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Abstract: Heterogeneous characteristics of a big data system for intelligent power distribution and
utilization have already become more and more prominent, which brings new challenges for the
traditional data analysis technologies and restricts the comprehensive management of distribution
network assets. In order to solve the problem that heterogeneous data resources of power distribution
systems are difficult to be effectively utilized, a novel generative adversarial networks (GANs) based
heterogeneous data integration method for intelligent power distribution and utilization is proposed.
In the proposed method, GANs theory is introduced to expand the distribution of completed data
samples. Then, a so-called peak clustering algorithm is proposed to realize the finite open coverage
of the expanded sample space, and repair those incomplete samples to eliminate the heterogeneous
characteristics. Finally, in order to realize the integration of the heterogeneous data for intelligent
power distribution and utilization, the well-trained discriminator model of GANs is employed to
check the restored data samples. The simulation experiments verified the validity and stability of the
proposed heterogeneous data integration method, which provides a novel perspective for the further
data quality management of power distribution systems.

Keywords: intelligent power distribution and utilization; heterogeneous data integration; generative
adversarial networks; peak clustering; finite open coverage

1. Introduction

With the rapid development of smart grid and sensing technology, China’s power user side data
showed high complexity and redundancy. Since 2011, the user side data volume of power distribution
system in China has been booming, from GB to TB, even to PB level, and gradually forms a big data
system. Facing the era of big data, power companies have not only improved traditional MySQL, Oracle,
and other relational database systems, but also produced lots of new big data systems, such as HBase,
GBase, and etc. All of these database systems mentioned above have already formed a multi-source
heterogeneous big data system for intelligent power distribution and utilization (IPDU) [1–4]. On the
other hand, affected by local economic levels, the monitoring and testing conditions in local power
companies and manufacturers for distribution network equipment are quite different, while parts of
the complex monitoring and testing equipment is unreasonable and impossible to repeat purchase,
leading to the further heterogeneity of IPDU big data.
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The IPDU big data contains operation data and external scene information of distribution network,
and supports the further decision analysis for the planning, construction, operation, maintenance,
and other business sectors of power distribution system. Through the deep mining of multi-source data,
it would be easy to realize the accurate analysis of current situations and future trends of distribution
networks, and operation control of intelligent power distribution network [5,6]. However, the traditional
data analysis and decision technologies of distribution networks require that all the data samples share
the same monitoring and testing indexes, which makes the IPDU heterogeneous big data difficult to be
effectively utilized, resulting in a huge waste of data resources. Because of the structure heterogeneity
among the existing database systems and the limitation of data qualities from both objective and
subjective factors, the IPDU big data system could not directly meet the requirements of traditional data
analysis and decision technologies. At the same time, it also comes into a small sample environment for
parts of samples in IPDU big data, and brings out great challenges for the data quality management of
distribution networks, which makes it difficult to guarantee the accuracy of analysis and decisions [7,8].
Therefore, the study on heterogeneous data integration technology has a significant influence on the
future intelligent power distribution and utilization, which can also greatly improve the accuracy and
efficiency of distribution network’s operation and decision-making.

So far, data integration researches in intelligent power distribution and utilization could be broadly
divided into two categories, i.e., time-series data integration and index data integration. The research
subjects of the former one mainly include load data, distributed power output, wind speed of wind
turbine, and etc. These kinds of data integration technologies are relatively mature, and already form a
relatively perfect research system, in which grey relational analysis, collaborative filtering, Markov chain,
support vector machine and neural network are widely used as data analysis tools [9–12]. The research
subjects of index data integration mainly include the structured and semi-structured data, in addition to
time-series data. Many experts and scholars have also carried out some inspiring works in this research
field, such as: Liu and et al. introduced low rank and sparsity theory for data integration to detect the false
data injection in power grid [13]; Xu and et al. proposed an XLPE power cable lifetime evaluation method
by employing low-rank matrix completion technology [14]; Mateos and et al. used robust nonparametric
regression via sparsity control to perform data cleaning and repair tasks [15].

Although the techniques mentioned above can meet the requirements of some engineering
applications in accuracy, but still not be able to satisfy the efficiency requirement. In order to deal with
IPDU big data problems, some experts and scholars turned their research directions to data integration
based on machine learning. Yu and et al. proposed an extreme learning machine based missing data
completion method [16]. Li and Socher introduced deep learning theory to fulfill the incomplete data
restoration and integration tasks, respectively [17,18]. However, these researches do not take the small
sample environment of IPDU data into account, so it is difficult to be directly applied in the actual
projects, and the integration of heterogeneous data in distribution network is not quite satisfying.

