, and the common features of them
are their low complexity extraction and that they are weak under local operations. Local features
are local descriptors, such as SIFT (Scale-Invariant Feature Transform) [2], SURF (Speed Up Robust
Features) [3], and ORB (Oriented FAST and Rotated BRIEF) [4]. Local features can search for abrupt
changes in intensity values and their relationships from their neighboring pixels. Motion-based
features represent the temporal relations in video sequences, but in videos that have a few camera
activity changes, they cannot represent high-level semantic information better than other features.
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These features can be used in many applications, such as recognition, retrieval, indexing, identification,
searching, tracking, and filtering. For video, they can be applied for keyframe selection, shot boundary
detection, video retrieval, identification, and so on.

Table 1. Examples of common features for image/video processing and their robustness and frailty to
image/video transition.

Feature Description Robustness Frailty

Color-based

Color histogram [5]

Color histogram for the intensity
image in RGB (Red, Green, Blue)
color space or in HSV (Hue,
Saturation, Value) color space

Signal processing,
Flip, Scaling

Color change,
Post-production,
or edition

LBP [6]
Local Binary Pattern (LBP),
Texture Spectrum model by
computing neighborhood pixels

Signal processing
Color change,
Post-production, or
edition

Gradient-based

HOG [7]

Histogram of Oriented
Gradients (HOG) counts the
occurrences of gradient
orientation in localized portions
of an image

Signal processing Geometrical
transformations

Edge [8] Edge of oriented gradients Scaling,
compression

Color change,
Post-production,
or edition

GIST [9]

A set of spectral dimensions
(naturalness, openness,
roughness, expansion,
ruggedness) that represent the
spatial structure of a scene

Scaling,
compression

Post-production or
edition, cropping

Transform-coefficients-based

DWT [10]

Discrete Wavelet Transform
(DWT) coefficients by using a
mean value, an STD (Standard
deviation) value, and SVD
(Singular Value Decomposition)

Compression, Flip Post-production or
edition, blur

DCT [11] Discrete Cosine Transform
(DCT) coefficients Scaling Post-production or

edition

Motion-based [12]

Object motion and camera
motion operated by a block
matching consecutive frame
blocks algorithm

Signal processing Desynchronization

Local descriptors
Descriptors can search for
abrupt changes in pixel intensity
values

Most geometrical
transformations Luminance change

The state-of-the-art VS and VCD methods are mainly based on shot boundary detection
(SBD) approaches because using SBD can process video more efficiently. The situation is that
image-query-based VCD and deep-learning network-based SBD technologies have yet to be improved.
Therefore, in this paper, we aim at developing a video searching/fingerprint detection system based
on deep-learning networks and image queries. Figure 1 shows the overview of the image-query-based
video searching and copy detection method. The first step is to build a new places-centric dataset and
train a pre-trained PlaceNet for image classification. The places dataset should include both natural
and computer-generated places-centric images because in many science fiction films the places are not
common. The second step is to segment the videos into shots. The SBD method combines general,
local, and deep-learning-based features. Then, shot-based fingerprints are built instead of using all
frames or keyframes. Finally, several signal processing and geometric transitions are applied to build
image queries for video searching and copy detection. Through these steps, the question of whether
the image has been found in the video dataset is assessed and if it has, the location of it in the video
is detected.

Our contributions include:
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1. Introducing a new deep-learning-based SBD method. The method has three stages:
candidate segment selection, places semantic-based segment, and segment verification.
The Network is places-centric instead of object-centric.

2. Developing a novel image-query-based video searching/fingerprint detection system.

The paper is organized as follows. Section 2 overviews the previous VCD and SBD methods.
Section 3 introduces our SBD method and image-query-based video fingerprint method. Section 4
introduces the evaluation method and presents the experimental results on some famous datasets.
Section 5 offers our conclusions.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 34 

Our contributions include: 

1. Introducing a new deep-learning-based SBD method. The method has three stages: candidate 

segment selection, places semantic-based segment, and segment verification. The Network is 

places-centric instead of object-centric. 

2. Developing a novel image-query-based video searching/fingerprint detection system. 

The paper is organized as follows. Section 2 overviews the previous VCD and SBD methods. 

Section 3 introduces our SBD method and image-query-based video fingerprint method. Section 4 

introduces the evaluation method and presents the experimental results on some famous datasets. 

Section 5 offers our conclusions. 

 

Figure 1. An illustration of the proposed image query based video searching/fingerprint detection 

process. SIFT, Scale-Invariant Feature Transform. 

2. Overview of Related Works 

2.1. VCD Approaches 

The famous related work is the TRECVID [13] VCD track. TRECVID is the international 

conference on benchmarking technology for content-based video indexing and retrieval. From 2008 

to 2011, the VCD task ran for four years. Before that, deep learning networks had not been proposed, 

so the methods are all based on low-level content features. As shown in Table 2, the methods can be 

divided into keyframe-based and shot-based methods. Among them, the keyframe-based methods 

are mainly used but use of the shot-based methods is on the increase. Furthermore, using a fusion of 

fingerprints continues to show an upward tendency. Some of those methods use a fusion of features 

of global content, local content, and deep-learning-based features, and some of those methods use a 

fusion of features of video and audio. 

Table 2. Description of the video copy detection (VCD) approaches. 

Presenters/Year Methods Characteristics 
Based 

Types 

INRIA-LEAR 

[14]/08 

The method uses the SIFT features representing the 

uniform sampled query frames, uses K-means to 

Using keyframe classifiers 

for video processing to 
Keyframes 

Figure 1. An illustration of the proposed image query based video searching/fingerprint detection
process. SIFT, Scale-Invariant Feature Transform.

2. Overview of Related Works

2.1. VCD Approaches

The famous related work is the TRECVID [13] VCD track. TRECVID is the international conference
on benchmarking technology for content-based video indexing and retrieval. From 2008 to 2011,
the VCD task ran for four years. Before that, deep learning networks had not been proposed, so the
methods are all based on low-level content features. As shown in Table 2, the methods can be divided
into keyframe-based and shot-based methods. Among them, the keyframe-based methods are mainly
used but use of the shot-based methods is on the increase. Furthermore, using a fusion of fingerprints
continues to show an upward tendency. Some of those methods use a fusion of features of global
content, local content, and deep-learning-based features, and some of those methods use a fusion of
features of video and audio.
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Table 2. Description of the video copy detection (VCD) approaches.

Presenters/Year Methods Characteristics Based Types

INRIA-LEAR [14]/08

The method uses the SIFT features
representing the uniform sampled query
frames, uses K-means to generate the visual
vocabulary, and uses hamming encoding to
generate the candidate set of video segments.

Using keyframe classifiers
for video processing to
increase the performance.
Computationally
expensive.

Keyframes

AT&T team [15]/09

The method uses SBD to segment query
videos and reference videos at the same time.
The first frame of the shot is taken as a
keyframe.

Using preprocessing to
remove and reduce bad
effects of transitions.

SBD

CRIM team [16]/09

The method segments the video files into
shots, uses SIFT for feature representation,
the L1 distance is used for quantization, and
Latent Dirichlet Allocation (LDA) is applied
to discrete discriminants over matches.

The Bag of Words (BOW)
model is used to eliminate
the features that are not
representative enough.

SBD

PKU-IDM team [17]/10

The method uses four detectors: two visual
local features (SIFT and SURF), one global
feature DCT, and one audio feature:
Mel-frequency cepstrum
coefficients (MFCCs).

