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Featured Application: The proposed framework is highly suitable for audio applications that
require analysis–synthesis systems with the following properties: stability, perfect reconstruction,
and a flexible choice of redundancy.

Abstract: Many audio applications rely on filter banks (FBs) to analyze, process, and re-synthesize
sounds. For these applications, an important property of the analysis–synthesis system is the
reconstruction error; it has to be minimized to avoid audible artifacts. Other advantageous properties
include stability and low redundancy. To exploit some aspects of auditory perception in the signal
chain, some applications rely on FBs that approximate the frequency analysis performed in the
auditory periphery, the gammatone FB being a popular example. However, current gammatone FBs
only allow partial reconstruction and stability at high redundancies. In this article, we construct
an analysis–synthesis system for audio applications. The proposed system, referred to as Audlet,
is an oversampled FB with filters distributed on auditory frequency scales. It allows perfect
reconstruction for a wide range of FB settings (e.g., the shape and density of filters), efficient FB design,
and adaptable redundancy. In particular, we show how to construct a gammatone FB with perfect
reconstruction. Experiments demonstrate performance improvements of the proposed gammatone
FB when compared to current gammatone FBs in terms of reconstruction error and stability, especially
at low redundancies. An application of the framework to audio source separation illustrates its utility
for audio processing.

Keywords: audio signal processing; analysis–synthesis; filter bank; time-frequency transform; frames;
hearing; gammatone; equivalent rectangular bandwidth (ERB); Bark scale; Mel scale

1. Introduction

Time-frequency (TF) transforms like the short-time Fourier or wavelet transforms play a major
role in audio signal processing. They allow any signal to be decomposed into a set of elementary
functions with good TF localization and perfect reconstruction is achieved if the transform parameters
are chosen appropriately (e.g., [1,2]). The result of a signal analysis is a set of TF coefficients, sometimes
called sub-band components, that quantifies the degree of similarity between the input signal and the
elementary functions. In applications, TF transforms are used to perform sub-band processing, that is,
to modify the sub-band components and synthesize an output signal. De-noising techniques [3,4],
for instance, analyze the noisy signal, estimate the TF coefficients associated with noise, delete
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them from the set of TF coefficients, and synthesize a clean signal from the set of remaining TF
coefficients. Lossy audio codecs like MPEG-2 Layer III, known as MP3 [5], or advanced audio coding
(AAC) [6,7] quantize the sub-bands with a variable precision in order to reduce the digital size of
audio files. In audio transformations like time-stretching or pitch-shifting [8,9], the phases of sub-band
components are processed to ensure a proper phase coherence. As a last example, applications of audio
source separation [10–12] or polyphonic transcriptions of music [13] rely on the non-negative matrix
factorization scheme: the set of TF coefficients is factorized into several matrices that correspond to
various sources present in the original signal. Each source can then be synthesized from its matrix
representation. In these applications, the short-time Fourier transform (STFT) is mostly used, although
modified discrete cosine transforms (MDCTs) are usually preferred in audio codecs.

Because sub-band processing may introduce audible distortions in the reconstructed signal,
important properties of the analysis–synthesis system include stability (i.e., the coefficients are bounded
if and only if the input signal is bounded), perfect reconstruction (i.e., the reconstruction error is only
limited by numerical precision when no sub-channel processing is performed), resistance to noise,
and aliasing suppression in each sub-band (e.g., [14,15] Chap. 10). Furthermore, in all applications,
a low redundancy (i.e., a redundancy between 1 and 2) lowers the computational costs.

TF transforms are usually implemented as filter banks (FBs) where the set of analysis filters
defines the elementary functions and the set of synthesis filters allows signal reconstruction. The TF
concentration of the filters together with the downsampling factors in the sub-bands define the TF
resolution and redundancy of the transform. FBs come in various flavors and have been extensively
treated in the literature (e.g., [16–19]). The mathematical theory of frames constitutes an interesting
alternative background for the interpretation and implementation of FBs (e.g., [20–22]). Gabor frames
(sampled STFT [2,23]), for instance, are widespread in audio signal processing.

For certain applications, such as audio coding [5–7], audio equalizers [24], speech processing [25],
perceptual sparsity [26,27], or source separation [11,12,28,29], exploiting some aspects of human
auditory perception in the signal chain constitutes an advantage. One of the most exploited aspects
of the auditory system is the auditory frequency scale, which is a simple means to approximate
the frequency analysis performed in the auditory system [30]. Generally, the auditory system is
a complex and in many aspects nonlinear system (for a review see, e.g., [31]). Its description ranges
from simple collections of linear symmetric bandpass filters [32] through collections of asymmetric
and compressive filters [33] to sophisticated models of nonlinear wave propagation in the cochlea [34].
Because nonlinear systems may complicate the inversion of the signal processing chain (e.g., [35,36]),
linear approximations of the auditory system are often preferred in audio applications. In particular,
gammatone filters approximate well the auditory periphery at low to moderate sound pressure
levels [37,38] and are easy to implement as FIR or IIR filters [32,39–43].

Various analysis–synthesis systems based on gammatone FBs have been proposed for the purpose
of audio applications (e.g., [35,39,40,44]). However, these systems do not satisfy all requirements of
audio applications as, even at high redundancies, they only achieve a reconstruction error described
as “barely audible”. This error becomes clearly audible at low redundancies. In other words, these
systems do not achieve perfect reconstruction. To our knowledge, a general recipe for constructing
a gammatone FB with perfect reconstruction at redundancies close to and higher than one has not
been published yet.

In this article, we describe a general recipe for constructing an analysis–synthesis system
using a non-uniform oversampled FB with filters distributed on an arbitrary auditory frequency
scale, enabling perfect reconstruction at arbitrary redundancies. The resulting framework is named
“Audlet” for audio processing and auditory motivation. The proposed approach follows the theoretical
foundation of non-stationary Gabor frames [20,45] and their application to TF transforms with
a variable TF resolution [46–48]. This report extends the work reported in [20] (Section 5.1) by providing
a full theoretical and practical development of the Audlet.
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The manuscript is organized as follows. The next section briefly recalls the basics of non-uniform
FBs, frames, and auditory frequency scales. Section 3 describes the theoretical construction of the
Audlet framework. The practical implementation issues are discussed in Section 4 and Section 5
evaluates important properties and capabilities of the framework.