In order to solve the problem that heterogeneous data resources for intelligent power distribution and
utilization are difficult to be effectively utilized in the small sample environment, a novel heterogeneous
data integration technology that is based on generative adversarial networks (GANs-HDI) is proposed.
In this proposed GANs-HDI method, the sample space expansion is realized by employing the generator
of Goodfellow and et al.’s GANs [19,20], according to the targeted samples with all of the measurement
indexes complete. In order to eliminate the heterogeneous characteristics, a so-called peak clustering
algorithm is proposed to realize the finite open coverage of the expanded sample space, and repair
those incomplete samples. Finally, the repaired samples are checked by using well-trained discriminator
of GANs. By doing this, GANs learning together with clustering theory form a closed loop to improve
heterogeneous data integration performance greatly. This proposed heterogeneous data integration
method is helpful to realize the efficient integration of heterogeneous data, and also provides a novel
perspective for the further data quality management in power companies.
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2. Generative Adversarial Networks Based Sample Space Expansion

Facing the big data for intelligent power distribution and utilization (IPDU), power companies have
not only improved traditional MySQL, Oracle, and other relational database systems, but also produced
lots of new big data systems, such like HBase, GBase, and etc. All of these database systems mentioned
above provide excessive multi-source heterogeneous samples, as shown in Figure 1. These targeted
samples together form a real space, in which, according to Heine-Borel theorem, a limited number of
open intervals could be chosen to form a finite open coverage of this targeted sample set. In each open
interval, the samples shall hold the same data characteristics, and be able to support other samples with
missing indexes. However, in some small sample environments, the samples are not always enough for
data completion and integration tasks in all of the open intervals. Therefore, in order to obtain satisfying
data integration results, this paper introduces generative adversarial theory to enrich the sample space.
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Figure 1. Multi-source heterogeneous big data system for intelligent power distribution and utilization (IPDU).

Generative adversarial networks (GANs) is a generative model derived from Nash zero-sum game,
in which the generator model and discriminator model are invited to participate. The generator model
is designed to learn the distribution of training data, while the discriminator is designed to estimate the
probability that the targeted data sample comes from training data rather than the generator. Both of
these two models could improve their performances in mutual confrontation and iterative optimization,
extend the targeted sample set, improve the discrimination ability, and approach the Nash equilibrium
eventually [19]. As one of the most exciting ideas in the research field of machine learning over the last
decade, the theory of GANs has been widely used in image and graphic processing, natural language
processing, computer virus monitoring, chess game programming, and etc.

Inspired by Goodfellow and Springenberg’s works [20–22], GANs theory is employed to realize
the expansion of targeted sample space in this paper. First of all, a targeted data set D = {di}N

i=1
with all the measurement indexes is constructed, where N stands for the sample number of data set.
GANs algorithm is used to train generator G and discriminator D in TensorFlow platform. Taking
D = {di}N

i=1 as inputs and zeros as outputs, the discriminator D could be initialized in TensorFlow as
the following equation:

D(di) =
L

∑
j=1

N

∑
i=1

β jg(ωT
i di + bj) (1)

where, L is the number of hidden neural nodes, ωi ∈ RK is the input weights of i-th hidden neural
node, and β j ∈ R and bj ∈ R represent the output weights and threshold values of j-th hidden neural
node respectively, g(·) : R→ R stands for the activation function in neural networks.
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Furthermore, train the generator G and discriminator D simultaneously: adjusting parameters for
G to minimize log(1−D(d)) and for D to minimize log D(d), as if they are following the two-player
min-max game with value function v(G, D) [21]:

G = ∑L
j=1 ∑N

i=1 β jf((vi, ·) + bj) = argmin
G

max
D

v(G, D) (2)

s.t. v(θ(G), θ(D)) =d∈D log D(d) +d∈D̃ log(1−D(d)) (3)

where, D̃ = {di}M
i=1 stands for the data set consisted of new generated samples from generator G; L is

the number of hidden neural nodes; vi ∈ RP is the input weights of i-th hidden neural node, β j ∈ RK

and bj ∈ R represent the output weights and threshold values of j-th hidden neural node. respectively,
and f(·) : R→ R stands for the activation function in neural networks. By using the well-trained
generator G, M new data samples could be generated with random vector set Z =

{
zi ∈ RP}M

i=1 as
the inputs. Take D = {di}N

i=1 and D̃ = {di}M
i=1 as inputs and zeros and ones as outputs respectively,

train and renew the discriminator D.
Finally, determine whether the probability of newly generated samples falls within the interval