A fusion of features: audio
and video. Keyframes

Gupta [18]/11

The method maps each video frame of the
test to the closest query video frame firstly,
and then moves the query over the test to
find the test segment with the highest
number of matching frames.

A fusion model reduces
the false alarm rate. Keyframes

Wu [19]/12

The method uses two global features:
a pyramid histogram of oriented gradients
(PHOG) and GIST; their binary features are
quantitated by using the pairwise
Euclidean distance.

Uses a sparse random
projection method to
encode the features

Keyframes

Zhao [20]/13

The method F-SIFT starts by estimating the
dominant curl of a local patch and then
geometrically normalizes the patch by
flipping before the computation of SIFT.

Flip-invariant and can save
on computational cost. Keyframes

Kim [21]/14

The method fuses models of spatial
modalities and temporal modalities.
The spatial fingerprint consists of DCT
coefficients signs in local areas in a keyframe
and the temporal fingerprint computes the
temporal variances in local areas in
consecutive keyframes.

A video shots features and
adaptive modality fusion. SBD

Lu [22]/15

The method is based on local non-negative
matrix factorization (LNMF), which is used
for shot detection. The VCD has two-stage
processing and the Hausdorff distance
is used.

The robustness needs to be
enhanced. SBD

Mao [23]/16 The method uses five scene frames from a
video for video authenticity. Can save storage space. Keyframes

Guzman-Zavaleta
[24]/17

The method uses a combination of features:
ORB, R&F (Resize and Flip), and a
Spectrogram Saliency Map (SSM). The feature
of a keyframe requires approximately 3 KB,
which has a low-cost extraction.

Low-cost extraction of
features and the synergy of
lightweight video
fingerprints.

Keyframes

Araujo [25]/17 The method uses the frame fisher vector and
scene fisher vector for video segments.

The query image is
compared directly against
video clips in the database.

SBD

Kordopatis-Zilos [26]/17

The method extracts the Convolutional
Neural Network (CNN) features from
AlexNet [27], VGGNet [28], and GoogleNet
[29] first, and then uses the vector
aggregation method to make codebooks.

Deep learning based
features. Keyframes

SBD, shot boundary detection.
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2.2. SBD Approaches

A video contains a great amount of information at different levels in terms of scenes, shots,
and frames. SBD is the first process to simplify applications, such as video indexing, retrieval,
and fingerprinting. A shot is a set of continuous frames recorded by a single camera. SBD approaches
can be divided into two categories: the compressed domain and the uncompressed domain. Some SBD
algorithms are in the compressed domain and they are faster than those methods in the uncompressed
domain. However, the uncompressed domain presents more challenges because of the vast amount of
visual information in the video frames. Consequently, research on SBD is focused on the uncompressed
domain rather than the compressed domain.

In recent years, the SBD approach has made rapid progress. Table 3 lists some
representative types of SBD approaches. The approaches are mainly in the following
fields: pixel-based [30–32], histogram-based [33–35], edge-based [36,37], transform-based [38–40],
motion-based [41], and statistical-based [42,43] approaches. The histogram-based method can be
regarded as invariant to local motion or small global motion compared with the pixel-based methods.
The edge-based method is simple to conduct. The processing of transform-based approaches usually
transforms a signal (frame) from the time (spatial) domain into the transform domain. For motion-based
approaches, the motion vectors are computed by block matching consecutive frame blocks. Transitions
and camera operations, such as zoom or pan, can be differentiated. For statistics-based approaches,
properties such as the mean, median, and standard deviation are often used. There are some other
SBD approaches, such as the temporal slice coherency [44], fuzzy rules [45], and two-phased [46]
approaches. Due to deep learning having become a hot topic in research work, deep-learning-based
approaches have been increasingly applied to SBD works [47–50]. Those methods have accordingly
shown better performance than convolutional methods.

Table 3. Description of the SBD approaches.

Type Presenters Methods Characteristics

Pixel-based

Kikukawa [30]
The method uses the sum of the absolute
differences of the total pixel with a threshold to
locate the cut shot.

Easy and fast, but cannot
give a satisfactorily result.

Zhang [31] The method uses the preprocessing method of
average filtering before detecting shots.

False detection is the
main problem.

Shahraray [32]
The method divides the frame into regions,
matches the regions between the current frame and
its next frame, then chooses the best matches.

Real-time processing.

Histogram-based

Küçüktunç [33] The method uses fuzzy logic to generate a color
histogram for SBD in the L*ab color space.

Robust to illumination
changes and quantization
errors, so it performs better
than conventional color
histogram methods.

Janwe [34]

The method uses the just-noticeable difference
(JND) to map the RGB color space into three
orthogonal axes JR, JG, and JB, and the sliding
window-based adaptive threshold is used.

Highly depends on the size
of the sliding window and
parameter values.

Li [35]

The method uses a three-stage approach: the
candidate shots are detected by two thresholds
based on the sliding window at first; then, the local
maximum difference of the color histogram is used
to eliminate disturbances; finally, the HSV color
space and Euclidean distance are employed.

Can deal with a gradual
change and a cut change in
the same way.



Appl. Sci. 2018, 8, 1735 6 of 34

Table 3. Cont.

Type Presenters Methods Characteristics

Edge-based

Zheng [36]
The method uses the Robert edge detector for
gradual shot detecting; the fixed threshold is to
determine the total number of edges that appear.

Fast but the performance for
gradual transition detection
is not good.

Adjeroh [37]

The method uses locally adaptive edge maps for
feature extraction and uses three-level adaptive
thresholds for video sequencing and shot
detection.

Fast, uses an adaptive
threshold, and is slightly
superior to the color-based
and histogram-based
methods.

Transform-based
Cooper [38]

The method computes the self-similarity between
the features of each frame and uses the DCT to
generate low-order coefficients of each frame color
channel for a similarity matrix.

Competitive with seemingly
simpler approaches, such as
histogram differences

Priya [39] The method uses the Walsh–Hadamard operation
to extract the edge strength frames.

Simple but the performance
should be improved.

Motion-based

Porter [40]

The method uses camera and object motion to
detect transitions and uses the average inter-frame
correlation coefficient and block-based motion
estimation to track image blocks.

High computational cost
and has dissolve detection as
a weakness.

Bounthemy [41]
The method estimates the dominant motion in an
image represented by a two-dimensional (2D)
affine model.

Applicable to MPEG videos.

Statistical-based

Ribnick [42] The method uses the mean, standard deviation,
and skew of the color moments.

Simple but has dissolve
detection as a weakness.

Bendraou [43] The method uses SVD updating and pattern
matching for gradual transitions.

Reduces the process and has
good performance in both
cut and gradual transition
detection

Temporal Slice
Coherency Ngo [44]

The method constructs a spatial-temporal slice of
the video and analyzes its temporal coherency.
Slice coherency is defined as the common rhythm
shared by all frames within a shot.

Capable of detecting various
wipe patterns.

Fuzzy-rule-based Dadashi [45]

The method calculates a localized fuzzy color
histogram for each frame and constructs a feature
vector using fuzzy color histogram distances in a
temporal window. Finally, it uses a fuzzy inference
system to classify the transitions.

Threshold-independent and
has a weakness against
gradual transition types.

Two-phased Bhaumik [46]

The first phase detects candidate dissolves by
identifying parabolic patterns in the mean fuzzy
entropy of the frames. The second phase uses a
filter to eliminate candidates based on thresholds
set for each of the four stages of filtration.

Has good performance for
detecting dissolve
transitions, uses lots of
sub-stages, and is
threshold-dependent.

