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Abstract: Magnetic plasmonic nanomaterials are of great interest in the field of biomedicine due to
their vast number of potential applications, for example, in molecular imaging, photothermal therapy,
magnetic hyperthermia and as drug delivery vehicles. The multimodal nature of these nanoparticles
means that they are potentially ideal theranostic agents—i.e., they can be used both as therapeutic
and diagnostic tools. This review details progress in the field of magnetic-plasmonic nanomaterials
over the past ten years, focusing on significant developments that have been made and outlining
the future work that still needs to be done in this fast emerging area. The review describes the main
synthetic approaches to each type of magnetic plasmonic nanomaterial and the potential biomedical
applications of these hybrid nanomaterials.
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1. Introduction

Over recent years the development of new magnetic nanomaterials for biomedical applications
has attracted great attention. For example, magnetic nanoparticles may be used as contrast agents in
magnetic resonance imaging (MRI). The use of an external magnetic fields could also bring magnetic
particles to a site of interest, thereby enabling site-specific drug delivery in the body. Magnetic
nanoparticles can also heat up once subjected to an external magnetic AC (alternating current) field,
which opens up possibilities in hyperthermia cancer treatment. The area of magnetic nanoparticles
is therefore not only enticing in terms of applications, but it also represents an exciting and rapidly
expanding field. One of the attractive possibilities of magnetic nanoparticles is the fact that they
can be relatively easily functionalised with molecules which may bestow new properties on the
particles. These include drug molecules, fluorescent compounds and various hydrophobic and
hydrophilic coatings. Moreover, magnetic nanoparticles can be coated with a shell of a different
functional material such as a metal, semiconductor, dielectric etc. The combination of magnetic and
other properties in one nanocomposite can provide new multifunctional nanomaterials with unique
multimodal properties opening up great prospects for application of these nanomaterials both in
nano- and biotechnologies. In particular, there is great interest in development of new materials
for multimodal imaging applications, biosensing, drug targeting and therapy in nanomedicine.
Multimodal magnetic nanomaterials could be utilised as diagnostic, surgical and drug delivery tools,
which could help in the diagnosis and treatment of cancer and many other diseases. Because of their
small size, optional functionalisation with specific biomarkers (e.g., antibodies, receptors, etc.) and
combination of magnetic and fluorescent or plasmonic properties, these nanocomposites open up the
unique possibility of controlled target-directed applications. For example, plasmonic nanoparticles
have unique properties involving surface plasmon resonance phenomena and enabling to achieve the
intensive selective absorption or scattering of light that is widely used in sensing, bioassays, diagnostic
tools, photothermal and photodynamic therapy and other biomedical applications [1–9].
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Thus, multimodal nanoparticles are of particularly great importance in medicine, as one major
drawback of any therapy is the problem of getting the drug in the site of interest. An external magnetic
field and targeted functionalisation can be used to deliver the multimodal magnetic nanocomposites
to the desired area, to hold them there until the diagnostic or treatment is complete and to eradicate
them at the end. Importantly, all of these steps and processes can be monitored by MRI, CT
(computed tomography) and other imaging techniques potentially allowing full control over the
medical procedures [10–12]. New multimodal magnetic nanostructures have also found applications
in molecular-imaging [13,14], as PET-MRI (positron emission tomography-magnetic resonance
imaging) contrast agents [15], thermal therapy [16,17] targeted drug delivery and many others [18].
Our review will focus only of the recent developments of magnetic-plasmonic nanocomposites and
their biological applications.

2. Synthetic Methods

Nowadays, a range of synthetic methods are utilised to produce monodisperse, stable suspensions
of magnetic-plasmonic nanocomposites. Generally, magnetic-plasmonic nanomaterials consist of
an inner magnetic core, and an outer plasmonic layer. For the purpose of this review, the synthesis of the
central magnetic core will be used to differentiate between the resultant materials, with subsections on
the attachment of the plasmonic or magnetic moiety involved in each section. Among the most common
are chemical coprecipitation, thermal decomposition, and the solvent-thermal method; all of which are
utilised in the preparation of magnetic-plasmonic nanoparticles for potential biomedical applications.