2. Preliminaries

2.1. Notations and Definition

In the following, we consider signals in `2(Z) as samples of a continuous signal with sampling
frequency fs, with the Nyquist frequency of fN = fs/2. We denote the normalized frequency by ξ = f / fs,
i.e., the interval [0, fN] corresponds to [0, 1/2]. The inner product of two signals x, y is 〈x, y〉 = ∑n x[n] ·y[n]
and the energy of a signal is defined from the inner product as ||x|| = 〈x, x〉. The floor, ceiling, and
rounding operators are b·c, d·e, and b·e, respectively. We denote the z-transform by Z : x[n] 7→ X(z).
By setting z = e2iπξ for ξ ∈ (−1/2, 1/2], the z-transform equals the discrete-time Fourier transform
(DTFT). Note that the frequency domain associated to the DTFT is circular and therefore, the interval
(−1/2, 1/2] is considered circularly, i.e., ξ ∈ R is identified with ξ − bξe ∈ (−1/2, 1/2]. The same
applies for (− fN, fN]. Since we exclusively consider real-valued signals we deal with symmetric
DTFTs, which allows us to process only the positive-frequency range. Finally, we denote the complex
conjugation by an overbar, e.g., H.

2.2. Filter Banks and Frames

The general structure of a non-uniform analysis FB is presented in Figure 1 (e.g., [17]).
It is a collection of K + 1 analysis filters Hk(z), where Hk(z) is the z-transform of the impulse response
hk[n] of the filter, and downsampling factors dk, k ∈ {0 . . . K}, that divides a signal x into a set of K + 1
sub-band components yk, where

yk[n] = ↓dk {hk ∗ x} [n] . (1)

The special case where all downsampling factors are identical, i.e., dk = D ∀ k ∈ {0 . . . K},
is referred to as a uniform FB.

Figure 1. General structure of a non-uniform analysis filter bank (FB) (Hk, dk)k with Hk being the
z-transform of the impulse response hk[n] of the filter, also denoted as A(·, (Hk, dk)k).

By analogy, a synthesis FB is a collection of K + 1 upsampling factors dk and synthesis filters
Gk(z) (see Figure 2) that recombines the sub-band components yk into an output signal x̃ according to

x̃[n] = 2<
(

K

∑
k=0

(
gk∗ ↑dk {yk}

)
[n]

)
, (2)

where <, denoting the real part, and the factor of 2 are a consequence of considering the positive
frequency range only.

A synthesis FB can be generalized to a synthesis system (shown in Figure 3), which is a linear
operator S that takes as an input sub-band components yk and yields an output sequence x̃. For the
synthesis operation, we use the notation S̃(·, (Gk, dk)k), where (Gk, dk)k is the synthesis FB. An analysis
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FB is invertible or allows for perfect reconstruction if there exists a synthesis system S that recovers
x from the sub-band components yk without error, i.e., x̃ = x for all x ∈ `2(Z). In other terms,
the analysis–synthesis system ((Hk, dk)k,S) has the perfect reconstruction property. In practice,
the implementation of that operation might introduce errors of the order of numerical precision.

Figure 2. General structure of a non-uniform synthesis FB (Gk, dk)k, also denoted by S̃(·, (Gk, dk)k).

Figure 3. General structure of a synthesis system. S is a linear operator that maps the sub-band
components yk to an output signal x̃.

We use the mathematical theory of frames in order to analyze and design perfect reconstruction
FBs (e.g., [20–22]). A frame over the space of finite energy signals `2(Z) is a set of functions spanning
the space in a stable fashion. Consider a signal x and an analysis FB (Hk, dk)k yielding yk. Then, an FB
constitutes a frame if and only if 0 < A ≤ B < ∞ exist such that

A‖x‖2 ≤∑
k
‖yk‖2 ≤ B‖x‖2, ∀x ∈ `2(Z) (3)

where A and B are called the lower and upper frame bounds of the system, respectively. The existence
of A and B guarantees the invertibility of the FB. Several numerical properties of an FB can be derived
from the frame bounds. In particular, the ratio

√
B/A corresponds to the condition number [49] of

the FB, i.e., it determines the stability and reconstruction error of the system. Furthermore, the ratio
B/A characterizes the overall frequency response of the FB. A ratio B/A = 1, for instance, means
a perfectly flat frequency response. This is often desired in signal processing because, in that particular
case, the analysis and synthesis FB are the same. Specifically, the synthesis filters are obtained by
time-reversing the analysis filters, i.e., Gk(z) = Hk(z).

The frame bounds A and B correspond to the infinimum and supremum, respectively,
of the eigenvalues of the operator S̃(A(·, (Hk, dk)k), (Hk, dk)k) associated with the system (Hk, dk)k.
In practice, these eigenvalues can be computed using iterative methods (see Sections 3.2 and 3.3).

2.3. Auditory Frequency Scales

An important aspect of the auditory system to consider in auditory-motivated analysis is the
frequency-to-place transformation that occurs in the cochlea. Briefly, when a sound reaches the ear
it produces a vibration pattern on the basilar membrane. The position and width of this pattern
along the membrane depend on the spectral content of the sound; high-frequency sounds produce
maximum excitation at the base of the membrane, while low-frequency sounds produce maximum
excitation at the apex of the membrane. This property of the auditory system can be modeled in
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a first approximation as a bank of bandpass filters, named “critical bands” or “auditory filters”, whose
center frequencies and bandwidths respectively approximate the place and width of excitation on
the basilar membrane. The frequency and bandwidth of the auditory filters are nonlinear functions
of frequency. These functions, called auditory frequency scales, are derived from psychoacoustic
experiments (see e.g., [50], Chapter 3 for a review). The Bark, the equivalent rectangular bandwidth
(ERB), and Mel scales are commonly used in hearing science and audio signal processing [30]. To refer
to the different frequency mappings we introduce the function F: f → Scale where f is frequency in
Hz and Scale is an auditory unit that depends on the scale. The ERB rate, for instance, is [30]

FERB( f ) = 9.265 ln
(

1 +
f

228.8455

)
(4)

and its inverse is
f = F−1

ERB(FERB) = 228.8455
(

eFERB/9.265 − 1
)

. (5)

The ERB (in Hz) of the auditory filter centered at frequency f is

BERB( f ) = 24.7 +
f

9.265
. (6)

Expressions for the Bark and Mel scales are respectively provided in [51,52]. For scales that
do not specify a bandwidth function, like the Mel scale, we propose the following function:

Bscale( f ) =
∂(F−1

scale)
∂ f (Fscale( f )). This ensures a proper overlap between the filters’ passband.

3. The Proposed Approach

This section describes the analysis FB and synthesis stage of the Audlet FB. The FB is entirely
designed in the frequency domain, which simplifies the assessment of properties such as invertibility
and the amount of aliasing. Note that the purpose of this section is to provide a mathematical
framework for general FB regardless of the practical implications. The implementation of the Audlet
framework is addressed separately in Section 4.