Deep learning
based

Xu [47]
The method implements three steps and uses CNN
to extract the features of frames. The final decision
is based on the cosine distance.

Suitable for the detection of
both cut and gradual
transitions boundaries; is
threshold-dependent.

Baraldi [48]

The method uses Siamese networks to exploit the
visual and textual features from the transcript at
first and then uses the clustering algorithm to
segment the video.

Uses CNN-based features
and can achieve good
results.

Hassanien [49]

The method uses a support vector machine (SVM)
to merge the outputs of a three-dimensional (3D)
CNN with the same labeling and uses a
histogram-driven temporal differential
measurement to reduce false alarms of gradual
transitions.

Exploits big data to achieve
high detection performance.

Liang [50]

The method extracts the features using the AlexNet
and ResNet-152 model. The method uses local
frame similarity and dual-threshold sliding
window similarity.

Threshold-dependent.
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3. Materials and Methods

3.1. PlaceNet-Based SBD Method

3.1.1. Candidate Segment Selection

Generally, a video sequence has a lot of non-boundary frames and several boundary frames.
To reduce the computational complexity, selecting the candidate segment is the first step in our scheme.
Here, we adopt nine different features for candidate segment selection. We use a short video “Leon” as
a test to find out the difference between them. “Leon” has 3920 frames with a frame rate of 24 fps. In the
experiment, we let the first frame be the keyframe of each quarter frame rate distance, and then used
those features to compute the difference in consecutive keyframes. The feature values in each keyframe
are normalized to a total of 1. The dimensionality of each feature and the total computing time for
“Leon” are listed in Table 4. The keyframe differences of each feature are represented by the stem plot.
The red star marks in each figure label the reference shot location. Comparing the results of these
methods with respect to the computing complexity, the Red, Green, Blue (RGB) histogram method
is faster than the others and the GIST method is the slowest. The Singular Value Decomposition
(SVD)-based HOG and LBP methods are faster than the Hue, Saturation, Value (HSV) histogram
method. The Dual-Tree Complex Wavelet Transform (DTCWT) [51] is slower than DWT. Some of the
larger differences are not marked by using the edge method, so a lower threshold is needed. HOG-SVD
and GIST show better discriminability than the transform-coefficients-based method. Among them,
color-based methods, such as C-RGB and Local Binary Pattern (LBP)-SVD, are superior to the others
not only in time reduction but also in discriminating the differences. However, the C-RGB method has
its discriminatory power reduced for black and white documentary programs. Therefore, LBP-SVD
has been chosen for candidate segment selection.

Table 4. The results of candidate segment selection by using different features on “Leon”.

Method Processing Length/Time Frame Difference Plot

C-RGB

Using
MATLAB’s

IMHIST
function

512/12.5 s
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Table 4. Cont.

Method Processing Length/Time Frame Difference Plot

GIST LMgist function 512/82.6 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 34 

discriminating the differences. However, the C-RGB method has its discriminatory power reduced 

for black and white documentary programs. Therefore, LBP-SVD has been chosen for candidate 

segment selection. 

Table 4. The results of candidate segment selection by using different features on “Leon”. 

Method Processing 
Length/Tim

e 
Frame Difference Plot 

C-RGB 

Using 

MATLAB’s 

IMHIST 

function 

512/12.5 s 

 

C-HSV 

Change to 

HSV space, 

each of them 

has eight bins 

512/16.9 s 

 

LBP-SVD 

Computing 

the Local 

Binary Pattern 

(LBP) then 

using singular 

value 

decompositio

n (SVD) 

58/14.2 s 

 

GIST 
LMgist 

function 
512/82.6 s 

 

HOG-SVD
Computing
HOG then
using SVD

31/13.6 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 34 

HOG-SV

D 

Computing 

HOG then 

using SVD 

31/13.6 s 

 

DWT 

2D DWT, then 

using the 

mean, STD, 

and SV 

32/13.2 s 

 

DTCWT 

2D DTCWT, 

then using the 

mean, STD, 

and SVD 

values 

52/17.5 s 

 

DCT 

Block 

processing 

DCT using the 

DC value 

64/15.4 s 

 

EDGE 

Edge 

processing, 

then using the 

mean value of 

a block 

64/16.6 s 

 

DWT
2D DWT, then

using the mean,
STD, and SV

32/13.2 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 34 

HOG-SV

D 

Computing 

HOG then 

using SVD 

31/13.6 s 

 

DWT 

2D DWT, then 

using the 

mean, STD, 

and SV 

32/13.2 s 

 

DTCWT 

2D DTCWT, 

then using the 

mean, STD, 

and SVD 

values 

52/17.5 s 

 

DCT 

Block 

processing 

DCT using the 

DC value 

64/15.4 s 

 

EDGE 

Edge 

processing, 

then using the 

mean value of 

a block 

64/16.6 s 

 

DTCWT

2D DTCWT,
then using the

mean, STD, and
SVD values

52/17.5 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 34 

HOG-SV

D 

Computing 

HOG then 

using SVD 

31/13.6 s 

 

DWT 

2D DWT, then 

using the 

mean, STD, 

and SV 

32/13.2 s 

 

DTCWT 

2D DTCWT, 

then using the 

mean, STD, 

and SVD 

values 

52/17.5 s 

 

DCT 

Block 

processing 

DCT using the 

DC value 

64/15.4 s 

 

EDGE 

Edge 

processing, 

then using the 

mean value of 

a block 

64/16.6 s 

 

DCT

Block
processing DCT

using the DC
value

64/15.4 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 34 

HOG-SV

D 

Computing 

HOG then 

using SVD 

31/13.6 s 

 

DWT 

2D DWT, then 

using the 

mean, STD, 

and SV 

32/13.2 s 

 

DTCWT 

2D DTCWT, 

then using the 

mean, STD, 

and SVD 

values 

52/17.5 s 

 

DCT 

Block 

processing 

DCT using the 

DC value 

64/15.4 s 

 

EDGE 

Edge 

processing, 

then using the 

mean value of 

a block 

64/16.6 s 

 

EDGE

Edge
processing,

then using the
mean value of a

block

64/16.6 s

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 34 

HOG-SV

D 

Computing 

HOG then 

using SVD 

31/13.6 s 

 

DWT 

2D DWT, then 

using the 

mean, STD, 

and SV 

32/13.2 s 

 

DTCWT 

2D DTCWT, 

then using the 

mean, STD, 

and SVD 

values 

52/17.5 s 

 

DCT 

Block 

processing 

DCT using the 

DC value 

64/15.4 s 

 

EDGE 

Edge 

processing, 

then using the 

mean value of 

a block 

64/16.6 s 

 

The threshold should be adaptive for candidate segment selection because the threshold levels
are different for different videos. A lower threshold will lead to a higher recall value and a lower
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precision value. Therefore, the threshold should be low enough to recall all shots. Here, we use some
different types of videos with different cuts and the gradual transition ratio for training to identify
suitable threshold. The training videos’ information is listed in Table 5 and the sample video frames
are shown in Figure 2.

Table 5. The training videos for threshold selections.

Video Segment Types Length Cuts Gradual Transitions Ratio

Scent of a Woman (Tango dance) Movie 03′53” 34 12 3:1
The Sound of Music Movie 01′47” 12 1 12:1
Forrest Gump (Start) Movie 01′44” 10 1 10:1

Run Devil Run Music 03′28” 95 24 4:1
Donkey and Puss in Boots Cartoon 02′06” 32 8 4:1

LANEIGE Advertisement 32” 12 6 2:1
MISSHA Advertisement 30” 10 2 5:1

Men’s Basketball News 04′09” 6 43 1:7
Edward Snowden News 04′28” 54 13 4:1
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Figure 2. The representative frames from the training videos.

