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Abstract: The frequency-domain analysis using the fast Fourier transform (FFT) for diagnosis of
eccentricity fault has been widely used in squirrel-cage induction motor (IM). However, with the
restriction of sampling frequency and time acquisition, FFT analysis could not provide ideal results
under low levels of dynamic eccentricity (DE). In this paper, a combined use of the wavelet packet
decomposition (WPD) and empirical mode decomposition (EMD) method is presented to diagnose
the IM fault under low degrees of purely DE. The proposed method is based on the decomposition of
apparent power signal and extracts the characteristic component. The fault severity factor (FSF) has
been defined to evaluate the eccentricity severity. Simulation results using the finite element method
(FEM) are tested to verify the effectiveness of the presented method under different load conditions.

Keywords: induction motor (IM); dynamic eccentricity (DE); wavelet packet decomposition (WPD);
empirical mode decomposition (EMD); finite element method (FEM)

1. Introduction

Three-phase squirrel cage induction motor plays an important role in industrial processing
because of its low cost and high reliability. However, sudden failures of the induction motor may lead
to the descent of rotation precision or even result in irreversible damage to the whole machine and
have to stop to maintain. Therefore, eccentricity fault diagnosis is necessary to guarantee the output
precision and prevent the aggravation of the fault.

Airgap eccentricity is one of the most common types of fault occurring in the induction motor [1].
This type of fault leads to unequal airgaps between the stator and rotor, which has a bad influence
on the output rotation accuracy of the motor. If this type of fault is not resolved, it would cause the
rotor–stator rub and consequently damage of the whole motor. Figure 1 provides the rotor–stator
rub fault caused by eccentricity. According to Figure 1, the scratches are obvious on the outer ring of
rotor shown in the red circle. For that cause, the motor is inevitable to maintain and this would inflict
economic damage.

There are three forms of eccentricity including static eccentricity (SE), dynamic eccentricity (DE)
and a combination of both that is called mixed eccentricity. In the SE, the rotor is displaced from the
stator center, but the rotor rotates around its own center. In the DE, the rotor is also displaced from the
stator center, but the rotor rotates around the center of the stator center. In most cases, the SE and DE
simultaneously occur. In that case, the center of the stator, the center of the rotor and the rotation axis
are displaced with respect to each other [2,3].
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Figure 1. Rotor–stator rub of an induction motor caused by eccentricity fault.

In order to detect the eccentricity fault, several types of techniques are used, such as the monitoring
of magnetic flux and vibration [4]. However, due to the high cost and difficult installation of sensors,
the aforementioned methods are less recommended. In decade years, motor current signature analysis
(MCSA) [5] is widely used to detect the fault in the electrical machine, because the stator current signal
is relatively easy to obtain and do not need additional complex and expensive sensors. According
to the theoretical models, the spectral components related to fault can be located [6]. The occurrence
of airgap eccentricity can introduce the specific harmonic component in the stator current spectrum.
Using MCSA, the harmonic frequency sideband associated with the eccentricity fault can be expressed
as Equation (1) [1,7–9]:

f =

[
(kNr ± nd)

(1− s)
p
± v
]

fs (1)

where k is an integer, Nr is the number of rotor slots, s is the slip, p is the number of pole-pairs, fs is the
fundamental frequency, nd is an integer representing the eccentricity order, nd = 0 represents the static
eccentricity and nd = 1, 2, 3 · · · represents the DE, v is the stator time harmonics. Moreover, if the SE
and DE simultaneously occur, specific harmonic can be observed around fundamental frequency given
by [1,7,9]:

fmix = fs ±m fr (2)

fr =
1− s

p
fs (3)

where m = 1, 2, 3 · · · .
Using the MCSA, only the single-phase stator current needs to be measured in order to detect the

eccentricity fault. Apart from the monitoring of single-phase current, instantaneous power is another
signal that contains more information than the single-phase current. Due to the transfer from the
fundamental frequency to around DC, the fault signal can be detected clearly and the signal-to-noise
ratio (SNR) can be improved [1]. Because of these advantages, the spectrum of complex apparent
power signature has been employed for diagnosis of the mixed airgap eccentricity in the induction
motor [9]. The utilization of instantaneous active power, as well as reactive power signal accompanying
with their power factor and phase angle, can help to detect the eccentricity fault and broken rotor bars,
as well as discriminating them from mechanical load oscillation [10]. However, the aforementioned
method is based on the fast Fourier transform (FFT), and the sampling frequency and the acquisition
time have a significant impact on the analysis solution. Under the load, speed and voltage variations
as well as the minor fault in the induction motor and the spectrum of the phase stator current using
the FFT become distorted and may lead to inaccuracy detection of airgap eccentricity fault [8].