3.1. Analysis Filter Bank

The analysis FB consists of Audlet filters Hk, k ∈ {1, . . . , K − 1}, a low-pass filter H0,
and a high-pass filter HK. In total, it consists of K + 1 filters. The Audlet filters are defined by

Hk(e2iπξ) = d
1
2
k w
(

fs · ξ − fk
Γk

)
k ∈ {1, . . . , K− 1} (7)

where w(ξ) is a prototype filter’s shape centered at frequency 0. Any symmetric or asymmetric window
is an eligible w. The main condition on w is that its frequency response must decay away from 0 on both
sides. The parameters Γk = βBscale( fk) and fk control the bandwidth and center frequency, respectively,
of the filter Hk. The parameter β allows for the filter bandwidths to be compressed/expanded. Note that
when β 6= 1, the bandwidth of the filters Hk deviates from the human auditory filters’ bandwidth.

To determine K and construct the sets { fk} and {Γk}, the first step consists in choosing an essential
frequency range [ fmin, fmax] ⊆ [0, fN ], a frequency mapping FScale, and a filter density V ∈ R+ of filters
per Scale unit. The set {dk} is considered arbitrary for now. An optimal choice of downsampling
factors dk is provided in Section 3.1.3.

3.1.1. Construction of the Set { fk}

The center frequency f1 is given by

f1 = max{ fmin, F−1
Scale(1/V)} (8)
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and the subsequent fk’s are obtained iteratively by

fk = F−1
Scale(FScale( f1) + (k− 1)/V). (9)

The iteration is processed as long as fk ≤ fmax and fk < fN , resulting in K − 1 filters,
with K determined by

K = min
{

argmax
k∈N

(
k− 1

V
≤ FScale( fmax)− FScale( f1)

)
,

argmax
k∈N

(
k− 1

V
< FScale( fN)− FScale( f1)

)}
.

Note that fmax should be slightly higher than the highest frequency of interest in the analyzed
signals. Finally, f0 = 0 and fK = fN . At this stage, the “restricted” frequency response of the FB
(i.e, restricted to the filters H1, . . . , HK−1) is given by

H(r)
0 (ξ) = H̃0

(r)
(ξ) + H̃0

(r)
(−ξ), with

H̃0
(r)
(ξ) :=

K−1

∑
k=1

d−1/2
k |Hk(e2πiξ)|2, for all ξ ∈ (−1/2, 1/2].

To obtain a perfect reconstruction system, the frequency response of the system should optimally

cover the frequency range [0, fN ]. However, this may not be the case for H̃0
(r)
(ξ) because the amplitude

of the filter H1 (and/or HK−1) may vanish at frequencies between 0 and f1 (resp., between fK−1 and fN).
To circumvent this problem, a low-pass filter H0 and high-pass filter HK are included.

3.1.2. Construction of H0 and HK

The purpose of the filters H0 and HK is to stabilize the FB response H0 by compensating for
the potentially low amplitude of H(r)

0 (ξ) in the range [0, f1[ ∪ ] fK−1, fN ]. While the content in the
frequency bands 0 and K might carry some perceptually relevant information, most applications will
not modify the corresponding coefficients. Consequently, it is crucial that H0 and HK are mostly
concentrated outside [ f1, fK−1], but their time domain behavior is only of secondary importance.
Nonetheless, we propose a construction that retains some smoothness in frequency and thus, by Fourier
duality, h0 and hK have appropriate decay.

There is no canonical method that provides optimal compensation and time localization for any
valid set of Audlet parameters. In [46], for instance, plateau functions with raised cosine flanks were
proposed. This method might result in additional ripples in H0 if w is not a raised-cosine window.
Alternatively, in [47], H0 and HK were constructed from a set of virtual filters extending the FB
beyond [ f1, fK−1]. An adaptation of this method to the Audlet framework is unnecessarily complex
and unintuitive. Instead, we propose the following. We define

M = max
ξ∈[0,1/2]

H(r)
0 (ξ) and H(r)

inv =

√
(M−H(r)

0 )+.

The functionH(r)
inv is nonnegative and has at least the same differentiability as w (taking the positive

part (·)+ is only necessary in the special cases considered in the remark below). However, any ripples
in H(r)

0 replicate in H(r)
inv. To reduce this rippling effect and introduce strict band-limitation of H0

and HK, we multiply H(r)
inv with appropriately localized plateau functions P0 and PK. Assume that

f−p,s, f−p,e, f+p,s, f+p,e ∈ (0, fN) are chosen such that f1 < f−p,s < f−p,e < f+p,s < fN and f1 < f−p,s < f+p,e <

f+p,s < fN and let
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P0(ξ) =


1/
√

2 if ξ fs ∈ (− f−p,s, f−p,s)

cos
(

π
|ξ| fs− f−p,s

f−p,e− f−p,s

)
/
√

2 if |ξ| fs ∈ [ f−p,s, f−p,e]

0 elsewhere,

and

PK(ξ) =


1/
√

2 if ξ fs ∈ (− fN ,− f+p,s] ∪ ( f+p,s, fN ]

1/
√

2− cos
(

π
|ξ| fs− f+p,s

f+p,s− f+p,e

)
/
√

2 if |ξ| fs ∈ [ f+p,e, f+p,s]

0 elsewhere.

The frequency f−p,s (resp. f+p,s) defines the width of the plateau in P0 (resp. PK). The region [ f−p,s, f−p,e]

([ f+p,e, f+p,s]) defines the transition area of P0 (PK) (see Figure 4). The filters H0 and HK are finally defined
by their DTFTs as

H0(e2πi(·)) = P0 · H
(r)
inv, and HK(e2πi(·)) = PK · H

(r)
inv. (10)

We propose selecting 0 < κ1 < κ2, such that FScale( fK−1)− FScale( f1) ≥ κ1 + κ2 and fix

f−p,s = F−1
Scale(FScale( f1) + κ1), f−p,e = F−1

Scale(FScale( f1) + κ2),

f+p,s = F−1
Scale(FScale( fK−1)− κ1), f+p,e = F−1

Scale(FScale( fK−1)− κ2).

This choice ensures that P2
0 + P2

K ≤ 1, preventing overcompensation, and is properly adapted to the
scale used. By default, we set κ1 = 3/V, κ2 = 4/V, such that f−p,s = f4, f−p,e = f5, f+p,s = fK−4, f+p,e = fK−5.

The intuition here is that from f4 (resp. fK−4) onward, the restricted FB responseH(r)
0 is expected to be

stable already, and that the size of the transition area ensures a sufficiently smooth roll-off. It should be
noted that, although the filters proposed above are chosen to be strictly band-limited, a similar
construction with time-limited, but only approximately band-limited, filters is also conceivable,
by smoothly truncating h0, hK instead of H0, HK.