“Scent of a Woman” is a clip of a dance scene and “Men’s Basketball” is a basketball broadcast
which contains a basketball game clip, so they have many gradual transitions. “LANEIGE” and
“MISSHA” are advertisement videos. “Edward Snowden” includes an interview clip that has many
camera switches between the interviewer and interviewee.

Here, we take three videos as examples and set three different thresholds. Let M_K be the mean
value of the total keyframe differences and S_K be the standard value of the total keyframe differences.
The thresholds are set as:

Threshold T1 = M_K, marked by the red line; Threshold T2 = M_K + 0.5 × S_K, marked by the
green line; Threshold T3 = M_K + S_K, marked by the blue line.

As seen in Figure 3, a video that has a higher cut shot rate shows better discrimination. As shown
in Figure 3c, the annotated shots values are higher than all three thresholds and much higher than the
other keyframes. The video “LANEIGE” has a lower cut shot rate than the video “The Sound of Music”,
so, as shown in Figure 3a, most of the annotated shot values are lower than T2 and all of them are
higher than T1. Figure 3b shows that some shot values are lower than T3 and most shot values are
higher than T2. Therefore, the threshold should be much lower than T2 to ensure a higher recall rate.
In the paper, to reduce the miss rate, we set the threshold to be lower than T1 to select the candidate
shot boundaries. After the candidate selection, the total computing time will be greatly reduced.
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3.1.2. Shot Detection Network

Most of the existing deep-learning-based SBD methods use deep neural networks to extract
the features of each frame and then measure the similarity between two contiguous frames.
Some researchers use video segments to train shot transition categories. However, the networks are
targeted to recognize the object. Generally, the training object categories cannot represent most objects
in real life and in videos. Therefore, place categories are used for training instead of object categories.

Dataset Construction

The datasets are mainly based on the Places database [52]. The website Places [53] provides the
demo for testing the Place365 dataset. The training network is based on the PyTorch model. Here,
we choose two different categories—“forest” and “fields”—for the test. The images are downloaded
from the website by using the query word. The query word of each image, from left to right, from top
to bottom, respectively, is “forest”, “forest cartoon”, “forest 3D model”, “fields”, “fields cartoon”,
and “fields 3D model”. Their classified top-1 categories are shown in Figure 4.
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Figure 4 shows that the places classification by using the pre-trained Places365 demo still has
some errors, especially for similar categories. What is more, the precision for computer-generated
images, such as cartoon and three-dimensional (3D) models, is not as good as that for natural images.
Due to the massive variation in videos, in order to get a good result for places classification, the training
dataset also should include as many types of images as possible. Therefore, we make the following
changes to the Place365 dataset.

1. We add computer-generated images, such as cartoons and 3D model images, to each category.
2. We merge the categories that have common features into one category. For example, the categories

of “forest_broadleaf”, “forest_needleleaf”, “forest_path”, and “forest_road” can be merged into
the category “forest”.

Network Architecture

The popular CNN architectures, such as Alexnet [27], ZFNet [54], GoogLenet [28], VGG [29],
ResNet [55], and InceptionResNet-v2 [56], proposed in recent years have been widely used in image
and video applications. Among them, InceptionResNet-v2 can perform with the top-1 error of 19.6%
and the top-5 error of 4.7% in the ILSVRC 2012 image classification challenge dataset [57]. The ILSVRC
dataset contains nearly all object classes, including rare ones, and is uniquely linked to all concrete
nouns in WordNet. In Table 6, some deep neural networks are briefly described.

Table 6. The deep neural networks.

Proposed Year Architecture Default Input Size Top-5 Error %
ILSVRC 12 Work Contribution

2012 AlexNet 227 15.3
Use of rectified linear units (ReLU),

the dropout technique, and overlapping
max pooling

2013 ZF Net 224 14.8 Accurate tuning of the hyper-parameters

2014 VGG16/VGG19 224 6.67 Uses multiple 3 × 3 convolutional layers to
represent complex features

2014 GoogleNet/Inception 224/299 7.3 Use of 1 × 1 convolutional blocks (NiN),
use of a width increase

2015 ResNet50/101/152 224 3.6
Feeding the output of two successive

convolutional layers AND also bypassing the
input to the next layers

2016 InceptionResNet-v2 299 4.7 Training with residual connections
accelerates the training of Inception networks

Considering the performance and the computing complexity, the GoogleNet model and the
ResNet-50 model are more efficient. Therefore, the pre-trained GoogleNet and ResNet-50 support
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packages from the MATLAB Neural Network Toolbox were selected for training. In the experiments,
we took about 540 images (500 natural images and 40 computer-generated images) from each category
for the training set, used 60 images (50 natural images and 10 computer-generated images) for the
validation set, and used 100 images (80 natural images and 20 computer-generated images) for the
test set. For these categories, the number of images is less than the preset number of images for training,
validation, and testing. The numbers of these categories’ images are distributed into three parts in
percentages. The results of the classification accuracy on our used Places dataset are listed in Table 7.

Table 7. The classification accuracy on our validation and test datasets of pre-trained PlaceNet.

Validation Set of Places Data Test Set of Places Data

Top-1 acc Top-5 acc Top-1 acc Top-5 acc

Places-GoogleNet 37.25% 65.81% 37.04% 65.63%
Places-ResNet-50 45.32% 74.28% 45.18% 74.21%

Table 7 shows that the accuracies are lower than those in the Places365 dataset. This is because
the training dataset has less images than Places365 and the number of training iterations is also not
large enough. However, the precision for places classification in the videos is not too bad.

3.1.3. Shot Boundary Verification

Only using the pre-trained PlaceNet for SBD is insufficient for common conditions.
The classification places inevitably have some errors compared to the ground-truth data. In Figure 5,
the classified categories are listed and they are actually in a shot.
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Figure 5. The classification results of PlaceNet, GoogleNet, and Places365 for the images in a shot.

Considering the consistency results, both Places365 and the Object-centric GoogleNet show better
performance than PlaceNet, even though they have classified the wrong category. PlaceNet shows
the right category in frame 2071, frame 2176, and frame 2206; however, as the middle frame,
frame 2191 shows a different category. In this situation, the shot boundary should be verified.

At this stage, we use SIFT matching for verification to reduce false detections of shot boundaries.
This process is done after using the pre-trained PlaceNet to extract the places category of the candidate
segment boundaries. Here, the threshold of the shot boundary decision is transformed to the threshold
of the matched numbers. If the matched number values are less than the threshold, the adjacent
two candidate boundaries, which are assigned to different place categories, are truly different. If the
matched number values are larger than the threshold, PlaceNet has wrongly classified the places and
the current candidate shot boundary will change to the next candidate boundary.

Usually, matches for image content pairs that have little relation to each other are rare no matter
how high the match threshold. As shown in Figure 6, the number of matches between them is greater
than the threshold value. So, PlaceNet has made a false detection at the second stage, and SIFT
matching can eliminate this falsity by feature matching.
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3.2. Image-Query-Based Video Searching

The related approaches have been described in Section 2.1. In this section, we study the method
for video searching and fingerprint detection. Generally, the fingerprint should follow the main
properties below:

1. Robustness. It should have invariability to common video distortions.
2. Discriminability. The features of different video contents should be distinctively different.
3. Compactness. The feature size should be large enough to retain the robustness.
4. Complexity. The computing complexity should be simple enough.