Compared to the frequency-domain analysis, other eccentricity fault signature processing
methods are employed in order to handle the stationary signal as well as the non-stationary signal.
Wavelet transform (WT) provides a time–frequency domain processing method that is known as
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its multi-resolution analysis application. The utilization of the discrete wavelet transform (DWT)
in apparent power signals for diagnosis of airgap eccentricity fault under load torque variation is
introduced by simulation as well as experiments [8]. The wavelet packet decomposition (WPD) has
been used to detect the eccentricity fault and distinguished from each other in steady-state operation
conditions [11]. Besides that, a time-domain modified Prony’s method is proposed for diagnosis of the
airgap eccentricity with high accuracy only using a 10-ms dataset [12].

However, the literature reveals that a few contributions have been previously provided to the
method for diagnosis of the high levels of eccentricity fault. It is known that inherent airgap eccentricity
exists in any electrical machine, even newly manufactured, so it is impossible to avoid it. For that,
its level is estimated and accepted under 10% [13]. This produces a consistent amount of unbalanced
magnetic pull (UMP) in one direction, which can gradually lead to bearing wear, bent rotor shaft and
finally result in DE fault [14]. After a prolong operation under the DE, the fault severity may aggravate
and even lead to the irretrievable loss. As for the motorized spindle, its rotation accuracy is influenced
by undesired motion of rotor. Even low levels of eccentricity may have bad effect on the radial motions.
Therefore, it is necessary to develop the study on fault diagnosis for induction motor under low levels
of eccentricity fault.

DWT and WPD are widely used for detecting fault in industrial applications. However, under the
processing of bandpass filtering using these algorithms, the band overlap is inevitable for the DWT
as well as WPD. This can be proved in [8]. Although the usage of DWT can help to extract the fault
component for diagnosis of the airgap eccentricity, the problem of overlap can induce noisy component.
As for the induction motor under low levels of eccentricity, the characteristic component is relatively
weak, so that these noisy signals may lead to inaccurate diagnosis. Therefore, after using DWT or WPD,
data post-processing is necessary in order to improve the SNR and overcome the overlap problem.

In this paper, the combined use of WPD and empirical mode decomposition (EMD) for processing
the apparent power signal is proposed. Simulation signals of apparent power under low levels of
purely DE are produced using the finite element method. Precise determination of the DE levels and
percentages of rated load are both discussed in this study.

2. Modeling of Airgap Eccentricity Fault Using the Finite Element Method

For the purpose of detecting the fault accurately, the proper and precise modeling needs to be
established [15]. By considering the detailed real-world parameters and practical conditions, the finite
element analysis (FEA) provides a reliable method. The FEA is based on the equivalent electric and
magnetic circuits, which is close to the reality [16]. In this paper, the modeling of the induction motor
under DE fault is established by the finite element method. The geometric model of all parts of
motor, such as rotor, stator and shaft, are all included in the modeling. Besides that, the material
property of all components in the motor, the decision boundary, the excitation source, the slot and
winding condition are taken into consideration. In this model, the external voltage sources transient
equations, the field equations and the motion equations are mutually coupled in the finite element
model. Moreover, the nonlinearity of iron is also incorporated into this transient analysis [2]. Figure 2
shows the modeling of induction motor using the FEM.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 16 
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The DE introduces the unbalance of the airgap resulting in the asymmetry of the motor structure.
Therefore, the airgap between the rotor and stator is non-uniform due to the eccentricity fault.

Figure 3 illustrates an induction motor model under the DE. R and r represent the radii of stator
and rotor, respectively. The occurrence of DE introduces the shift a between the stator symmetrical
axis and the rotor symmetrical axis. Hence, the airgap distribution in this case is non-uniform under
the reference of stator axis and also time-variant. A most special noteworthiness is that the condition
that the axis of the rotor is parallel to the stator axis is considered.
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Consequently, due to the DE, specific components appear in the stator current spectrum, at
sideband frequencies around fundamental and principle slot harmonics (PSH), the expression is given
as follows [7]:

fde1 = | fs ± nd fr| (4)

fde2 = | fs ± (Nr ± nde) fr| (5)

where nd = 2, 4, 6, · · · .
In most cases, the SE and DE tend to coexist and the mixed eccentricity needs to be considered in

reality [10].
The specific component under the mixed eccentricity can be detected around the fundamental

frequency in the stator current, given by [1]:

fmix = fs ±m fr (6)

where m = 1, 2, 3 · · · .