Remark 1. The choice of raised cosine transition areas provides continuously differentiable P0, PK. If additional
decay of h0, hK is desired, the construction of a compactly supported plateau function of arbitrary differentiability
is standard, e.g., through convolution of a characteristic function with a smooth function. There are
some corner cases in which one or both of the compensation filters h0, hK are unnecessary, namely
if f1 is very close to 0 (resp. fK−1 to fN). In that case the maximum M should be computed over
the interval [ f1/ fs, 1/2] (resp. [0, fK−1/ fs]) and we set H0 = 0 (HK = 0). A rule of thumb is
if minξ∈[0, f1/ fs]H

(r)
0 (ξ) ≥ (1− ε)minξ∈[ f1/ fs, fK−1/ fs]H

(r)
0 (ξ), for some ε� 1, then the low-pass filter H0 is

not required. An analogous argument is valid for HK.

The total frequency response of the analysis FB (i.e., including the K + 1 filters) is then

H0(ξ) := H̃0(ξ) + H̃0(−ξ), with (11)

H̃0(ξ) :=
K

∑
k=0

d−1
k |Hk(e2πiξ)|2, for all ξ ∈ (−1/2, 1/2].

and the redundancy of the FB is

R = d−1
0 + 2

K−1

∑
k=1

d−1
k + d−1

K . (12)

The factor of 2 stems from the fact that coefficients in the 1-st to (K − 1)-th sub-bands may be
complex valued.
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Figure 4. Illustration of the frequency allocations of the filters H0 (red line) and HK (green line) given

the restricted frequency responseH(r)
0 (ξ) (dashed line) of an FB.

3.1.3. Construction of the Set {dk}

Downsampling the filters’ outputs, i.e., using dk > 1 for some or all k ∈ {0, . . . , K}, has the
advantage of reducing R but introduces aliasing. The amount of aliasing can be determined from the
frequency domain representation of the output signal X̃(z) = ∑k Z

(
gk∗ ↑dk {yk}

)
[n], also called the

alias domain representation [16,17]. For ξ ∈ (−1/2; 1/2], X̃(z) reduces to the following ([20] Section 4)

X̃(e2iπξ) =
1
D
[X(e2iπ(ξ+0/D)) · · ·X(e2iπ(ξ+(D−1)/D))]Hj(ξ) (13)

where D = lcm({dk}k) and
Hj(ξ) := H̃j(ξ) + H̃j(−ξ) with (14)

H̃j(ξ) = ∑
k∈{0,...,K},
s.t. j∈ D

dk
Z

d−1
k Hk(e2πiξ)Hk(e2πi(ξ+j/D)),

for all j ∈ {0, . . . , D− 1}. The termH0 in (14) represents the frequency response of the FB, while the
terms Hj, j 6= 0, represent the alias components. Thus, an alias-free system is obtained when
H0 = C > 0 and Hj = 0, ∀j 6= 0. While this is not always achievable, choosing dk’s to be inversely
proportional to the filters’ bandwidth yields a close-to-optimal solution [19], i.e.,

dk =

⌊
cbw fs

Γk

⌋
for k = 1, . . . , K− 1. (15)

For a targeted redundancy Rt, combining (15) and (12) while disregarding the floor operator b·c
leads to

cbw =
2

Rt fs

K−1

∑
k=1

βBscale( fk). (16)

Since the Hk values are strictly decaying away from fk with a bandwidth of Γk, choosing dk’s
according to (15) ensures an even distribution of the overall aliasing across channels.
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Using (15) to derive d0 and dK may result in a large amount of aliasing because H0 and HK may
feature large plateaus depending on fmin and fmax. We propose instead choosing d0 and dK according to

d0 =

 fs

2 f−p,s +
βBscale( f−p,s)

cbw

 (17)

dK =

 fs

2( fN − f+p,s) +
βBscale( f+p,s)

cbw

 . (18)

Note that Rt controls the dk only for k = 1, . . . , K− 1, while the actual redundancy R depends on
all dk, i.e., including d0 and dK. As a result, the value of R is slightly larger than Rt.

3.2. Invertibility Test

Overall, the design of an Audlet analysis FB involves a set of seven parameters: the perceptual
scale, frequency range [ fmin, fmax], filter shape w, filter density V and bandwidth factor β, and a target
redundancy Rt. To check that a given parameter set results in a stable and invertible system,
three methods exist:

1. An eigenvalue analysis of the linear operator corresponding to analysis with (Hk, dk)k followed
by FB synthesis with (Hk, dk)k. The frame bounds A and B correspond to the smallest (infinimum)
and largest (supremum) eigenvalues of the resulting operator, respectively. The largest eigenvalue
can be estimated by numerical methods with reasonable efficiency but estimating the smallest
eigenvalue directly is highly computationally expensive. In the next section we discuss
an alternative method that consists in approximating the inverse operator and estimating its
largest eigenvalue, the reciprocal of which is the desired lower frame bound A (see also Section 5
for an example frame bounds analysis).

2. Computation of A and B directly from the overall FB response, i.e., verification that 0 < A ≤
H0(ξ) ≤ B < ∞ for some constants A, B and almost every ξ ∈ (−1/2, 1/2].

3. Checking of whether the overall aliasing is dominated byH0, i.e., if there exist 0 < A0 ≤ B0 < ∞
that satisfy

A0 ≤ H0(ξ)±
D−1

∑
j=1
|Hj(ξ)| ≤ B0, (19)

for almost every ξ ∈ [−1/2, 1/2]. This method is a straightforward application of [20] (Proposition 5).
The inner term in (19) can be computed or, at least, estimated by direct computation.

While method 1 above can always be applied, the applicability of methods 2 and 3 depends on w.
If w is compactly supported in the interval [a, b] and 0 < b−a

ΓK−1
≤ fs, dk ≤

fs
(b−a)Γk

∀k ∈ {1, . . . , K− 1}
(i.e., cbw ≤ (b− a)−1), d0 ≤ fs

2 f−p,e
, and d−1

K ≤
fs

fs−2 f+p,e
, then the alias termsHj, j ∈ {1, . . . , D− 1} = 0. This

setting corresponds to the painless case [53]. This is the only case when method 2 can be applied.
If w has no compact support but is mostly concentrated on [a, b] and decays outside, the alias terms
Hj, j ∈ {1, . . . , D− 1} exist but may be small compared toH0. In that case, method 3 can be applied.

In terms of computational costs, method 1 is by far the most demanding of the three.
Still, if a certain parameters set is used over a large number of analyses, this one-time investment
to determine invertibility easily pays off. However, the user must still be aware of the potential
inaccuracies induced by numerical eigenvalue computation.

3.3. Synthesis Stage

The synthesis stage consists of a linear operator S((yk)k) mapping the sub-band signals yk to
the output signal x̃ (see Figure 3) such that the input signal x is recovered. For uniform analysis FBs,
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i.e., dk = D∀k, the operator S can be structured as in Figure 2. In that case, exact dual filter Gk’s can be
computed [54] with a factorization algorithm that generalizes [23]. The synthesis is then performed by
computing S̃((yk)k, (Gk, D)k).