[0.5− c, 0.5 + c] by using discriminator D. If this condition is satisfied, then it demonstrates that
generator G performs well in convergence. Combine the new generated sample set D̃ and original data
set D, and denote the combination as DGANs = {di}N+M

i=1 for the future data restoration. Otherwise,
the discriminative error of D is back propagated to retraining of generator G. More obviously,
the calculation processing of GANs could be shown as Figure 2.
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3. Peak Clustering Based Data Restoration

Based on the proliferation result of data samples by introducing generator discussed above, a
so-called peak clustering based incomplete data restoration method is proposed in this section. In order
to overcome the restoration failures of traditional algorithms with linear inseparable data, the proposed
method constructs as few as possible open intervals with a fixed neighborhood radius for all of the
data samples. Then, the set of open intervals form a finite open coverage, avoiding the interference of
linear inseparable data samples on clustering results, as shown in Figure 3.

Inspired by Rodriguez’s work in Reference [23], peak clustering algorithm is proposed for incomplete
data restoration to improve the calculation efficiency, while sustaining the restoration precision. Supposing
the finite open coverage Coveragei(d) contains ni data samples

{
dj
}ni

j=1, calculate the peak distance

of density peaks (distance between data sample and density peak point) Dist(dj, Temp_Peaksi(d)).
Then, ni clusters are constructed according to the phase angle with the density peak point as the center,
and each cluster contains only one sample [24]. If the absolute value of the peak distance difference of
the cluster with similar phase angle is smaller than or equal to the threshold value, the two classes are
merged, and the distance between the peak point of the new class and the peak to peak value of the
density is calculated.
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If the absolute value of the peak distance difference of the clusters with the similar phase angle
is no larger than the threshold value k, combine the two clusters and calculate new density peak
points and peak distances. Repeat the operations above, until the absolute value of the peak distance
difference of the clusters with the similar phase angle becomes larger than the threshold value k, or
the total cluster number becomes 1. Then, end the iteration and output the clustering result of the
last iteration.

Finally, after the peak clustering of targeted data samples, the weighted averages of corresponding
values in complete samples could be used as the predictive values of missing data. The concept of
entropy in information theory is introduced, and the weighting coefficient is determined by the
similarity between data samples. Generally speaking, the process of peak clustering based data
restoration could be shown in the following Table 1.

Table 1. Peak clustering based data restoration algorithm.

Inputs Establish the combined dataset DGANs = {di}N+M
i=1 ; initialize threshold values R1, R2 and clustering threshold value k;

Step 1

Establish the finite open coverage of the targeted combined dataset:
Step 1.1: if Centre 6= ϕ, randomly select d ∈ Centre from the central point set; otherwise, go to Step 1.4.
Step 1.2: calculate i-th open interval:
Coveragei(d) = {d′ ∈ DGANs|Dist(d, d′) ≤ R1}; Coverage = {Coveragei(d)}
and renew the temporary peak point set Temp_Peaks← {Temp_Peaks, d} , i← i + 1 .
Step 1.3: renew the central point set Centre← CCentre{d′|Dist(d, d′) ≤ R2} , and calculate the peak point set:

Temp_Peaksi(d) =
∑d′∈Coveragei (d)

d′

|Coveragei(d)| , Peaks = {Temp_Peaksi(d)}
where, |·| represents the elemental number of vector. Then, return to Step 1.1.
Step 1.4: Return the finite open coverage set Coverage and peak point set Peaks.

Step 2

Based finite open coverage set and peak point set, perform the peak clustering task:
Step 2.1: Establishing subsets according to phase angle clockwise:

ClusterSet =
{

temp_seti

∣∣∣temp_seti ∈ Coverage, |temp_seti| = 1, temp_seti 6= temp_setj, i 6= j
}

;

Step 2.2: Calculate Di = min
{

Dist(dj, Peaks)
∣∣∣dj ∈ temp_seti

}
;

Step 2.3: If the condition |ClusterSet|> 1 and max(|DGANsi − DGANsi+1|) ≤ k are satisfied, combine temp_seti and
temp_seti+1, return to Step 2.2; otherwise, return ClusterSet.

Step 3

Based on information entropy theory, implement the incomplete data restoration task:
Step 3.1: calculate Euclidean distance as similarity {sj}

ni
j=1, and normalize the similarity set: pj = sj/∑ni

j=1 sj;
Step 3.2: calculate the entropy value of each complete data sample hj = −pj ln pj; calculate the weight of each
complete data sample wj = (1− hj)/(ni −∑ni

j=1 hj); calculate missing attribute values f = ∑ni
j=1 wjxj, where xj

represents the corresponding attribute values of data samples in the group.