3. Airgap Eccentricity Fault Effect in the Apparent Power

3.1. Case of a Healthy Induction Motor

Assuming that a healthy induction motor, powered by a balanced three-phase source of sinusoidal
voltage and driving a constant load, the input voltage waveforms can be expressed as follows:

ua =
√

2U cos ωst
ub =

√
2U cos

(
ωst− 2π

3
)

uc =
√

2U cos(ωst + 2π
3 )

(7)
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Under the effect of the aforementioned input voltage, the three-phase stator currents can be
written by Equation (8): 

ia =
√

2I cos(ωst− αI)

ib =
√

2I cos
(
ωst− αI − 2π

3
)

ic =
√

2I cos
(
ωst− αI +

2π
3
) (8)

where U and I represent the amplitudes of input voltage and stator current root mean square,
respectively; αI is the phase angle. By considering the Park’s transformation in the stationary reference
frame and the generalized theory, the active power p0(t), the reactive power q0(t) and the apparent
power sa in the healthy case become [17]:

p0(t) = uaia + ubib + ucic = 3UI cos(αI) (9)

q0(t) =
√

3(uaib − ubia) = 3UI sin(αI) (10)

sa =
√

p2
0(t) + q2

0(t) (11)

Under the case of a healthy induction motor, the spectrum of apparent power modulus only
contains the DC component. Therefore, the DC component can be removed and the characteristic
signal related to eccentricity fault can be identified easily.

3.2. Case of a Faulty Induction Motor

As mentioned in Section 2, the occurrence of airgap eccentricity fault can introduce the
characteristic harmonic frequency around the fundamental frequency at around fmix = fs ± k fr, in the
single-phase stator current spectrum. In this case, the three-phase stator currents can be expressed as
following [9,10]:


i′a =

√
2I cos(ω1t− α1) +

√
2

∞
∑

k=1
{Il,k cos[(ω1 − kωr)t− αl,k ] + Ir,k cos[(ω1 + kωr)t− αr,k ]}

i′b =
√

2I cos
(
ω1t− α1 − 2

3 π
)
+
√

2
∞
∑

k=1

{
Il,k cos

[
(ω1 − kωr)t− αl,k − 2

3 π
]
+ Ir,k cos

[
(ω1 + kωr)t− αr,k − 2

3 π
]}

i′c =
√

2I cos
(
ω1t− α1 +

2
3 π
)
+
√

2
∞
∑

k=1

{
Il,k cos

[
(ω1 − kωr)t− αl,k +

2
3 π
]
+ Ir,k cos

[
(ω1 + kωr)t− αr,k +

2
3 π
]} (12)

where ωr is the mechanical angular velocity of the rotor; αl,k and αr,k represent the phase angles.
Consequently, the instantaneous active power p′0(t) as well as reactive power q′0(t) can be rewritten as
Equations (13) and (14) [9,10]:

p′0(t) = 3UI cos(α1) + 3U
∞

∑
k=1

{
Il,k cos(kωrt + αl,k) + Ir,k cos(kωrt− αr,k)

}
(13)

q′0(t) = 3UI sin(α1) + 3U
∞

∑
k=1

{
Il,k sin(kωrt + αl,k)− Ir,k sin(kωrt− αr,k)

}
(14)

From Equations (11), (13) and (14), the apparent power contains the DC component and additional
harmonic component at a frequency around k fr due to the eccentricity fault. This characteristic
component k fr provides diagnosis information related to the fault.

In this paper, the apparent power has been analyzed in order to detect the airgap eccentricity fault.
In order to extract fault characteristic signal directly, the DC component needs to be eliminated. Hilbert
transform (HT) [18] provides an all-pass filter that the phase angle of signal x(t) lags 90 degrees. Using
twice HT, the DC component in the original apparent power signature can be removed.
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4. Fast Fourier Transform (FFT) Drawbacks under Low Levels of Dynamic Eccentricity

In order to guarantee the accuracy of the simulation results using the finite element method, the
time step must be sufficiently small. Besides that, the simulation time needs to be ensured in order to
obtain suitable frequency resolution [13]. A high sampling frequency and a long-time acquisition are
mandatory in order to obtain good results using the FEA. However, this processing obviously increases
the computational complexity for simulation study. To extract the fault information, the feature
extraction method is based on the low characteristic frequency of airgap eccentricity.