For non-uniform analysis FBs, we implement S using a conjugate gradient (CG) iteration [49,55,56].
This is a very efficient iterative algorithm that is guaranteed to converge when (Hk, dk)k forms
a frame, i.e., whenever stable perfect reconstruction is possible. Given the Hermitian operator
S̃(A(x, (Hk, dk)k), (Hk, dk)k), the CG approximates the action of the inverse operator. For Hermitian
operators, the CG converges monotonously to 0. In addition, for problems of size P, the CG
is guaranteed to converge within P steps. In practice, convergence speed depends solely on
the (potentially unknown) condition number of the linear problem at hand, which, in this case,
equals

√
B/A. Often, it is beneficial to use a preconditioning step to improve the condition

number. We propose the operator F−1 diag(1/H0)F as preconditioner (see also [48,57,58]). A robust
implementation of the appropriate preconditioned CG (PCG) algorithm is conceptually straightforward
and was provided in [48].

In the following, we describe a heuristic variant of this PCG algorithm with asymmetric
preconditioning, that enables efficient implementation even if the intermediate solutions (denoted by xj
below) are only given in the time domain. Experimentally, Algorithm 1 was observed to converge in the
same number of iterations as the robust implementation from [48] (divergence was observed only if the
filters Hk were set to uniformly distributed random noise). We denote the analysis of x with respect to
the analysis FB (Hk, dk)k by (yk)k = A(x, (Hk, dk)k). We denote the synthesis from (yk)k with respect to
the synthesis FB (Gk, dk)k by x̃ = S̃((yk)k, (Gk, dk)k). The composition x̃ = S̃(A(x, (Hk, dk)k), (Gk, dk)k)

thus represents analysis followed by synthesis.

Algorithm 1 Synthesis by means of conjugate gradients

Initialize (Hk, dk)k, (yk)k
x0 ∈ `2(Z) (arbitrary)
j = 0 and ε > 0 (error tolerance)

H0 ← ∑k d−1
k Hk

for k = 0, . . . , K + 1 do
Gk ← Hk/H0

end for
b← S̃((yk)k, (Gk, dk)k)

r0 ← b− S̃(A(x0, (Hk, dk)k), (Gk, dk)k)
p0 ← r0
while rj > ε do

qj ← S̃(A(pj, (Hk, dk)k), (Gk, dk)k)

aj ← |rj|2/〈pj, qj〉
xj+1 ← xj + aj pj
rj+1 ← rj − ajqj

bj ← |rj+1/rj|2
pj+1 ← rj+1 + bj pj
j← j + 1

end while

To speed up convergence we use approximate dual filters as an initial choice for Gk’s,

Gk(e2iπξ) :=
Hk(e2iπξ)

H0(ξ)
. (20)

We interpret Gk’s as approximate dual filters because in the absence of aliasing
(i.e., ifHj = 0, ∀j 6= 0), the application of Gk exactly cancels all ripples in the frequency responseH0.
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Hence, the analysis-synthesis system S̃(A(x, (Hk, dk)k), (Gk, dk)k) can be interpreted as a preconditioned
variant of S̃(A(x, (Hk, dk)k), (Hk, dk)k) [48,57,58].

Note that in the painless case, evoked in Section 3.2, the operator
S̃(A(x, (Hk, dk)k),(Gk, dk)k) equals the identity and thus, synthesis is performed simply by
applying S̃((yk)k, (Gk, dk)k) once.

Although this is not apparent from the iterative inversion scheme described above, the proposed
synthesis stage acts in a similar fashion to an FB. More specifically, if D = lcm({dk}k) and (H̃j, D)j
is the equivalent uniform FB associated with (Hk, dk)k [16,20], then iterating the CG algorithm until
convergence is equivalent to computing the FB synthesis with respect to the canonical dual FB of
(H̃j, D)j, which is of the form (G̃j, D)j, for some sequences of filters (G̃j)j (see [21]). Since convergence
is achieved within numerical precision in a small number of CG steps we can assume that the proposed
synthesis system is characterized by the properties of the filters (G̃j)j. We cannot easily compute those
filters, but it is well known that the ratio of the optimal frame bounds B/A (see Section 3.2) is closely
related to the similarity of a system and its canonical dual [59]. If B/A ≈ 1, then we can expect
G̃j ≈ H̃j, for all j. Since each H̃j is just a delayed version of some Hk, the time- and frequency-domain
localization of the synthesis system matches that of the analysis system.

For larger values of B/A, the duality of (H̃j, D)j and (G̃j, D)j implies that (G̃j, D)j has to account
for the discrepancies of (H̃j, D)j [59]. These considerations apply to any dual FB pair, Audlet or not.
The Audlet FB is constructed in such a way that, given the prototype filter w and filter density V,
the frequency response of (Hk, dk)k is as flat as possible, such that the B/A depends mostly on the
presence of aliasing. The required aliasing compensation often implies a widening of the dual filters’
essential support and essential passband, proportional to the amount of aliasing present.

4. Implementation

4.1. Practical Issues

The general mathematical framework described in the previous section is valid for band-limited
filters and more classical FIR filters. Although the impulse responses of band-limited filters are
theoretically infinite, their decay can be controlled by design such that they can be truncated with
a minor loss of precision. In our implementation, we instead choose an alternative approach similar
to “fast Fourier transform (FFT) filter banks” proposed by Smith [60]. We start by considering the
input signal as a finite-length vector in RL, L ∈ N. In an overlap-add block-processing scheme like the
one proposed in [46,60], such a sequence would be a single windowed block possibly zero-padded on
both ends. In the offline setting assumed in this paper, the sequence represents the entire input signal.
We discretize the continuous frequency ξ by assuming the sequence is one period of an L-periodic
signal. This introduces circular boundary effects that can be diminished by zero padding (increasing L),
provided the filters’ impulse responses decay rapidly. Increasing L preserves the perfect reconstruction
property. Such assumptions allow implementing the filtering, downsampling, and upsampling directly
in the frequency domain using sampled frequency responses of analysis and synthesis filters Hk and Gk,
respectively. The filtering with an analysis filter followed by downsampling is done using the standard
point-wise product of the L-point FFT of the signal with a sampled frequency response, while the
downsampling is achieved by folding the result to a sequence of length L/dk (manual aliasing) and
performing L/dk-point inverse FFT (IFFT). Performing downsampling this way is exactly equivalent
to time-domain downsampling by a factor of dk. Upsampling and filtering is achieved by taking a
L/dk-point FFT of the sub-band, periodizing the result to length L followed by a point-wise product
with the sampled frequency response of a synthesis filter. A final L-point IFFT brings the result back to
the time domain. In this framework, working with strictly band-limited filters is even advantageous for
two reasons. First, the frequency domain point-wise product can be restricted to the filter bandwidth
and second, for band-limited filters, the parameters can be chosen such that the system is painless [53]
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(no aliasing is introduced by downsampling), for which the approximate dual filters from (20) are exact
and thus achieve perfect reconstruction.