2.1. Coprecipitation Techniques

Chemical coprecipitation is a common method of synthesis for magnetic nanoparticles, and involves
mixing chosen metal precursors in a specific ratio, then using a base, such as NH4OH, to precipitate out the
nanoparticles. Ordinarily, coprecipitation is carried out in aqueous media, which lends itself to biomedical
applications—phase transfer reactions are not usually necessary, and the stabilising agent and coating
material can be easily chosen to fit a specific purpose. A common approach involves precipitating magnetic
nanoparticles and stabilising them in situ, then further functionalisation with another outer layer on the
nanoparticles that can facilitate either the attachment or targeting of another species.

2.1.1. Synthesis of Magnetic Core/Silica Shell/Plasmonic Nanoparticles

Silica is a common choice for coating the magnetic nanoparticles as it is biocompatible, can be
functionalised with a variety of surface functional groups and aids internalisation of the nanoparticles
into cells [10]. Silica can act as in important mediator layer between an inner magnetic core (e.g., Fe3O4)
and an outer plasmonic layer (e.g., gold)—the silica allows the seeding of small gold nanoparticles onto
its surface, thus allowing for the further reduction of a gold layer, negating the difficulty of reducing
gold directly onto magnetite which is difficult due to the mismatch between the crystal lattices of the
two materials [11].

A range of Fe3O4@Ag magnetic plasmonic materials can be synthesised using an intermediate
silica layer. Such Ag-coated magnetic nanoparticles can be produced through addition of a silica
layer using a Stober synthesis. The silica provides a basis for further functionalisation, for example,
in a number of cases, APTES ((3-aminopropyl)triethoxysilane) has been used to endow the substrate
with amino groups which help facilitate the attachment of the plasmonic metal nanoparticles [19],
in this case through sonication of the Fe3O4@SiO2@APTES nanocomposites with AgNO3—this ensured
the attachment of the AgNO3 to the surface of the nanoparticles. Following this, the pH was re-adjusted
to 11 and an outer silver shell was obtained by reduction of the nitrate with NaBH4. A similar approach
using Fe3O4@SiO2@APTES was used to obtain a gold coated nanocomposite—in this case, however,
the functionalised nanoparticles were dissolved in phosphate buffer to increase the positive charge;
thus driving the electrostatic adsorption of the gold nanoparticles onto the surface of the magnetite
core nanoparticles [20]. The raspberry-structured resultant Fe3O4@Au nanoparticles were loaded with
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curcumin and were then coated with polyethylene glycol (PEG), which acts as a cloaking agent to
increase blood circulation time (Figure 1).
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2.1.2. Synthesis of Core/Polymer/Shell Magnetic-Plasmonic Nanoparticles

Conductive polymers have been used to aid the fabrication of magnetic plasmonic nanocomposites.
This approach was demonstrated by Feng et al., who prepared polypyrrole encapsulated gold nanorods
decorated with Fe3O4 nanoparticles (Au NR@PPY@Fe3O4) [21]. Polypyrrole (PPY) is a conductive polymer
that has been demonstrated to induce photothermal effects, and is already widely used in many biomedical
applications [22,23]. The core gold nanorods were synthesised using a modified seed mediated approach in
which gold seeds synthesised using NaBH4 and chloroauric acid in CTAB (hexadecyltrimethylammonium
bromide), and a growth solution of AgNO3, HAuCl4 and ascorbic acid. Iron cation mediated polymerisation
was used to fabricate the PPY coating on the gold nanorods—this gave rise to an abundance of Fe3+ and
Fe2+ ions in the resulting PPY@Au nanorod product. This solution was then diluted with water and ethanol
and the Fe3O4 nanoparticles were precipitated directly out of this solution using ammonia, and adhesion of
the Fe3O4 nanoparticles was driven electrostatically to the conductive polymer shell.