To highlight the FFT drawbacks under low levels of DE, the simulation tests are implemented on
a three-phase squirrel induction motor with 11-kW output power, 4 poles, and 26 rotor bars. The stator
windings are coupled with delta connection. Appendix A listed the parameter of the induction motor.

Both the sampling frequency of single current and the corresponding voltage signal are 1000 Hz,
while the number of sampling points N is 1000. The calculated FFT spectrums of the apparent power
signature with five types of purely DE levels are shown in Figure 4a–e. The spectrums shown in
Figure 4a–c confirm that the characteristic harmonic component with over 6% of DE appears clearly at
48.34 Hz. However, due to the weak signal under low levels of DE, the diagnostic method based on the
FFT becomes more difficult. The simulation results show that the faulty signature at 2 fr is interfered
with another noisy signal due to the FFT limitations. It is obvious that the characteristic frequency
component-based fault location and amplitude are difficult to extract under lower levels of DE. Hence,
this process may lead to erroneous eccentricity fault diagnosis.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 
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5. Apparent Power Signature Processing

In this section, the apparent power signature has been newly processed. The combined use of
WPD and EMD has been proposed in order to extract the characteristic harmonic component related
to the DE fault. Although EMD is a self-adaption filtering method that decomposes the original
signal into different scales, mode aliasing or mode mixing is a common phenomenon in the process of
EMD [19]. Especially when the target signal is difficult to distinguish, EMD may not give an accurate
result. Hence, before using EMD, WPD has been used to filtering the massive noisy component.

5.1. Wavelet Packet Decomposition (WPD)

WPD is an extension of the DWT by generalizing the link between multi-resolution approximation
and the Mallat algorithm. In this algorithm, WPD splits the approximation and detail space
simultaneously. It has been shown that better frequency resolution is obtained so that more features
can be extracted from the original signal [20]. The recursive process of WPD is represented by the type
of binary tree in Figure 5. The wavelet packet coefficients are represented by Pm

j . Each node of the
wavelet packet tree is denoted with a pair of integers (j, m), where j represents the decomposition level
and m represents the order position at the corresponding level. Similar to the DWT, the original signal
S is decomposed into the approximation part P1

1 and detail part P2
1 at the first level. In the next step,

the detail part P2
1 is spilt into the high-frequency part P4

2 and the low-frequency part P3
2 . This process

is repeated in the following step. According to the coefficient Pm
j , a reconstruction signal Sm

j of data
length N can be generated, by setting all the other coefficients to be zero and implementing the wavelet
packet tree in the inverse procedure [21].Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 16 
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To distinguish the characteristic harmonic component from the apparent-power signature, the type
of mother wavelet and the decomposition level must be well selected. The WPD of the original signal
S can be regarded as projecting the signal onto the wavelet packet basis, in order to obtain a series
of the coefficient Pm

j . For the purpose of extracting the fault signal, the wavelet coefficient should be
larger than those of other series. Besides that, the appropriate selection of decomposition level can
help to extract the characteristic signal and save the computation time.

In this paper, the db44 mother wavelet is used for simulation results. By considering the
computation time using FEA, a sampling frequency is chosen at 1 kHz and the time acquisition is
selected at one second with the frequency resolution of 1 Hz. For the simulation case, the characteristic
component frequency appears at k fr in the apparent power. Therefore, the original apparent power
signal is decomposed into 8 levels. The node (8, 10) and the node (8, 21) which contain harmonic
components fr and 2 fr are selected in order to reconstruct the signal.

Figure 6 gives the decomposition result based on the simple use of WPD. The characteristic faulty
component, which is approximately 48.34 Hz, is chosen as an analytical object. Moreover, the motor is
under 33% of rated load with 2% of purely DE. The FFT spectrum shows that the dominant spectral
components are located at a frequency of 48.34 Hz. However, it is noticeable that there exist other
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components of 44.18 Hz and 25.39 Hz in the red circle shown in Figure 6. These two parts are not
related to the eccentricity fault, which is inevitable for the WPD due to the overlap problem between
adjacent bands. Therefore, it is essential to filter these two noisy components in order to improve
the SNR. After using the WPD algorithm, the filtered signal needs to be post-processed in order to
eliminate or suppress the corresponding noisy components.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 16 

1
1P

2
1P

1
2P 2

2P
3

2P
4

2P

1
3P

2
3P 4

3P
5

3P
6

3P  7
3P  8

3P  
Figure 5. Wavelet packet decomposition tree for decomposition of the original signal. 