4.2. Code

We provide code for performing an Audlet analysis/synthesis as part of the Matlab/Octave
“large time-frequency analysis toolbox (LTFAT)” toolbox [61,62] available at http://ltfat.github.io/.
The analysis filters are generated by the function audfilters. The function allows to construct at
will uniform or non-uniform Audlet FBs with integer or rational downsampling factors, thus offering
flexibility in FB design. Rational downsampling factors can be achieved in the time domain by properly
combining upsamplers and downsamplers (e.g., [19]). In LTFAT the sampling rate changes are directly
performed in the frequency domain by periodizing and folding the Yk(z)’s, then performing an inverse
DFT [63]. This technique allows to achieve rational downsampling factors at low computational costs.
The desired number of channels in the frequency range [ fmin, fmax] can be set by specifying either K
or V. The function audfilters also accepts parameters Scale, β, w, and Rt. Currently, three scales
(ERB—the default—as well as Bark and Mel) are available. Possible choices of w include (but are
not limited to) Hann (default), Blackman, Nuttall, gammatone, or Gaussian. If Rt is specified, cbw is
inferred from Rt according to (15)–(18). Otherwise cbw = 1. The analysis of a signal is performed by
filterbank. The synthesis is performed by ifilterbankiter that implements Algorithm 1. In the
painless case, the more computationally efficient synthesis can be achieved by first computing the exact
synthesis FB with filterbankdual and then synthesizing the signal with ifilterbank. The function
filterbankdual can also be used to check whether a given analysis FB qualifies for the painless case.

Example scripts to perform Audlet analyses/syntheses in various FB settings are provided
as Supplementary Material (see Archive S1). The supplementary material also demonstrates the
realization of iterative reconstruction.

Note that for real-time implementations using macro blocks like in [46], the overall redundancy
depends also on the overlap between the blocks. For analysis or processing purposes, the sub-bands
can be combined in an overlap-add manner closely approximating the true non-blocked sub-bands.
The perfect reconstruction property within the blocks is preserved.

4.3. Computational Complexity

In [45,64] it was shown that the frequency-domain computation of an FB analysis (Hk, dk)

is O(L log L), obtained as the sum of: (1) an L-point FFT (O(L log L)); (2) point-wise multiplication
with the filter frequency responses (∑k Lk); and (3) an L/dk-point IFFT (O(∑k L/dk log L/dk)) for each
filter, and similarly for FB synthesis with respect to (Hk, dk). Here, Lk denotes the bandwidth of Hk
in samples.

In the painless case, the same analysis applies to the dual FB (Gk, dk)k. In general, every iteration
of the CG has the complexity of FB analysis with (Hk, dk) followed by FB synthesis with (Gk, dk).
For a given analysis system (Hk, dk), the number of iterations required for numerical convergence
relies only on the frame bound ratio B/A and is completely independent of the signal under scrutiny
(see also [48] for a visualization of convergence in various settings).

5. Evaluation

In this section we evaluate three important properties of the Audlet, namely its simple and
versatile FB design, perfect reconstruction, and utility for audio applications that perform sub-channel
processing. This evaluation comprises two parts:

1. The construction of uniform and non-uniform gammatone FBs and examination of their stability
and reconstruction property at low and high redundancies. For this purpose we replicated the
simulations described in [44] (Section IV), which we consider as state of the art.

http://ltfat.github.io/
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2. The construction of various analysis–synthesis systems and use to perform sub-band processing.
For this purpose we considered the example application of audio source separation because
it is intuitive, clear, and it easily demonstrates the behavior of the system when attempting
modification of an audio signal. In this application we assess the effects of perfect reconstruction,
bandwidth and shape of the filters, and auditory scale on the quality of sub-channel processing.

Scripts to reproduce the results of these evaluations are provided as Supplementary Material
(see Archive S1).

5.1. Construction of Perfect-Reconstruction Gammatone FBs

5.1.1. Method

To construct a gammatone FB we use the prototype filter shape in the frequency domain of
a complex gammatone filter of order γ centered at zero [42,43]

HGT,γ,α(e2iπξ) =
(

1 + iα−1ξ
)−γ

. (21)

An order γ = 4 and bandwidth factor α = 1.019 are usually chosen for emulating the human
auditory filters [38]. Because HGT,γ,α has an infinite support in the frequency domain, it can be truncated
to become a compactly-supported gammatone filter shape by

wcsGT,γ,α(ξ) =

{
HGT,γ,α(e2iπξ) if |HGT,γ,α(e2iπξ)| ≥ ε,

0 otherwise.
(22)

where ε is a threshold that allows to trade accuracy for computational efficiency. Once an essential
frequency range and a filter density are chosen, the set of gammatone filters is generated according
to (7) using w(ξ) = HGT,γ,α(e2iπξ) (or w = wcsGT,γ,α if a painless system is desired) and
β = 1. In Figure S2 in supplementary material, the frequency response and impulse response of
two gammatone filters computed using (7) and (21) with center frequencies fk = 258 and 4000 Hz
are displayed.

To examine the stability and reconstruction property of the proposed gammatone construction,
we replicated the two simulations described in [44] (Section IV). The first simulation considers
uniform FBs and the second simulation considers non-uniform FBs. The uniform FBs were evaluated
by two measures: the ratio B/A and reconstruction error in terms of signal-to-noise ratio (SNR).
The non-uniform FBs were evaluated only by the SNR. We compared our results to those from Strahl
and Mertins (S–M) [44] where available.

The FB settings were as follows. The sampling rate was fs = 44.1 kHz, the essential frequency
range was [ fmin = 20 Hz, fmax = 20000 Hz], and the scale was ERB. The gammatone filters in [44]
were implemented as FIR filters, that is, the Hk’s had an infinite frequency response. Thus, in the
following simulations we used w(ξ) = HGT,4,1.019(e2iπξ). In the uniform case, the downsampling
factors dk’s, k ∈ {1, . . . , K − 1}, were set to a constant D; d0 and dK were chosen according to (17)
and (18), respectively. The evaluation was performed for all combinations of D ∈ {1, 2, 4, 6, 8} and
K ∈ {51, 76, 101, 151} (our K corresponds to M + 1 in [44]). For the synthesis stage, Algorithm 1 was
used with an error tolerance ε = 10−9. The ratio B/A was calculated for the full frequency range
(i.e., from 0 to fN) by iteratively computing the eigenvalues of the operator S associated with the
system (Hk, dk)k [65]. The SNR was calculated as ||x||2/||x− x̃||2 in dB for x being a Gaussian white
noise with a length of 30,000 samples.