Outputs Restored dataset D̂ = {d̂i}
N+M
i=1 .
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4. Realization of GANs Based Heterogeneous Data Integration

In order to solve the problem that the IPDU heterogeneous data resources are difficult to be
effectively utilized in the small sample environment, a novel generative adversarial networks based
heterogeneous data integration technology (GANs-HDI) is proposed in this paper. In the GANs-HDI
method, the sample space is expanded by introducing GANs, according to the targeted samples
with all of the measurement indexes complete. According to all of the complete and fixed samples,
peak clustering and information entropy are employed to restore the incomplete ones. Based on the
new sample set expanded by the generative model of GANs, this method constructs a peak clustering
model to realize the finite open coverage of the restored sample space, and repair those incomplete
samples with entropy function. Finally, all of the repaired samples would be checked by using
well-trained discriminator of GANs to guarantee the heterogeneous data integration performances.
Generally speaking, the process of GANs based heterogeneous data integration could be presented,
as shown in Figure 4.
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and utilization.

In this paper, select all the data samples with all measurement indexes complete from

heterogeneous database D = {di}N
i=1, and denote them as a dataset D = {di}N

i=1 for the further

generator G and discriminator D’s training in GANs. Then, taking D = {di}N
i=1 and D̃ = {di}M

i=1
generated by generator G as inputs and zeros and ones as outputs respectively, train and renew the
discriminator D. Finally, if the data samples generated by G could meet iterative termination condition,



Appl. Sci. 2018, 8, 93 7 of 15

combine the new generated sample set D̃ and original dataset D, and denote the combination as

DGANs = D ∪ D̃ = {di}N+M
i=1 , perform the peak clustering based data restoration task; otherwise,

the discriminant error of discriminator D would be back propagated to re-train the generator G,
as shown in Table 2.

Table 2. GANs Based Heterogeneous Data Integration.

Inputs Establish the original dataset D =
{

di ∈ RK}N
i=1; initialize discrimination rate threshold c, reducing pace α,

sample number N, activation function g and f, hidden neural node number L, thresholds R1, R2, clustering threshold k.

Step 1 Initialize central point set Centre = D, and initialize peak point set Temp_Peaks = {}.

Step 2

Select all data samples with all measurement indexes complete from heterogeneous database D = {di}N
i=1, and denote

them as a dataset D = {di}N
i=1. Train generative adversarial networks, and obtain the generator and discriminator.

Determine whether the discrimination rate of newly generated samples falls within the interval [0.5− c, 0.5 + c] by
using discriminator D. If this condition is satisfied, combine the new generated samples and original dataset,

and denote the combination as DGANs = {di}N+M
i=1 , and return to Step 3. Otherwise, the discriminative error of D is

back propagated to retraining of generator G.

Step 3
Employ peak clustering algorithm to repair the samples with incomplete information, and assume the restoration of

original dataset D̂ = {d̂i}
N
i=1.

Step 4
Determine whether the repaired samples can be verified by discriminator. If it fails, the threshold c would be reduced

to c− α based on the reducing pace α, and return to Step 2.3; otherwise, return integrated dataset D̂ = {d̂i}
N
i=1.

Outputs Integrated dataset D̂ = {d̂i}
N
i=1.

5. Simulation Experiments and Result Analysis

In this section, the simulation experiments are divided into two parts, i.e., data restoration
on University of California Irvine (UCI) standard datasets and heterogeneous data integration on
intelligent power distribution and utilization datasets. The former one is performed to verify the
validity and stability of our proposed GANs-HDI algorithm, while the latter one is performed
to test the actual effect of our proposed GANs-HDI algorithm for intelligent power distribution
and utilization heterogeneous data in TensorFlow platform. All of the following simulation
experiments were performed in Matlab 2012a and JetBrains PyCharm 2017.2 environment with
Core-TM i3-M330@2.13GHz and NVIDIA GeForce 840M processor, respectively.

5.1. Simulation Experiments on UCI Standard Datasets

The simulation experiment introduced three UCI standard datasets, i.e., ’Abalone’, ‘Heart Disease’,
and ‘Bank Marketing’, for performance comparison of data restoration in the Matlab 2012a environment.
In this simulation experiment, the incomplete sample proportion in the total samples was set as 20%,
and the information loss rate was 25%. Incomplete data sample and missing indexes were randomly
selected. The detailed information of the three UCI standard datasets is as shown in Table 3. Taking
‘Abalone’ dataset as an example, 60 samples were randomly selected from a total of 4177 data samples
as the incomplete samples. In these 60 samples, two indexes were randomly picked out to delete their
corresponding information, and formed a data sample set that to be repaired.