Aqueous based syntheses are of increasing interest, and of particular importance when the
material is being considered for biomedical applications. Eliminating the use of organic solvents
throughout the synthetic process and using only biocompatible, non-toxic materials and reagents
streamlines the synthesis for biological purposes. An aqueous synthetic method and biocompatible
polymer was utilised in the synthesis of heterostructured Fe3O4@PVP@Au nanocomposites [24]. In this
synthesis, PVP (polyvinylpyrrolidone) polymer was used to stabilise the Fe3O4 nanoparticles, and also
to form a homogenous layer surrounding them that has a negative charge. PVP is amphiphilic,
non-toxic and non-ionic and already has a broad spectrum of biomedical applications [25]. Gold
seeds were prepared through the reduction of chloroauric acid using NaBH4 in the presence of CTAB,
and these seeds assemble on the PVP-coated Fe3O4 through electrostatic interaction. The outer gold
shells were formed through the use of hydroxylamine hydrochloride. Polyethyleneimine (PEI) can also
be used as a reducing agent to cause the formation of an outer plasmonic layer. Fe3O4@Au structures
were synthesised by Ahmed et al.; coprecipitated Fe3O4 nanoparticles were dispersed in chloroauric
acid solution and placed in a shaking incubator to allow the adsorption of Au3+ onto the surface of
the Fe3O4 nanoparticles. PEI was then added to the shaking mixture to reduce the gold, causing the
formation of a gold shell on the Fe3O4 nanoparticles [26]. Hydroxylamine was utilised by Wang et al.
in the preparation of their multimodal magnetic plasmonic Fe3O4@Au nanoparticles [27]. They first
modified their Fe3O4 nanoparticles with chitosan, post synthesis and stabilisation with oleic acid.
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Acetic acid is then added to the Fe3O4-Chitosan NPs and the mixture is sonicated, any unreacted
chitosan is then removed using magnetic separation. Preformed gold colloids are then introduced to
these particles and sonicated, and hydroxylamine hydrochloride is used to reduce the gold colloids
on the surface of the Fe3O4 to form a gold shell. Magnetic separation is then utilised to ensure no
unreacted gold remains in the solution.

2.1.3. Synthesis of Magnetic-Plasmonic Nanoparticles without Intermediate Layers

Multimodal magnetic plasmonic structures can also be synthesised by co-precipitation followed
by direct attachment of the plasmonic moiety to the magnetic particles. Hydroxylamine has frequently
been utilised as a seeding and reducing agent in a number of cases for coating of magnetic nanoparticles
with a plasmonic shell [24,27,28]. For example, Fantechi et al. first synthesised ultra-small Fe3O4 NPs
using Massart’s coprecipitation; then, hydroxylamine was used as a seeding agent for the gold NPs
(Figure 2) [28].
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Figure 2. A scheme of the synthetic approach utilised (a–d) to obtain first ultra-small magnetite (USM)
nanoparticles, followed by addition of gold to form Fe3O4@Au nanoparticles, and lastly the formation
of the composites using either citrate or tiopronin as a reducing agent, and purification using magnetic
separation. Reprinted with permission from [28]. Copyright The Royal Society Publishing, 2016.

Self-organising silver and ultra-small iron oxide nanoparticles were recently made using a green
synthetic approach [29]. The coprecipitation method was slightly modified in this case—ginger rhizome
extract was used as a stabilising agent, as well as serving as an antioxidant to prevent oxidation of the
Fe2+ ions. To the iron salts and ginger route extract, silver nitrate was added dropwise, followed by
NaOH, and the resultant mixture was heated under reflux. The entire process takes place exclusively in
aqueous solution, with magnetic separation utilised to clean and purify the Ag-Fe3O4 nanocomposite
product (Figure 3).