The local features are the first choice when generating video fingerprints since they can be used
directly and can also be quantized by applying a quantization method. Here, we employ 12 different
local features for image matching. Some of them are in VLfeat [58] and OpenCV. An image pair
comprises the original image and its corresponding distorted image. The local descriptors are listed in
Table 8 [59–67].

Table 8. The list of local features.

ID-Features Feature Detector Feature Descriptor ID-Features Feature Detector Feature Descriptor

1-SIFT VL_SIFT VL_SIFT 7-DAISY [62] OPENCV_SURF OPENCV_DAISY
2-SURF OPENCV_SURF OPENCV_SURF 8-LATCH [63] OPENCV_BRISK OPENCV_LATCH

3-BRISK [59] OPENCV_BRISK OPENCV_BRISK 9-KAZE [64] OPENCV_KAZE OPENCV_KAZE
4-FREAK [60] OPENCV_BRISK OPENCV_FREAK 10-ASIFT [65] VL_SIFT VL_SIFT
5-MSER [61] OPENCV_MSER OPENCV_SURF 11-BF [66] VL_SIFT VL_SIFT

6-ORB OPENCV_ORB OPENCV_ORB 12-GMS [67] OPENCV_ORB OPENCV_ORB

The image matching results are shown in Figure 7. The numbers that are marked in the images
are the ID of the descriptors. In the experiments, the image pairs are resized to 256 × 256 pixels and
the threshold of the match is set as 2.0.

Figure 7 shows that the noise, contrast changes, cropping, rotation, and brightness changes
transforms have less of an effect than horizontal flip transition. The BRISK, FREAK, MSER, and LATCH
features under the flip and projection transitions show bad performance. In total, SIFT, SURF, DAISY,
and KAZE show invariant characteristics to those transformations. Considering the computing time
and storage, many researchers choose SURF as their first choice and some people choose DAISY
and KAZE, but most people have chosen SIFT due to its invariant properties. Therefore, in this paper,
we use the SIFT features to represent the fingerprint of the video shots and query images.
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Figure 7. The results of the matching of image pairs under different feature descriptors. (a) The
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to right: picture add post; noise plus contrast; rotation plus crop plus noise.

4. Experimental Results and Analyses

4.1. Evaluation Methods

We use precision, recall, and the Fβ score to evaluate our method’s performance for shot boundary
detection. Recall is the ratio of correctly identified shot boundaries to the number of ground-truth
shot boundaries. Precision is the ratio of correctly identified shot boundaries to the total detected shot
boundaries. The Fβ score is used to balance the precision and recall and a higher β value will give
more importance to high precision values. In the paper, the F1-score is used. The metrics are defined
as follows:

Recall = (Correctly_identified)/(Correctly_identified + Missed_identified) (1)

Precision = (Correctly_identified)/(Total_detected) (2)

Fβ = ((β2 + 1) ∗ Precision ∗ Recall)/(β2 ∗ Precision + Recall) (3)
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4.2. Experiment on Shot Boundary Detection

4.2.1. Open Video Scene Detection (OVSD) Dataset

Here, we use the videos in the OVSD dataset [49] to compare our proposed method with the
Filmora software [68]. The OVSD dataset is presented for the evaluation of scene detection algorithms
and its shot boundary annotations are also given. The ground-truth scene annotations are provided
by using a movie script. It consists of five short videos and a full-length film. Recently, a dataset
extension, including 15 new full-length videos, has also been uploaded, but it only provides the scene
annotations. Information on the OVSD dataset is listed in Table 9. Among the data, “Bunny” has a
more vivid color than the other animated movies.

Sample frames from the videos “Big Buck Bunny”, “Cosmos Laundromat”, and “Sintel” are
shown in Figure 8.

In Table 8, the test video name, numbers of manual shots, shots numbers detected by using the
proposed method, shots numbers detected by using the Filmora software, and total frame numbers are
listed. A comparison of the results of the test videos is also displayed in Table 10.

Table 9. Annotations of the OVSD dataset.

Name Duration (hh:mm:ss) Number of Frames Number of Shots Video Size

Big Buck Bunny 00:08:08 11,726 130 1920 × 1080
Cosmos Laundromat 00:09:59 14,394 94 1920 × 804

Elephants Dream 00:09:22 13,490 130 1024 × 576
Tears of Steel 00:09:48 14,111 136 1920 × 800

Sintel 00:12:24 17,858 198 1024 × 436
Valkaama 01:33:05 139,133 713 1280 × 720
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Table 10. Cont.

Video information Shot Plot

Name: “Cosmos
Laundromat.mp4”;

Manual: 94;
Proposed: 104;
Filmora: 124;

Frames: 14,394
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The open access video editor Filmora offers an advanced feature that can automatically split a film
into its basic temporal segments by detecting the transitions between shots in a video. From Table 10,
it can be seen that our proposed SBD method is similar to Filmora and has a slightly lower miss rate.
The number of Filmora-detected boundaries is not less than the frame rate of the video; however,
our proposed method uses a step that is a quarter of the frame rate. Since the shot annotations of the
video “Big Buck Bunny” and “Cosmos Laundromat” are created by a script, the accuracy of the shot
location has some difference to the real frames. Therefore, we use the manual annotation of “Big Buck
Bunny” (marked as 91*) instead of the annotation in the OVSD dataset. The video “Leon” has many
more cut shots than gradual shots and the distance between them is larger than the frame rate, so the
shot boundary is clear. The video “Gangnam Style” is a music movie, and it has many cut shots with a
distance that is less than half the frame rate, so our method and Filmora are unable to detect those
shot changes.

Next, we use those videos’ SBD to evaluate the performance of the proposed method. Due to the
video “Valkaama” being too long, in the experiment, we only chose the second 10 min for the test.
A boundary detected by the algorithm was said to be correct if it was within a quarter of the number of
frame rate frames of a boundary listed in the baseline. Strictly speaking, the deviation for acceptance is
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a little higher because the cut shots happen only during two neighboring frames. However, considering
the longer duration of gradual shots, such as dissolves, fade-ins, fade-outs, and wipes, in the proposed
method, the smallest step of the shots is not less than a quarter of the number of frame rate frames,
so the deviation for acceptance should be higher than that value. The results of SBD for the OVSD
dataset are listed in Table 11.

Table 11 shows that the shot boundaries of the videos “Bunny”, “Cosmos”, and “Valkaama”
can be extracted because they have many cut shots. The video “Elephants Dream” is a 3D
Computer-Generated Imagery (CGI) animated science fiction video, so most of the scenes in it are hard
to match with a venue from a natural environment. This shows the weakness of our place network.
The video “Sintel” is also a computer-animated film, but it has lots of action. Therefore, the large
gradual shots that were brought on by the abundance of activities could make the shot boundary hard
to detect.

Table 11. The results of SBD for the OVSD dataset of our method.

Name Shots Detected Correct False Miss Precision Recall

Big Buck Bunny 91* 99 85 14 6 0.86 0.93
Cosmos Laundromat 94 104 85 19 9 0.82 0.90

Elephants Dream 130 146 113 33 17 0.77 0.87
Tears of Steel 136 156 125 31 11 0.80 0.92

Sintel 198 221 174 47 24 0.79 0.88
Valkaama 85 93 79 14 6 0.85 0.93

Total 734 819 661 158 73 0.81 0.90

4.2.2. BBC Planet Earth Dataset

The dataset for the BBC’s educational TV series Planet Earth [48] has 11 videos. Sample images
are shown in Figure 9. All of the videos are approximately 50 min in duration.
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Figure 9. The representative frames of the BBC Planet Earth dataset.