To distinguish the characteristic harmonic component from the apparent-power signature, the 
type of mother wavelet and the decomposition level must be well selected. The WPD of the original 
signal S  can be regarded as projecting the signal onto the wavelet packet basis, in order to obtain a 
series of the coefficient m

jP . For the purpose of extracting the fault signal, the wavelet coefficient 
should be larger than those of other series. Besides that, the appropriate selection of decomposition 
level can help to extract the characteristic signal and save the computation time. 

In this paper, the db44 mother wavelet is used for simulation results. By considering the 
computation time using FEA, a sampling frequency is chosen at 1 kHz and the time acquisition is 
selected at one second with the frequency resolution of 1 Hz. For the simulation case, the 
characteristic component frequency appears at rkf  in the apparent power. Therefore, the original 
apparent power signal is decomposed into 8 levels. The node (8, 10) and the node (8, 21) which 
contain harmonic components rf  and 2 rf  are selected in order to reconstruct the signal. 

Figure 6 gives the decomposition result based on the simple use of WPD. The characteristic 
faulty component, which is approximately 48.34 Hz, is chosen as an analytical object. Moreover, the 
motor is under 33% of rated load with 2% of purely DE. The FFT spectrum shows that the dominant 
spectral components are located at a frequency of 48.34 Hz. However, it is noticeable that there exist 
other components of 44.18 Hz and 25.39 Hz in the red circle shown in Figure 6. These two parts are 
not related to the eccentricity fault, which is inevitable for the WPD due to the overlap problem 
between adjacent bands. Therefore, it is essential to filter these two noisy components in order to 
improve the SNR. After using the WPD algorithm, the filtered signal needs to be post-processed in 
order to eliminate or suppress the corresponding noisy components. 

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

Frequency [Hz]

A
m

pl
itu

de
 [V

A
]

 
Figure 6. Wavelet packet decomposition tree for decomposition of the original signal. Figure 6. Wavelet packet decomposition tree for decomposition of the original signal.

5.2. Empirical Mode Decomposition (EMD)

WPD, providing a multi-resolution analysis, can be regarded as a design of the band-pass filter.
It is noteworthy that the filtering is not ideal which leads to a certain overlap between adjacent
frequency bands [8]. Besides that, another noisy signal, which is irrelevant to the eccentricity fault, may
have a bad influence on detecting the characteristic signature, especially in the case of low levels of DE.
This process leads to distortion of fault severity and may cause erroneous detection. Therefore, EMD is
introduced in order to eliminate or restrain noisy signals and extract the characteristic signature clearly.

The EMD provides a time–frequency analysis method that decomposes the original signature
into intrinsic mode functions (IMFs). The essence of this method is to identify the intrinsic oscillatory
modes by their characteristic time scales in the data empirically [22]. For the original data X(t),
the extrema including the local maxima and minima are identified. All the local maxima are connected
via a cubic spline interpolation in order to produce the upper envelope X(t); similarly, the lower
envelope X(t) can also be produced. All the data in X(t) should be covered by the upper and lower
envelops. The distinction between the original data X(t) and m1 can be calculated by h1 = X(t)−m1.
The purpose of this sifting process is to eliminate the riding waves and to make the wave-profiles more
symmetric [23]. Hence, the aforementioned step has to be repeated more times until satisfying the stop
criterion and the first IMF c1 can be obtained from the data. After that, the residue r1 between X(t)
and c1 can be separated by Equation (15):

r1 = X(t)− c1 (15)

In this step, the residue r1 is treated as the new data and repeated by the above sifting process.
Finally, the X(t) can be decomposed into n IMFs and a residue rn illustrated by Equation (16) [24,25]:

X(t) =
n

∑
i=1

ci + rn (16)
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In Figure 7, the corresponding frequency of the dominant components is f1 = 48.34 Hz. It is
worth noting that there exist other frequency components decomposed in the 2nd IMF. Moreover,
the 2nd IMF is mostly dominated by two components with periods of approximately 0.0393 s and
0.0226 s, and the corresponding frequencies are 25.39 Hz and 44.18 Hz, respectively. It implies that the
characteristic harmonic component using WPD includes some noisy signals. These noisy signals may
have a bad influence on detecting the fault severity under low levels of DE. Therefore, the combined
use of WPD and EMD has the advantages of improving the SNR and also overcomes the drawbacks
of simply use of WPD. However, the mode mixing is one of the problems when applying the EMD
algorithm, and it can be reflected by the 2nd IMF component shown in Figure 7. Two parts of noisy
frequencies appear simultaneously in the 2nd IMF. However, this problem has no effect on the filtering
process. In this part, the 1st IMF component has been extracted in order to identify the fault severity.
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The computation of the apparent power analysis scheme is shown in Figure 8. Firstly, the apparent
power has been calculated after simulating the three-phase current signal and the corresponding
voltage signal using FEM. Moreover, HT is used to eliminate the DC component. Secondly, in order to
overcome the drawbacks under the simple usage of WPD, the combined use of WPD and EMD has
been proposed to eliminate the noise component and extract the characteristic harmonic component
related to DE fault. Finally, two factors including DE levels and rated loads are set to illustrate the
relationship between the characteristic signal and factors.
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Different motor types will cause different calculating results. The amplitude of the characteristic
component spectrum is affected by the motor type and loading condition. This is not an ideal indicator
to evaluate the fault severity. Therefore, the fault severity factor (FSF) is proposed in order to evaluate
the fault severity.

The energies of the characteristic time-domain signal can be calculated by Equation (17) [7]:

E =

√√√√ 1
Nd

Nd

∑
i=1

(Si)
2[i] (17)

where Nd is the length of the characteristic data and Si is the characteristic time-domain signal series;
i = 1, 2 · · ·Nd.

The FSF can be calculated by Equation (18):

FSF =

√
1

Nd

Nd
∑

i=1
(Si)

2[i]√
1
N

N
∑

j=1
(Sj)

2[j]

(18)

where N is the length of the whole apparent power data and Sj is the time-domain signal sequence
of apparent power. In fact, the FSF is the ratio among the energies of the characteristic time-domain
signal and entire apparent power.

6. Simulation Study

6.1. Diagnosis at Fixed Loads

Figure 9 shows the variation of FSF for an induction motor at no load under four different DE
levels at the frequencies of fr and 2 fr. The DE increases the amplitude of the characteristic harmonic
component at a frequency of 24.17 Hz from 0.11649% to 0.15382%. In addition, the other frequency of
48.34 Hz improves the amplitude of the characteristic harmonic component slightly from 0.23165% to
0.23996%. Table 1 shows the FSF and the amplitude of a healthy induction motor and a motor with 2%,
6% and 10% DE at a frequency of k fr under no load. Therefore, the considerable increase at a frequency
of k fr can be treated as a suitable index for fault diagnosis. Figure 10 shows the characteristic signal
of apparent power in time domain using the proposed method at no load under healthy and faulty
(2%, 6% and 10% DE) conditions. The increasing oscillation in the signal confirms the faulty state of
the induction motor. However, for fixed load, the harmonic component at the frequency of 24.17 Hz
(k = 1) fluctuates. Hence, the apparent power signal at a frequency of fr may not give an accurate
result to detect faulty conditions under load conditions. In this paper, the harmonic component at a
frequency around 2 fr (k = 2) is the main indicator for fault diagnosis.

Table 1. FSFs and the amplitudes of the induction motor under four levels of DE.

fr 2fr

DE (%) FSF (%) Amplitudes (VA) FSF (%) Amplitudes (VA)

0 0.11649 5.859 0.23165 16.96
2 0.12031 6.026 0.23523 17.11
6 0.13425 6.476 0.23548 17.46

10 0.15382 9.39 0.23996 17.76
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Figure 11. Variations of FSF for the induction motor at different loads: (a) healthy, (b) 2% DE, (c) 6% DE, 
(d) 10% DE. 
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of DE.

6.2. Diagnosis at Different Loads

Figure 11 shows the harmonic component at the frequency of 2 fr with a healthy state, 2%, 6%
and 10% of purely DE under four different loads, respectively. The amplitudes of the FSF reduce
dramatically due to the increasing of the rated load. Even for the healthy motor, the amplitude of FSF
decreases from 0.23165% to 0.03709%. It is proved that the load is an inhibiting factor for the diagnosis
of the fault signature. The decrease of the FSF has been demonstrated in Table 2. Table 2 shows the FSF
variations of the healthy and faulty motors with four different rated loads.