The synthesis of magnetic plasmonic nanostructures with non-platonic geometries is a growing
area of interest within this field, as these novel structures have a large surface area, strong NIR
(Near Infrared) absorbance, plasmonic hot spots and interesting interactions with cells and cell
components [30–32]. For example, an Fe3O4 inner core was coated by a smooth layer of gold which then
acted as a basis for the growth of the gold spikes to produce star-like Fe3O4@Au magneto-plasmonic
supraparticles (Figure 4) [33]. Variation in the redox potential of the gold reducing agent is used to vary
the morphology of the gold layer—the smooth layer of gold on the surface of the Fe3O4 nanoparticle
is grown through introducing the pre-formed citrate stabilised Fe3O4 NPs into the boiling HAuCl4
solution (citrate acts as both the stabilising and the reducing agent in this case). Hydroquinone is then
used as the reducing agent in the formation of the gold spikes, as it has a more negative redox potential
than citrate [33].
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2.2. Thermal Decomposition Techniques

Thermal decomposition, initially used to synthesise high quality semiconductor nanocrystals,
is now commonly employed to synthesise monodisperse magnetic nanocrystals [34–37]. Thermal
decomposition involves the heating (often to temperatures in the region of 300 ◦C) of organometallic
precursors in organic solvents that contain a stabilising surfactant. Examples of such organometallic
precursors include, but are not limited to metal acetylacetonates (e.g., Fe(acac)3) and metal carbonyls
(e.g., Fe(CO)5) [38].

2.2.1. Simultaneous Thermal Decomposition

Among the simpler methodologies involving thermal decomposition as a synthetic route for
magnetic-plasmonic structures is the thermal decomposition of both the magnetic and plasmonic
moieties, either together or in tandem. Au-Fe3O4 dumbbells were obtained through the simultaneous
thermal decomposition of Fe(CO)5 and HAuCl4·3H2O in oleylamine and 1-octadecane [39].
The precursor solution was heated to 300 ◦C, and the resultant nanoparticles were exposed to air for
30 min to allow oxidation of the iron. Both 16 nm and 20 nm iron oxide dumbbell nanostructures were
formed through variation in the amounts of precursor added. PEG and DMF (dimethylformamide)
were used to produce interesting morphologies through further reduction of the Au3+ ions onto the
surface of the gold dumbbells. The Au-Fe3O4 dumbbells are then used to achieve directional growth
of asymmetric gold nanostars using PEG and DMF (Figure 5).
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Thermal decomposition was used as the basis for making magnetic-plasmonic nanoclusters by
Wu et al. [40]. Fe(acac)3 was used as the organometallic precursor in this case. Iron oxide nanoparticles
were first synthesised, and these iron oxide nanoparticles were then added to gold acetate and further
heated to 180 ◦C in organic solvents with vigorous stirring. Nanoclusters were then formed using
SDS and the water in oil microemulsion method. However, the resultant nanoclusters had a broad
size distribution.
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2.2.2. Thermal Decomposition for Synthesis of Magnetic-Plasmonic Core/Silica/Shell Nanoparticles

Similar to the approaches used in coprecipitated nanoparticles, often an intermediate layer
is introduced onto the either the magnetic or plasmonic moiety in order to facilitate easier
adhesion of the two components, and silica remains a popular choice. Flower-like Au@Fe3O4

nanoparticles were prepared by Fantechi et al. using thermal decomposition followed by a seeded
growth approach in which the Fe3O4 nanoparticles are grown onto the gold nanoparticles to form
heteronanocrystals [41]. Two iron precursors, Fe(acac)3 and Fe(CO)5 were used in the presence of
pre-formed gold nanoparticles to investigate the effect that different reaction parameters have on
the morphology of the hetero-nanocrystals. A silica coating is then applied to illustrate the ease
with which the resultant nanoparticles can be transferred from the organic to the aqueous phase,
and hence their applicability for biomedical applications. Silica is also utilised in work carried out by
Huang et al., where the Fe3O4 nanoparticles are coated with silica and then further functionalised with
APTES to obtain surface amino groups [42]. Gold nanoseeds are prepared in situ with the pre-formed
Fe3O4@SiO2 and NaBH4 as a reducing agent; the Au seeds adhere to the silica coating electrostatically.
Nanorattles are then achieved through etching of the silica using potassium carbonate.