Their information is listed in Table 12. Here, we select the first 10 min of each for the experiments.
The results are also listed in Table 12.

Table 12. The results for the BBC Planet Earth Dataset.

Id-Name Total
Shots

Shots in
10 Min

Detected
Shots

Correct
Shots

False
Shots

Miss
Shots Precision Recall F1-Score

01_From_Pole_to_Pole 445 71 86 66 20 5 0.767 0.929 0.8402
02_Mountains 383 111 117 103 14 8 0.963 0.928 0.9452
03_Ice Worlds 421 84 98 77 11 7 0.786 0.917 0.8464

04_Great Plains 472 86 94 78 16 8 0.830 0.907 0.8668
05_Jungles 460 63 77 57 20 6 0.740 0.905 0.8142

06_Seasonal_Forests 526 88 108 74 34 14 0.685 0.841 0.7550
07_Fresh_Water 531 99 104 90 14 9 0.865 0.909 0.8864
08_Ocean_Deep 410 65 76 57 19 8 0.750 0.877 0.8086
09_Shallow_Seas 366 65 68 58 10 7 0.853 0.892 0.8720

10_Caves 374 71 72 67 15 4 0.931 0.944 0.9374
11_Deserts 467 72 71 65 6 7 0.915 0.903 0.9090

Total 4855 875 971 792 179 83 0.816 0.905 0.8580

4.2.3. TRECVID 2001 Dataset

The TRECVID 2001 Dataset [69] is mostly used for shot boundary detection. The reference data of
the transitions are assigned to four different categories: cut, dissolve, fade-in/out, and other. In the
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test dataset, their percentages are respectively 65%, 30.7%, 1.7%, and 2.6% [70]. Here, we take some
videos from the dataset for comparison experiments. Information on the videos and the results of SBD
by using the proposed method are listed in Table 13.

Samples of the video frames are shown in Figure 10.

Table 13. Information on the test video and results of shot detection.

Id-Name Total
Frames

Total
Shots

Cut
Shots

Gradual
Shots

Cut
Precision

Cut
Recall

Cut
F1-Score

Gradual
Precision

Gradual
Recall

Gradual
F1-Score

Total
F1-Score

anni005 11,364 65 38 27 0.94 0.96 0.95 0.87 0.86 0.87 0.91
anni009 12,307 103 38 65 0.92 0.86 0.89 0.92 0.82 0.87 0.87
BOR03 48,451 242 231 11 0.87 0.95 0.91 0.80 0.82 0.81 0.91
BOR08 50,569 531 380 151 0.88 0.92 0.90 0.90 0.84 0.87 0.89
NAD53 25,783 159 83 76 0.86 0.93 0.89 0.88 0.86 0.84 0.88
NAD57 12,781 67 44 23 0.96 0.95 0.94 0.88 0.87 0.86 0.93

Total 161,255 1167 814 353 0.88 0.93 0.90 0.89 0.84 0.86 0.91
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Figure 10. Samples of the frames from the test TRECVID 2001 dataset.

Here, to demonstrate the accuracy of our scheme, we also conduct comparison experiments.
The results of the comparison are listed in Tables 14 and 15.

Table 14 shows that the proposed method has better performance than the correlation-based
algorithm, the keener-correlation-based algorithm, and the edge-oriented-based algorithm. Table 15
shows that the proposed method is better than the methods that do not use deep-learning features.
Additionally, our place-centric network-based SBD method has similar performance to the compared
method that uses an object-centric network. For example, our method has a higher F1-score than the
method that uses an object-centric network in cut shot detection in the anni005 video and in gradual
shot detection in the anni009 video.

Table 14. The comparison results of the cut shot detection.

Id-Name
Correlation Based [71] Kernel-Correlation [72] Edge-Oriented [37] Proposed Method

Cut
Precision

Cut
Recall

Cut
Precision

Cut
Recall

Cut
Precision

Cut
Recall

Cut
Precision

Cut
Recall

anni005 0.87 0.89 0.71 0.64 0.87 0.91 0.94 0.96
anni009 0.86 0.94 0.81 0.78 0.87 0.93 0.92 0.86
BOR08 0.85 0.88 0.60 0.83 0.86 0.91 0.88 0.92
NAD53 0.79 0.94 0.69 0.84 0.81 0.97 0.86 0.93

Table 15. The comparison results of shot detection methods.

Id-Name
Pre-Processing [73] SVD [74] CNN [75] Proposed Method

Cut-Pr Cut-Rc Gra-Pr Gra-Rc Cut-Pr Cut-Rc Gra-Pr Gra-Rc Cut-Pr Cut-Rc Gra-Pr Gra-Rc Cut-Pr Cut-Rc Gra-Pr Gra-Rc

anni005 0.95 0.95 0.75 0.96 0.88 0.97 0.67 0.80 1 0.90 0.89 0.86 0.94 0.96 0.87 0.86
anni009 0.88 0.74 0.92 0.69 0.88 0.74 0.68 0.80 1 0.82 0.94 0.73 0.92 0.86 0.92 0.82
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4.3. Experiment on Image-Query-Based Video Searching

4.3.1. ReTRiEVED Dataset

The ReTRiEVED [76] Dataset was created to evaluate methods that require video quality
assessment in transmissions. The ReTRiEVED dataset contains 176 test videos obtained from 8 source
videos by applying the transmission parameters listed in Table 16.

Table 16. The video attacks simulated by the ReTRiEVED dataset.

Attacks Parameters

Delay (ms) 100 300 500 800 1000 / /
Jitter (ms) 1 2 3 4 5 / /

Packet Loss Rate (%) 0.1 0.4 1 3 5 8 10
Throughput (Mbps) 0.5 1 2 3 5 / /

Samples of the source videos and test videos are shown in Figure 11. Here, we used this small
dataset to assess the robustness of features we used to guard against possible video distortions.
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Figure 11. Samples of the videos in the ReTRiEVED dataset. The upper row shows the original videos
and the bottom shows the attacked videos.

Here, we compared the SIFT features against some related methods: CST−SURF [77], CC [78],
and {Th; CC; ORB} [24] for video retrieval. In Table 17, the average detection F1-scores are presented.

Table 17. The average F1-scores for the different transmission attacks in the ReTRiEVED dataset.

Method
Attacks

Delay Jitter Packet Loss Rate Throughput

SIFT 1 1 1 0.9610
CST–SURF 0.1740 0.3737 0.2889 0.2121

CC 0.8932 0.9777 0.9730 0.9335
{Th; CC; ORB} 0.9996 0.9930 0.9940 0.9495

The experimental results obtained from the methods CST-SURF, CC, and {Th; CC; ORB} are
adopted from the paper [24]. The CST-SURF method uses the difference of the SURF key point
numbers in stable frame pairs to generate normalized differences as features. The CC method
uses color correlation in the divided non-overlapping blocks of each frame. In the {Th; CC; ORB}
method, “Th” represents “Thumbnail”, which is designed as a global feature to resist against
flipping transformations.