In the non-uniform case, K was fixed to 51 and the FBs were evaluated for various values of
R. We considered the oversampling factors O ∈ {1, 2, 4, 6, 8} used in [44]. The relationship between
O and R is O = R/2− 1

2 (d
−1
0 + d−1

K ) because in [44], O was ∑K−1
k=1 d−1

k , which considers only the real
part of the coefficients, and h0 and hK were not included. For simplicity, our FBs were designed for
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Rt ∈ {2, 4, 8, 12, 16}. Similar to [44], two sets of dk were used to achieve the various Rt’s. The first set
consisted of dk’s that were inversely proportional to the filters’ bandwidth according to (15). The second
set was exactly that mentioned in [44] (Appendix B). For each set, d0 and dk were chosen according
to (17) and (18), respectively. All other FB and signal parameters were as in the uniform case.

5.1.2. Results and Discussion

The ratios B/A computed for the uniform gammatone FBs for various combinations of D and
K and those reported in [44] (Figure 5) are listed in Table 1. For K = 51–101, our ratios B/A decreased
with increasing K. This is a consequence of the increasing overlap between filters with increasing K,
which in turn yields a flatter FB response. Increasing K to 151 did not result in smaller ratios. This can
be attributed to the steep flank of HK in that setting. This can be counteracted by increasing the values
of κ1 and κ2 when very small filter spacing V (equivalently, large K) is used. Our framework generally
achieved comparable or smaller ratios than those from [44]. Note that in [44], B/A was calculated for
the frequency range from 0.06 to 17 kHz. These ratios, when calculated for the full frequency range,
might have been larger than those listed in Table 1. Consequently, the actual difference between Audlet
and S–M ratios might be larger than that reflected in Table 1.

Table 1. Ratios B/A for various combinations of D and K obtained for the proposed Audlet framework
and reported in [44] (S–M).

K Framework D = 1 D = 2 D = 4 D = 6 D = 8

51 Audlet 1.124 1.124 1.125 1.134 1.157
S–M 1.100 > 10 > 10 > 10 > 10

76 Audlet 1.007 1.007 1.009 1.021 1.073
S–M 1.100 2 2 3 6

101 Audlet 1.003 1.003 1.005 1.017 1.068
S–M 1.003 1.003 1.003 2 4

151 Audlet 1.015 1.015 1.016 1.025 1.066
S–M 1.003 1.003 1.003 1.100 2

The SNRs achieved with our framework were 180 dB (or larger) for all tested combinations of
D and K. The limit of 180 dB is the consequence of the error tolerance of 10−9 in the PCG algorithm.
In comparison, SNRs reported in [44] for D = 1 ranged between 30 and 72 dB and increased with
increasing K (SNRs for other D’s were not reported).

The SNRs computed for the non-uniform gammatone FBs for various R are listed in Table 2
together with those reported in [44]. In all conditions, our framework achieved SNRs of at least 170 dB.
In contrast, the system from [44] offered decent reconstruction (SNR ≥ 15 dB) only in configurations
involving small downsampling factors (i.e., at large R).

Table 2. Signal-to-noise ratios (SNRs; in dB) obtained for the Audlet framework and reported in [44]
(Figure 10) (S–M).

dk Based on (15)–(18) dk from [44]

Rt R Audlet S–M R Audlet S–M

2 2.40 > 180 5 2.38 > 170 10
4 4.46 > 180 7 4.38 > 190 13
8 8.60 > 180 10 8.38 > 200 17

12 12.73 > 220 9 12.38 > 210 18
16 16.87 > 260 15 16.38 > 200 19

Overall, we conclude that the reconstruction quality of currently available gammatone FB
implementations deteriorates at low redundancies. This may hinder the quality of sub-channel
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processing in audio applications but, as it seems, the reconstruction quality can be improved by
using the Audlet framework.

It might appear intriguing that we obtained larger SNRs than in [44] even in conditions with
similar ratios B/A (compare the condition with K = 151 and D = 1 in Table 1). The good performance
achieved by our framework can mostly be explained by the design of our synthesis stage. In contrast,
most analysis–synthesis systems based on gammatone filters, such as [44], use synthesis filters
that are time-reversed versions of the analysis filters, i.e., Gk(e2iπξ) = Hk(e2iπξ) that translates to
gk[n] = hk[−n] in the discrete-time domain (e.g., [35,39,40]). Such a synthesis stage provides perfect
reconstruction if and only if the frame bound ratio is equal to one [20].

5.2. Utility for Audio Applications

5.2.1. Method

This experiment is an example application of the Audlet framework to audio source separation.
Given a mixture of instrumental music and voice, we constructed various analysis–synthesis systems
and separated the voice from the music. The systems were designed so as to assess the effects of perfect
reconstruction, shape and bandwidth of the filter, and auditory scale on the quality of sub-channel
processing at low, mid, and high redundancies. Four systems were implemented:

trev_gfb: a state-of-the-art gammatone FB with approximate reconstruction (the acronym trev stands
for “time reversal”). The Hk’s followed (7) with w(ξ) = wcsGT,4,1.019(ξ) (22) with a threshold
ε = 10−5. The synthesis filters Gk(e2iπξ) = Hk(e2iπξ). This corresponds to the baseline system
used in audio applications like [11,28,29].

Audlet_gfb: an Audlet FB with a gammatone prototype. The Hk’s were computed as in trev_gfb but
the synthesis stage was Algorithm 1. This system aims to compare to the baseline system and
assess the effect of perfect reconstruction.

Audlet_hann: an Audlet FB with a Hann prototype. This system aims to assess the effect of filter shape.
STFT_hann: an STFT using a 1024-point Hann window. Synthesis was achieved by the dual window [2].

The time step was then adapted to match the desired redundancy Rt. This corresponds to the
baseline system used in most audio applications (e.g., [10,66]). This system aims to assess the
use of an auditory frequency scale.

The effect of filter bandwidth was assessed by varying parameter β. Specifically, two values were
tested: β ∈ {1, 1/6}. Using a value of β 6= 1 means a clear departure from auditory perception but may
help better resolve spectral components, particularly at high frequencies where the auditory filters
become really broad (see (6)). Accordingly, many audio applications that rely on constant-Q or wavelet
transforms use 12 or more bins per octave (e.g., [46,63]).

The performance of all systems were evaluated at three redundancies: Rt ∈ {1.1, 1.5, 4}. To this
end, (15) was used with cbw adjusted such that Rt was achieved. The quality of the separation was
assessed by computing energy ratio- and perceptually-based objective measures according to [67].
Energy ratio measures include the signal-to-distortion ratio (SDR) and signal-to-artifact ratio (SAR).
Perceptual measures include the overall perceptual score (OPS) and target perceptual score (TPS).
OPS assesses the general audio quality of the separation, while TPS assesses the preservation of the
target. All measures were computed using the PEASS toolbox [67].