Acetylacetonates can be used in the thermal decomposition method to prepare magnetic alloys,
as is demonstrated by Kostevsek et al. through their synthesis of multimodal hybrid FePt@SiO2@Au
nanoparticles [43]. Fe(acac)3 and Pt(acac)3 were added to a mixture of benzyl ether, oleic acid and
oleylamine, and heated to 200 ◦C for 30 min, and then heated to 280 ◦C for a further 30 min. The FePt
magnetic-plasmonic alloy was used as it has a much higher saturation magnetisation than iron oxides;
it also is thought to be a better contrast agent. A silica shell was added using TEOS and further
functionalised with APTES. The gold nanoparticles were added using a two-step seeding approach.
This was realised through adding HAuCl4·3H2O and NaOH to the FePt@SiO2 mixture and stirring at
70 ◦C for 5 min, allowing the seeding of Au(OH)3 onto the silica surface. Ice-cold NaBH4 was then
used to reduce the gold onto the surface of the nanoparticles.

2.2.3. Thermal Decomposition for Synthesis of Magnetic Core/Polymer Shell/Plasmonic Nanoparticles

Green approaches to the syntheses of magnetic plasmonic approach based on thermal decomposition
are also of interest, although these can be more difficult as organic solvents are generally a prerequisite for
this type of approach. However, as demonstrated by Yu et al., an aqueous based thermal decomposition
reaction in benzyl alcohol can be carried out through the use of a microwave [44]. The Fe3O4 nanoparticles
are synthesised in the presence of PVP; and the resultant nanoparticles are then dispersed in an ethylene
glycol solution containing HAuCl4 and PVP—again, these are placed in the microwave in order to obtain
triangular gold nanoparticles studded with Fe3O4 nanoparticles.

PEG is a popular choice as it is biocompatible and can be readily functionalised with a number
of desirable functional groups. In some cases, this intermediate layer can also aid the formation
of a novel morphology, such as in work carried out by Li et al. [45]. In this work, the Fe3O4 first
underwent a ligand exchange to obtain an outer layer of PEG. The resultant nanoparticles were
then coated with poly-L-lysine, which aids the seeding and growth of a trisoctahedral gold shell.
PEG is also used in the ligand mediated self-assembly of hybrid plasmonic superparamagnetic
nanostructures [46]. Au nanorods, initially synthesised with CTAB as an outer stabilising layer,
are replaced with bifunctional PEG groups that have both surface carboxylic acid and thiol groups.
This replacement of the CTAB with the bifunctional PEG layer drastically improves the biocompatibility
of the Au nanorods. Fe3O4 TREG (triethylene glycol) functionalised nanoparticles were then added
to the Au nanorod solution; and, as the TREG groups are easily displaced by the –COOH terminal
groups on the bifunctional PEG coated Au nanorods, the product is Fe3O4 studded Au nanorods.
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2.3. Solvothermal Methods

The solvothermal method is now routinely used to prepare magnetic iron oxide nanoparticles [47].
In the first studies on this synthetic approach, cupferron transition metal ion complexes were used as
precursors to numerous metal oxide nanoparticles [48]. Nowadays, the solvent thermal method can
also be extended to the synthesis of magnetite-gold nanocomposites, as is now commonly carried out.
Li et al. utilised a solvothermal approach to synthesise Fe3O4 nanoparticles in a single step—using FeCl3
salts dissolved in gelatin in ethylene glycol with sodium acetate reacted at 200 ◦C for 6 h [49]. Gold
seeds were prepared using chloroauric acid and tetrakis-hydroxymethylphophonium chloride (THPC),
and seeded onto the gelatin coated Fe3O4 nanoparticles through stirring. A gold shell was obtained through
seeding of the gold nanoparticles using K2CO3. PEGylation was utilised to make the resultant nanoclusters
more bio-compatible. Gelatin was used as a mediator as it can be degraded by a subclass of matrix
metalloproteinases, and superparamagnetic Fe3O4 nanoparticles have been shown to be biodegradable
in vivo. A similar approach was used by Jin et al.—except in this case an APTES functionalised silica
coating is used in place of gelatin, and THPC is also used to reduce a layer of gold onto the Fe3O4