In the experiment, since the test videos are short enough, we used the combined features of the
selected frames to represent the features of each video. The videos’ keyframes are selected at the step
of half of the frame rate and they are downsized to 64 × 64 pixels. In the retrieval process, we used
UBCMATCH to match the features of the tested videos and the source videos. The number of matches
is regarded as the similarity value. Since the match numbers differ greatly under different thresholds,
we use the 12-step threshold values to find better conditions for SIFT. Figure 12 shows that the Positive
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Predicted Value (PPV) of ReTRiEVED using the SIFT descriptor under the throughput transmission is
lower than that of other transitions.
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UBCMATCH thresholds.

4.3.2. CNN2h Dataset

The CNN2h dataset [79] is composed of 2 h of CNN video. The dataset provides 139 query
photos with a ground-truth query. The photos with geometric and photometric distortions are taken
with mobile phones and tablets from displays showing the video. For pair-matching experiments,
2951 true and 21,412 false ground-truth matching pairs of query images and database frames are also
provided. In our experiments, we only consider image-to-video matching and ignore the pair-matching
experiments. Sample query image and video frames are shown in Figure 13.
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Figure 13. Examples of the query images and ground-truth database frames.

The test videos are down-sampled at 10 fps and have 72,000 frames in total. To search for the
image in the video, we first use the proposed SBD to segment the videos into shots, and then we use the
feature matching method to match the query photo features and the shot feature dataset. The retrieved
numbers of video frames for each query image are shown in Figure 14.
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Figure 14. The number of retrieved video frames for each query image.

The retrieval accuracy depends on the accuracy of the shot boundaries. In order to reduce the
miss rate, in the experiment, the skip sliding should be set to a lower value. We take five frames
for a sling; after three-stage shot boundary detection, we obtain a total of 2864 shots and then use
the shot features and query features for feature matching. About 2–3 frames will be missed due to
gradual transitions.
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4.3.3. Experiment on Our Video Searching and Fingerprint Detection Dataset

The source video dataset for video searching and fingerprint detection was composed of
110 videos, including 4 videos in the OSVD datasets; the other videos are mostly music clips.
Information on the video data is shown in Figure 15.
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Video distortions can be made by using signal processing, geometric transformations,
and desynchronization. To search for and detect a fingerprint of the video in a higher accuracy
by using the features of a single image or shot sequence, the proposed method must stand against
most of those various distortions. Due to our method being based on a query image, the common
attacks for an image are considered. Attacks on audio and video desynchronization are not included.
Common transformations are listed in Table 18.

Table 18. Examples of common video transformations.

ID_VT Video Transformations Parameters

VT1 Flip Horizontal flip
VT2 Contrast change 10%
VT3 Noise Addition Gaussian: mean = 0; variance = 0.01
VT4 Brightness change 10%
VT5 Cropping 10% of the frame border
VT6 Rotation +5◦

VT7 Geometric projection θ = 1◦, projective 2d = ([cos(θ), −sin(θ), 0.001; sin(θ), cos(θ), 0.001; 0, 0, 1]);
VT8 Picture in picture Original video resized to 90% at the front, background image randomly used
VT9 Picture fusion original video and background images are added, background alpha value = 0.4
VT10 patterns insertion Patterns are random images and occupy 2.25% of the area of the Original video

To test the performance of our image-to-video method, a combination of transformations is used.
The processing orders and samples of the attacked images of each attack type are also shown in
Table 19. The processing parameters of each attack are the same as shown in Table 19.

For the query images, we took 200 random frames for each video from the OVSD dataset. For other
videos, because their durations are less than 3 min, we take 20 random frames from each of those
videos; otherwise, we take 250 poster images from the website as false examples. So, there are a total
of 3170 original query images. Then, we apply the transforms listed in Table 18 to make the source
video search task difficult. Finally, 34,870 query images are generated. We used two thresholds in the
feature matching and decision stage. The first threshold is the UBCMATCH threshold; the other one is
the matched numbers threshold for fingerprint detecting decisions. The parameters in the experiment
are listed in Table 20.



Appl. Sci. 2018, 8, 1735 22 of 34

Table 19. The performed attacks on the test images for video searching.

ID_AT Attack Types Sample Attacked Image ID_AT Attack Types Sample Attacked Image
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it are lower than video searching. Compared to video searching, the shot searching accuracies have 

decreased by at least 0.1. One reason is that a video may include many similar shots, especially for 

interview videos. When the UBCMATCH threshold is lower than 1.6, there will be more false alarms; 

as a result, the searching results are much lower. When the UBCMATCH threshold is higher than 3, 
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Table 20. The experimental parameters.

Parameters Value

Image resize for feature extraction 128 × 128; 256 × 256

Select frames in a shot three frames (first frame, middle frame, last frame);
step skip frames (step skip by a quarter of the frame rate)

Using different features SIFT; Speed Up Robust Features (SURF)
UBCMATCH threshold1 [1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4]

Matched numbers threshold2 [2, 3, 4, 5, 6, 7, 8, 9]

Results of Image-Query-Based Video Searching Experiments without Transformations

Here, the experiments are conducted under the parameters listed in Table 20. Additionally,
image queries from the source videos without transformations are taken for the experiments. The goal is
to study the effects of those factors on image-query-based video searching. To simplify the comparison
experiments, a control group with the parameters of a 128-pixel image size and application of the step
skip frames method and the SIFT descriptor is used to compare the experimental results for different
factors. The results of the video searching and shot searching are shown in Figure 16. Shot searching
detects a shot’s location in a particular video, so the accuracies of it are lower than video searching.
Compared to video searching, the shot searching accuracies have decreased by at least 0.1. One reason
is that a video may include many similar shots, especially for interview videos. When the UBCMATCH
threshold is lower than 1.6, there will be more false alarms; as a result, the searching results are
much lower. When the UBCMATCH threshold is higher than 3, there will be lower recall; therefore,
the searching results show a declined tendency. The highest video searching accuracy is 0.94 and the
shot searching accuracy is 0.82. However, under most conditions, the shot searching accuracies are less
than 0.8.

The first comparison experiment was conducted by using a bigger image size: 256 × 256. A larger
image size conveys more content information; in theory, the video searching results from using
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features extracted from larger-size images will be larger. The only difference in the control group is the
image size. The results of video searching and shot searching are shown in Figure 17. Compared to
Figure 16, the video searching accuracies and shot searching accuracies are both increased. The shot
searching accuracies rise to a greater extent than the video searching accuracies. According to the
results, using a larger-size image for feature extraction improves the performance by 0.01~0.03 on
average compared to using a smaller-size image. However, the computing time under a larger-size
image has been increased a lot not only for feature extraction but also for video searching.
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Figure 17. The experimental results by using different size images. (a) Video searching;
(b) Shot searching.

The second comparison experiment adopted different frame selection methods to select the frame
numbers in a shot for feature extraction. The only difference in the control group is the use of the
three frames method instead of the step skip frames method. The results of video searching and shot
searching are shown in Figure 18. Compared to Figure 16, the results show that three-frames-based
feature selection for a shot is much worse than step skip frames-based feature selection. The highest
video searching accuracy of the three frames method is lower than 0.9 and its downward trends fall
faster. The video searching accuracies have decreased by at least 0.05 and the highest value has dropped
by 0.07. The shot searching accuracies have also gone down. The highest shot searching accuracy
is less than 0.8. Although the three frames method is simpler and has a shorter computation time,
the results of it are not satisfactory, especially on video searching. Consequently, the step skip frames
method should be considered instead of the three frames method in further experiments.
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Figure 18. The experimental results using the three frames method. (a) Video searching;
(b) Shot searching.