The following parameters were fixed for systems trev_gfb, Audlet_gfb and Audlet_hann:
fs = 22.05 kHz, [ fmin, fmax] = [20, 10, 000], Scale = ERB, and K = 209 filters corresponding to
V = 6 filters/ERB.

The signal mixture, shown in Figure 5a, was created by adding an instrumental music signal to
a singing voice signal (target), shown in Figure 5b. The separation was performed by analyzing the
mixture with the analysis FB, applying a binary TF mask to the sub-band components by point-wise
multiplication, and computing the output signal from the modified sub-band components using
the synthesis stage. This operation corresponds to the application of a frame multiplier in signal
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processing [9,68]. In order to create the binary masks, the target signal was analyzed by the FB and
the magnitude of the coefficients was hard thresholded with a threshold of –25 dB. The threshold
value was varied between −40 and −20 dB in 5-dB steps. While the threshold value did affect the
separation performance, all configurations were affected equally. The value of –25 dB was selected
because it yielded good separation results for both the gammatone and Hann prototypes. Four masks
were created in total, one for each analysis filter’s shape and each β. The two masks for β = 1/6 are
displayed in Figure 5c,d. Because the frequency resolution of the STFT does not match those of other
FBs, an additional mask was computed for the STFT.
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Figure 5. Source separation for Rt = 4 and β = 1/6 displayed as time-frequency (TF) plots: the magnitude
of each sub-band component (in dB) as a function of time (in s). (a) Shows the mixture analyzed by
a gammatone FB; (b) Shows the target (voice) analyzed by a gammatone FB; (c) Shows the binary mask
obtained for Audlet_hann; (d) Shows the binary mask obtained for trev_gfb and Audlet_gfb—the black
and white dots in the masks represent ‘1’ and ‘0’ entries, respectively; (e,f) Show the target separated
by Audlet_hann and Audlet_gfb, respectively.
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5.2.2. Results and Discussion

Figure 5e,f show the voice signal separated using Audlet_hann and Audlet_gfb, respectively,
for Rt = 4 and β = 1/6. The objective quality measures are listed in Table 3. Audio files are available on
the companion webpage: http://www.kfs.oeaw.ac.at/audletFB. The following observations can be made.

First, system Audlet_gfb outperformed trev_gfb in most conditions. This demonstrates the role
of perfect reconstruction in the quality of sub-channel processing. In other words, using the Audlet
framework can improve the reconstruction quality. Note that for β = 1/6, the performance of trev_gfb
improved with increasing Rt and tended towards the performance of Audlet_gfb. This is due to the
decrease in the amount of aliasing with increasing Rt. For trev_gfb and Rt = 4, very little aliasing was
present and a good performance was achieved despite the approximate reconstruction of trev_gfb.

Second, the performance of Audlet_hann was comparable to that of Audlet_gfb in almost every
measure. Although the filter shape did not play a major role in this particular example, it may have
a larger impact in other applications.

Third, for all configurations, reducing β from 1 to 1/6 generally improved all quality measures.
This suggests that, depending on the application, a departure from the human auditory perception
may improve signal processing performance. In the present application, for instance, finely tuned
filters are required to resolve all harmonics and therefore properly separate the signals.

Finally, while STFT_hann performed comparably to Audlet_hann at the highest R, the performance
of STFT_hann dropped at mid and low redundancies. This suggests that using an auditory frequency
scale may improve signal processing performance at low redundancies.

Table 3. Objective quality measures for the separated voice signal. The signal-to-distortion ratio (SDR)
and signal-to-artifact ratio (SAR) are in dB; the larger the ratio, the better the separation result. Overall
perceptual score (OPS) and target perceptual score (TPS) are without unit; they indicate scores between
0 (bad quality) and 1 (excellent quality). The corresponding audio files are available on the companion
webpage. STFT: short-time Fourier transform.

System Rt
SDR SAR OPS TPS

β = 1 1/6 1 1/6 1 1/6 1 1/6

trev_gfb

1.1

0.1 5.8 3.2 9.2 0.26 0.26 0.06 0.12
Audlet_gfb 4.7 10.7 8.5 19.0 0.25 0.31 0.11 0.20

Audlet_hann 4.7 11.8 7.6 18.3 0.26 0.34 0.05 0.26
STFT_hann −1.7 0.5 0.46 0.02

trev_gfb

1.5

2.4 8.5 5.7 13.5 0.24 0.30 0.11 0.17
Audlet_gfb 6.9 11.1 12.5 20.5 0.24 0.35 0.13 0.29

Audlet_hann 7.0 12.8 11.1 20.1 0.22 0.36 0.07 0.35
STFT_hann 2.4 9.2 0.22 0.04

trev_gfb

4

7.0 10.7 12.0 18.9 0.24 0.37 0.24 0.34
Audlet_gfb 9.0 11.4 18.3 21.6 0.27 0.38 0.32 0.39

Audlet_hann 11.1 13.1 19.4 21.7 0.25 0.37 0.21 0.32
STFT_hann 11.4 20.5 0.38 0.34

6. Conclusions

A framework for the construction of oversampled perfect-reconstruction FBs with filters
distributed on auditory frequency scales has been presented. This framework was motivated by
auditory perception and targeted at audio signal processing; it has thus been named “Audlet”.
The proposed approach has its foundation in the mathematical theory of frames. The analysis
FB design is directly performed in the frequency domain and allows for various filter shapes,
and uniform or non-uniform settings with low redundancies. The synthesis is achieved using
a (heuristic) preconditioned conjugate-gradient iterative algorithm. The convergence of the algorithm
has been observed for Audlet FBs that constitute a frame. This is possible even for redundancies close

http://www.kfs.oeaw.ac.at/audletFB
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to 1. For higher redundancies and filters with a compact support in the frequency domain, a so-called
“painless” system can be achieved. In this case the exact dual FB can be calculated, which in turn
results in a computationally more efficient synthesis.

We showed how to construct a gammatone FB with perfect reconstruction. The proposed
gammatone FB was compared to widely used state-of-the-art implementations of gammatone FB
with approximate reconstruction. The results showed the better performance of the proposed approach
in terms of reconstruction error and stability, especially at low redundancies. An example application
of the framework to the task of audio source separation demonstrated its utility for audio processing.

Overall, the Audlet framework provides a versatile and efficient FB design that is highly suitable
for audio applications requiring stability, perfect reconstruction, and a flexible choice of redundancy.
The framework is implemented in the free Matlab/Octave toolbox LTFAT [61,62].

Supplementary Materials: Supplementary material available online at www.mdpi.com/2076-3417/8/1/96/s1 is
provided by the authors. Archive S1: Matlab functions and test audio files to perform Audlet analyses/syntheses
in various FB settings and reproduce all results presented in the manuscript. The archive, about 2.6 MB in size,
also includes a brief documentation. Figure S2: Frequency response and impulse response of two gammatone
filters computed using the proposed framework.
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