nanoparticles [50]. An interesting method of obtaining concave magneto-plasmonic core-shell supraparticles
is used by Lee et al. [51]. The Fe3O4 cores were prepared by the solvothermal method using PEI as
a capping ligand. Electrostatics are then exploited to seed the gold nanoparticles onto the surface of the
nanoparticles—this is done by sonication of the Au seeds followed by shaking for two hours. The thickness
of the gold shell can be carefully controlled through layer by layer deposition of gold seeds. In this case,
graphene quantum dots were anchored to the surface in order to produce an enhanced Raman signal.

2.4. Brust’s Method

Brust’s method of nanoparticle synthesis involves reduction of a metal precursor in a two-phase
(water-toluene) system by NaBH4 in the presence of an alkane thiol, and is a good method of preparing
highly stable thiol functionalised nanoparticles. The metallic clusters are grown by the simultaneous
attachment of self-assembled thiol monolayers on the growing nuclei [52]. The synthesis proceeds at
room temperature, and first involves the phase transfer of chloroauric acid (Au3+) from the aqueous
phase to the organic phase using a phase transfer catalyst. The two phases are then separated and
the organic phase is first treated with dodecanethiol to cause the reduction of Au3+ to Au1+. Sodium
borohydride is then added to reduce the Au1+ to Au0, and this reduction is indicated by a colour
change [53]. This method was utilised in the synthesis of Fe3O4@Au nanoparticles; in this case the
Brust Schiffrin method was used to obtain 2 nm Au nanoparticles, and the shell was obtained through
a modified thermally activated processing protocol [54]. While the Brust method was first used
to synthesise gold nanoparticles, the methodology can be extended to other metal based systems.
For example, Brusts method was used by Bhattarai et al. to produce bimetallic magnetic plasmonic
Au/Co. nanoparticles (Figure 6) [55].
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2.5. Flame Aerosol Synthesis

Flame spray pyrolysis is an advanced one-step synthetic approach to produce magnetic plasmonic
nanoparticles. Briefly, two metal precursors are used in a 1:1 ratio and fed to a flame in a spray
pyrolysis set up. This method was used to synthesise Fe2O3@Ag bimetallic magnetic nanoparticles
using Fe(acac)3 and Ag(OAc) as starting materials (Figure 7). A silica coating on the nanoparticles
was then obtained through coating in flight through the swirling injection of hexamethyldisiloxan
(HDMSO) in nitrogen [56]. The same method was used to produce Janus-like Fe2O3@Ag nanoparticles
with a nano-thin SiO2 coating to prevent leaching of Ag+ ions, which are toxic. These nanomaterials
were then used as biomarkers [57].
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3. Biomedical Applications of Magnetic-Plasmonic Nanocomposites

The dual modalities of a magnetic plasmonic nano-system open up a range of potential biomedical
applications. The multimodal nature of these nanoparticles paves the way for their use as theranostic
agents—i.e., materials that can be used to both diagnose, or quantify a disease, and also simultaneously
provide treatment. In an ideal world, a single nanoparticle with these theranostic properties should be
easy to functionise and the size and properties should be tunable.

When designing nanoparticles for use in biomedical applications, a number of factors must be
taken into consideration. The nanoparticles should be taken up only by targeted cells, and should not
be present in any significant concentration in non-targeted tissues. Efficient renal clearance from the
body is necessary to minimise toxicity, and for any drug to be considered feasible for widespread use
by the FDA (US Food and Drug Administration), it must be cleared from the body within a reasonable
timeframe [58,59]. Hydrodynamic diameter is also of utmost importance, as the nanoparticles must
be small enough to not be cleared through the mononuclear phagocyte system, but large enough so
that they do not become coated with serum proteins, thus increasing the hydrodynamic diameter and
hindering renal elimination [60].