Table 2. The amplitudes of FSF at a frequency of 2 fr for the healthy and faulty motors from no load to
full load.

Healthy Motor Motor with 2% DE Motor with 6% DE Motor with 10% DE

Percentage of Rated Load 2fr (%) 2fr (%) 2fr (%) 2fr (%)

0% 0.23165 0.23523 0.23548 0.23996
33.3% 0.13274 0.13816 0.15022 0.16983
66.7% 0.05007 0.05361 0.05642 0.06606
100% 0.03709 0.03906 0.04598 0.04737
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(d) 10% DE. 
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6.3. Summary

Figure 12 presents a histogram of FSF variation of the characteristic harmonic component at the
frequency of 2 fr for a healthy motor and motors with three different pure DE levels, under different
rated loads. It can be seen that the value of FSF increases under lower load and higher level of DE. The
induction motor with 10% of pure DE under no load has the highest value of FSF. Figure 12 indicates
that at fixed load, the increase of the level of DE leads to the increase in the value of FSF. Besides that,
it is obvious that the increasing of rated load results in the decreasing of FSF at a fixed level of DE.

It is noteworthy that the inherent eccentricity in the induction motor produces an initial value of
FSF. Therefore, it is necessary to conduct the ex-work checking for motor and evaluate the initial value
of FSF as the reference standard.
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Figure 12. FSF variation of harmonic components versus different loads at the healthy motor and
motors with different DE levels.

The comparison results between the simple use of WPD and the proposed method are shown in
Figure 13. The extraction signal is located around the frequency of 2 fr. The FFT spectrum confirms
the effectiveness of proposed method. By comparing the simple use of WPD, two advantages are
shown according to Figure 13. First of all, the overlap problem has been solved shown in the red circles.
Although the noisy components around 25.39 Hz and 44.18 Hz are not entirely eliminated, these two
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parts have been suppressed. Secondly, within the passband, the noisy signal close to the characteristic
harmonic is also suppressed, shown in the black circle. The amplitude around 47.9 Hz is decreasing
from 5.96 VA to 4.56 VA. In this paper, the apparent power signal around 2 fr can be considered as
a main index for purely DE fault in the induction motor under different rated loads, even with low
levels of DE.
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Figure 13. The comparison results between the simple use of WPD and the proposed method around
the frequency of 2 fr: (a) WPD method, (b) proposed method (under 33% of rated load with 2% of
purely DE).

7. Conclusions

In this work, the purely DE is modeled and analyzed using FEM. The apparent power signal
of three-phase squirrel cage induction motor is used to diagnose the fault. Due to the weak signal
appearing around the harmonic frequency, the simple use of WPD may not give an accuracy result
due to the drawbacks of this method. Therefore, after using the WPD algorithm, the EMD method
has been applied to post-process the signal. A combined use of WPD and EMD to the apparent
power signal has been presented in this paper. The simulation results show that the purely DE fault
can be well diagnosed using the proposed method. It is shown that the FSF based on the harmonic
component in the apparent power around k fr can be considered as an index to detect the fault severity.
However, under the influence of load, the use of the amplitude at a frequency around 2 fr can give an
ideal solution.

Theoretically, the obtained results are achieved to detect the low levels of purely DE. In practice,
the indicator is influenced by noise and the measurement accuracy. Therefore, it is essential to conduct
the experiment to verify the FEM simulation results in the future study.

As for the high-precision rotation system, for example, motorized spindle, even with low levels of
DE, can lead to the undesired radial error motion. This can lead to the decrease of machining accuracy
for the computer numerical control (CNC) machine tools. Therefore, the diagnosis of low-level
eccentricity can help to identify the radial error motion caused by the motor. The simulation result has
verified the relationship between the low-level eccentricity and the corresponding apparent power
signal. In the next step, our group will conduct the experiment on the motorized spindle. Finally,
the relationship modeling between the eccentricity fault of the motorized spindle and radial error
motion will be studied.
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Appendix

Table A1. The parameter of the induction motor.

Rating power 11 kw
Rated frequency 50 Hz
Rated speed 1462 rpm
Rated voltage 380 V
Number of pole-pairs 2
Number of slots 26
Outer diameter of rotor 169 mm
Inner diameter of stator 170 mm
Airgap length 0.5 mm
Winding connection Delta
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