The third comparison experiment used different feature descriptors. Since the SURF descriptor is
faster and also works well in many applications, it can be used instead of SIFT. The results of video
searching and shot searching are shown in Figure 19. To show the result more clearly, the results under
lower UBCMATCH thresholds (1.2 and 1.4) are not shown. Compared to Figure 16, the results show
that the SIFT method has far better performance than SURF. Both the video searching accuracies and
shot searching accuracies of SURF have dropped at least 10%. The highest video searching accuracy
is less than 0.85 and the highest shot searching accuracy is less than 0.7. Consequently, although the
SURF descriptor is faster, the SIFT descriptor should be adopted to achieve better performance.

In conclusion, considering the accuracy and computing time, the control group is the better one
among them for video searching and shot searching.

The two thresholds also have a big effect on the final performance. When the threshold1 value
is lower, the threshold2 value should be higher accordingly. As shown in Figures 16–19, the best
thresholds for shot searching are different from the best thresholds for video searching. Additionally,
the best thresholds also depend on the feature descriptors and video types. When using the SIFT
descriptor, under the threshold1 value of 1.6 and the threshold2 value of 8 or 9, the video searching
and shot searching accuracies are higher than under most other conditions.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  25 of 34 

 
(b) 

Figure 18. The experimental results using the three frames method. (a) Video searching; (b) Shot 

searching. 

The third comparison experiment used different feature descriptors. Since the SURF descriptor 

is faster and also works well in many applications, it can be used instead of SIFT. The results of video 

searching and shot searching are shown in Figure 19. To show the result more clearly, the results 

under lower UBCMATCH thresholds (1.2 and 1.4) are not shown. Compared to Figure 16, the results 

show that the SIFT method has far better performance than SURF. Both the video searching 

accuracies and shot searching accuracies of SURF have dropped at least 10%. The highest video 

searching accuracy is less than 0.85 and the highest shot searching accuracy is less than 0.7. 

Consequently, although the SURF descriptor is faster, the SIFT descriptor should be adopted to 

achieve better performance. 

In conclusion, considering the accuracy and computing time, the control group is the better one 

among them for video searching and shot searching. 

The two thresholds also have a big effect on the final performance. When the threshold1 value 

is lower, the threshold2 value should be higher accordingly. As shown in Figures 16–19, the best 

thresholds for shot searching are different from the best thresholds for video searching. Additionally, 

the best thresholds also depend on the feature descriptors and video types. When using the SIFT 

descriptor, under the threshold1 value of 1.6 and the threshold2 value of 8 or 9, the video searching 

and shot searching accuracies are higher than under most other conditions. 

 
(a) 

Figure 19. Cont.



Appl. Sci. 2018, 8, 1735 26 of 34
Appl. Sci. 2018, 8, x FOR PEER REVIEW  26 of 34 

 
(b) 

Figure 19. The experimental results by using the SURF method. (a) Video searching; (b) Shot 

searching. 

Results of Image-Query-Based Video Searching Experiments with Transformations 

From the above experiments, the threshold1s less than 1.6 have bad performance. Additionally, 

when the threshold1 value is larger than 3.0, the plot lines begin to go down. Considering image 

distortion situations, higher thresholds may not return any matches. However, in the experiments, 

the threshold range should be large enough. Therefore, we set threshold1 with a step size of 0.4 and 

decide to enlarge threshold2 from 2 to 16. During the shot feature generation stage, the frames are 

resized to 128 x 128 and the step skip frames method is used. Transformations, such as flip, contrast 

change, noise addition, brightness change, cropping, rotation, and geometric projection, are 

commonly used for video copy detection. In addition, a picture in a picture, a fusion of pictures, and 

a pattern insertion are also used. To show the experimental results under transformations, we select 

five representative transformations: AT1, AT2, AT4, AT7, and AT9. AT1 employs flip. AT4 applies 

contrast change and noise addition. AT4 applies brightness change and cropping. AT7 uses 

geometric projection. AT9 was transformed using a picture in a picture and a pattern insertion. 

Figure 20 shows the results of video searching by using one query image under these 

transformations. 

 
(a) 

Figure 19. The experimental results by using the SURF method. (a) Video searching; (b) Shot searching.

Results of Image-Query-Based Video Searching Experiments with Transformations

From the above experiments, the threshold1s less than 1.6 have bad performance. Additionally,
when the threshold1 value is larger than 3.0, the plot lines begin to go down. Considering image
distortion situations, higher thresholds may not return any matches. However, in the experiments,
the threshold range should be large enough. Therefore, we set threshold1 with a step size of 0.4 and
decide to enlarge threshold2 from 2 to 16. During the shot feature generation stage, the frames
are resized to 128 × 128 and the step skip frames method is used. Transformations, such as flip,
contrast change, noise addition, brightness change, cropping, rotation, and geometric projection,
are commonly used for video copy detection. In addition, a picture in a picture, a fusion of pictures,
and a pattern insertion are also used. To show the experimental results under transformations, we select
five representative transformations: AT1, AT2, AT4, AT7, and AT9. AT1 employs flip. AT4 applies
contrast change and noise addition. AT4 applies brightness change and cropping. AT7 uses geometric
projection. AT9 was transformed using a picture in a picture and a pattern insertion. Figure 20 shows
the results of video searching by using one query image under these transformations.
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Figure 20. Examples of video searching by using one image query under the transformations.
(a) Transformation AT1; (b) Transformation AT2; (c) Transformation AT4; (d) Transformation AT7;
(e) Transformation AT9.

As seen in Figure 20, the different kinds of attacks lead to different results. Compared to Figure 16a,
the accuracies of the flip transform and the geometric projection transform have dropped severely.
The results of AT1 and AT7 are decreased by nearly 0.1 and 0.2, respectively. The attacks noise addition,
contrast change, picture in a picture, and pattern insertion have not changed the image seriously as the
video searching accuracies have dropped by no more than 0.06. In addition, the performances of the
cropping and bright change transformations have decreased slightly.

However, for query-image-based shot location detection, the accuracies have all dropped
very seriously. Without transformations, the shot searching accuracy can reach 0.82. Under the
transformations, the accuracies have dropped by at least 0.1. As shown in Figure 21, the results of shot
searching are much lower than corresponding results for video searching. Compared to Figure 16b,
the results of AT1 and AT4 have dropped by 0.17, and AT7 has decreased by 0.3. Even AT2 has
dropped by 0.1. Although the shot searching results are lower, the video searching results under
several transformations can be accepted for video searching and video copy detection.
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As seen from Figures 20 and 21, threshold1 shows better performance under the values of 1.6, 2,
and 2.4. When threshold1 is 1.6, the better choices of threshold2 are 7, 8, and 9. When threshold1 is 2.0,
the better choices of threshold2 are 4, 5, and 6. When threshold1 is 2.4, the better choices of threshold2
are 3 and 4.

5. Conclusions

In this paper, we have proposed a new video searching and fingerprint detection method by
using an image query and PlaceNet-based SBD method. We used a places-centric dataset for PlaceNet
training and combined it with an object-centric network for shot boundary detection. We presented a
three-stage SBD method. We used several visual content features for candidate segment selection and
used SIFT for shot boundary verification. For video searching and fingerprint detection, we tested
several features and studied the thresholds. We compared our proposed method to several datasets,
and the results showed the effectiveness of the SBD method. However, the feature storage required
is larger than the other studied methods and the computing complexity still needs to be improved.
For future research, we will evaluate our proposed method against larger datasets and simplify the
processing complexity.
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