3.1. Photothermal Therapy

Photothermal therapy is an attractive approach to cancer therapy as it is can be a highly selective
theranostic approach if nanoparticles (most commonly gold) are delivered to tumour sites. An external
NIR laser can be applied, causing the oscillation of the plasmons and resulting in the nanoparticles
generating heat, which has been shown to be highly effective in the thermal ablation of cancer
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cells [61,62]. Nanoparticles based on gold are the most popular choice for photothermal agents as it is
biocompatible enabling a thiol functionalisation which allows the easy attachment of antibodies and
other targeting agents. Gold nanoparticles also have an effective light to heat conversion, and small
sizes which can be tuned to efficiently absorb NIR light, which penetrates tissue better than other
wavelengths of light. Utilising multimodal magnetic plasmonic nanoparticles means that additional
functionalities are now possible. Not only can the gold component be used to facilitate photothermal
therapy, but the magnetic component can be used to direct the nanoparticles to the tumour site using
an external magnet, the gold nanoparticles can be used for dark field imaging and the magnetite
could potentially act as an MRI agent during the process. Targeting moieties could be conjugated to
the surface of the gold to endow extra cell specificity. The litany of possible applications for these
multimodal nanosystems ensures that they are the subject of intensive research efforts. Some magnetic
plasmonic nanoparticle systems proposed for use in photothermal therapy are discussed below.

Gelatin was used as a mediator in the synthesis of Fe3O4@Au nanoparticles proposed for use
as photothermal agents. This is of particular importance as gelatin can be readily degraded by
a subclass of metalloproteinases in the body, which further ensures that the system is suitable for
use in vivo [49]. The biocompatibility and bioelimination of this system was closely examined, and it
was found that in the acidic tumour microenvironment the Fe3O4@Au nanoparticle assemblies were
successfully broken in conjunction with the metalloproteinases. An 808 nm NIR laser was found to
cause significant temperature increases, and high doses of the nanoparticle composites were found
to be nontoxic, thus illustrating its potential for use in vivo as a photothermal agent. This material
also showed potential for uses in MRI, CT and PAT (photoacoustic therapy). A similar chitosan
Fe3O4@Au nanomaterial showed a temperature increase at various concentrations under illumination
of a NIR laser [27]. Chitosan is a polysaccharide often used due to its interesting biopharmaceutical
properties; for example, it’s high mucoadhesion and suitability for facilitating drug delivery, and is the
subject of many reviews [63–66]. The authors also highlighted the multiple uses of the synthesised
nanoparticles—not only as photothermal agents but for use in simultaneous MRI and dark field
imaging. While these proposed photothermal agents have under-gone heating tests using NIR lasers
ex vivo, more comprehensive biocompatibility and in vivo testing on these multimodal magnetic
photothermal agents is urgently required.

3.2. Drug Delivery and Targeting

Multimodal magnetic nanoparticles have long been the subject of investigation for use as drug
delivery vehicles, and many strategies for their synthesis, drug loading and release have been
examined [67]. However, comparatively, few comprehensive studies on magnetic-plasmonic based
drug delivery systems have been carried out, despite many potential theranostic applications which
these systems would have. This could be due in part to a number of difficulties in the complexity of
making these materials, and how biocompatible the resulting systems may be. For example, a balance
must be drawn between the complexity of the nanomaterial and the time and cost of its synthesis
with the increase in efficacy of the cancer treatment it can provide. Not only this, but the size and
morphology of the magnetic plasmonic nanoparticles needs to be precisely controlled in order to
optimise uptake in vivo—too small (<50 nm) and the nanoparticles are washed out of the body,
too large (>300 nm) and they accumulate in the liver and spleen [18].

In spite of these challenges, such multimodal nanoparticles comprising of anisotropically shaped
Fe3O4@Au were prepared with a biocompatible mesoporous silica shell, which also allowed anticancer
drug delivery [45]. The doxorubicin containing pores were capped with double stranded DNA,
which decomposed under NIR light, causing the heating of the gold component of the nanoparticle.
The magnetite, in this case, provided magnetic guidance, which was shown to increase uptake of the
nanoparticles into HeLa cells (Figure 8).
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3.3. Imaging and Contrast Agents

Magnetite nanoparticles have been of great interest as new MRI contrast agents, largely due
to their ease of synthesis, biocompatibility and superparamagnetism [68]. The magnetic plasmonic
nanoclusters synthesised by Wu et al. are proposed for use as multimodal imaging agents, utilising
magnetic guidance under monitoring of the image in situ [40]. In this work, the molecular specificity
of the composite nanoparticles is tested on SK-BR-3 breast cancer cells and A-431 keratinocytes, and it
was shown that the cell targeting agent demonstrates high cell specificity and was preferentially taken
up by cells with the complementary antigen (Figure 9).

Another important consideration made by these authors was the choice of surfactant—this can
have a major influence on the viability of the resultant nanoparticles use in biomedical applications.
SDS (sodium dodecyl sulfate) is used in this synthesis in place of CTAB (which is cytotoxic). This SDS
was easily replaced with methylated PEG thiol molecules, which enhance biocompatibility.
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3.4. In Vitro Toxicity Studies

While many of the current nanomaterials propose potential biomedical applications, such as
multimodal imaging, photothermal therapy, magnetically guided drug delivery etc., very few
comprehensive studies have been carried out. While the nanoparticles can be used to treat or diagnose
disease, we must also consider any possible side-effects that the nanoparticles themselves may have
in vivo. A number of toxicity studies have been carried out on different cell lines. Pariti et al. carried
out toxicity evaluations on Au@Fe3O4 nanoparticles capped with L-cysteine on Chinese Hamster Ovary
(CHO) cell lines [69]. These nanoparticles, proposed as drug delivery vehicles and hyperthermia agents,
showed no significant cytotoxicity to the CHO cells over 48 h even up to concentrations of 1 mg/mL.
The toxicity of similar nanoparticles was tested using an MTT (3-(4,5-dimethyltetrazolium bromide))
assay and it was found that the nanoparticles were non-toxic at 50 µg/mL [26]. However, it was noted
by the authors that the toxicity pathways of the Au@Fe3O4 composites could be different due to size
and morphology variations.

4. Conclusions and Future Outlook

In this review, we have shown that new types of magnetic-plasmonic nanocomposites of different
varieties have been developed over the last 10 years. There is a great need and potential demand
for these materials. From the above discussion, it is clear that magnetic-plasmonic nanocomposites
can offer new opportunities in biology and medicine. However, despite all the recent progress that
has been made, the magnetic-plasmonic nanocomposite area is still in its early development stage,
and significant efforts are needed for further development of these materials and their applications.
We believe that new magnetic-plasmonic nanomaterials could serve as all in one nano-sized drug
delivery tools, which could help in the diagnosis and treatment of cancer, HIV and many other
diseases. Because of their small size and combination of magnetic and plasmonic properties,
these nanocomposites open up the unique possibility of controlled target-directed applications. This is
of particularly great importance in medicine, as one major disadvantage of any nanoparticle therapy is
the problem of getting the particle to the site of interest. An external magnetic field could be used to
attract the multi-modal magnetic-plasmonic nanocomposites to the desired area, to hold them there
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until the diagnosis or treatment is complete and finally to remove them. All steps can be monitored by
MRI and CT allowing the full control over the processes. Thus, further development and utilisation of
magnetic-plasmonic nanoprobes could revolutionise many aspects of modern medicine. However,
potential toxicity is of major concern when advocating multimodal nanoparticles for any biomedical
use. Unfortunately, toxicity of magnetic-plasmonic nanomaterials is still very poorly studied and
understood. We believe that a significant part of the future work in this area must be focused on the
investigation of the toxicity and improvement of biocompatibility of multi-modal magnetic-plasmonic
nanocomposites. This will be crucial for further development of relevant areas of nano-biotechnology
and nanomedicine.
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