Table 3. Detail information of UCI standard datasets.

Datasets Incomplete
Sample Number

Total Sample
Number

Missing Dimensional
Number

Total Dimensional
Number

Abalone 835 4177 2 8
Heart Disease 60 303 19 75

Bank Marketing 9042 45,211 4 17

In order to verify the data restoration performance of the proposed GANs-HDI algorithm on UCI
standard datasets, k-nearest neighbors (k-NN), error-back propagation (BP), matrix completion [14],
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Deep Learning [18], and proposed Peak Clustering in Section 2 were chosen as control groups with
parts of the model parameters selected by experience. Specifically speaking, the cluster number was
equal to the sample class number in k-NN algorithm. The numbers of hidden neural nodes were set to
be 10/25/12 and the layer number set to be 8 for three UCI standard datasets in BP algorithm with
Sigmodal function as the activation function. The layer number set to be 8, and the numbers of hidden
neural nodes were set to be [15, 12, 12, 10, 10, 8, 8, 8]/[35, 24, 24, 17, 17, 15, 15, 15]/[20, 18, 18, 15, 15,
12, 12, 12] for three UCI standard datasets in Deep Learning algorithm with Sigmodal function as the
activation function. In the proposed Peak Clustering and GANs-HDI algorithms, the threshold of
discrimination rate was set to be c = 0.05, the reducing pace was set to be α = 0.0015, the numbers of
hidden neural nodes were set to be L = 10/25/12, initialized threshold values as R1 = 0.85 and R2 = 0.6,
clustering thresholds as k = 2, select Sigmodal function and new generation proportion N/N = 0.5.

Repair the incomplete data samples with k-NN, Peak Clustering, BP, Matrix Completion [14],
Deep Learning [18], and GANs-HDI algorithms, respectively. Then, determine whether the categories of
restored samples were correct or not by using support vector machine (SVM), and calculate the accuracy
values. Repeat 10 trials independently, and calculate the averages and root mean squared error (RMSE) of
the accuracy values of data restoration results, as shown in Table 4 (more details in Table A1).

Table 4. Comparison of four algorithms on UCI datasets.

Algorithm Index
Dataset

Abalone Heart Disease Bank Marketing

k-NN
Accuracy/% 42.87 33.33 60.02

RMSE / / /
Time-consuming/s 7.2130 2.1621 50.1315

Peak Clustering
Accuracy/% 58.56 43.33 67.92

RMSE 0.013379 0.022361 0.018203
Time-consuming/s 9.1655 2.3097 76.1617

Matrix Completion [14]
Accuracy/% 53.27 40.21 61.23

RMSE 0.075152 0.065465 0.116122
Time-consuming/s 17.5660 10.6516 226.6646

BP
Accuracy/% 62.46 50.17 64.26

RMSE 0.039062 0.135082 0.037608
Time-consuming/s 17.2132 8.1261 180.2661

Deep Learning [18]
Accuracy/% 71.26 66.02 69.95

RMSE 0.036261 0.0461610 0.091664
Time-consuming/s 140.5594 82.6167 362.9500

GANs-HDI
Accuracy/% 94.24 69.17 89.72

RMSE 0.014235 0.018634 0.001142
Time-consuming/s 154.1288 89.2661 1374.1626

According to the data shown in Table 4, it is obvious that the time-consuming of both k-NN,
matrix completion, Peak Clustering algorithms held the almost same quantity level, while Peak Clustering
performed much better than the traditional k-NN algorithm and matrix completion algorithm on the
accuracy of data restoration, especially held a more prominent repair effect for linear inseparable data
samples. The data restoration performances of BP and Deep Learning [18] algorithm succeeded to beat
Peak Clustering algorithm on UCI datasets. However, its RMSE was far from requirement, so the BP
algorithm is not stable enough to carry out the engineering application directly. It is worth noting that the
GANs-HDI algorithm is far superior to the other control groups in both of the accuracy and RMSE with
20–35 percentage points ahead. However, the algorithm takes a longer time to run, and needs to rely on
regularization constraints and distributed computing technologies to improve its convergence efficiency.

In summary, the data restoration performances of GANs-HDI on UCI standard datasets were
outstanding when compared with k-NN, BP, matrix completion, Peak Clustering, and deep learning
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algorithms. The validity and stability of our proposed GANs-HDI algorithm are verified through the
simulation comparison experiments. Furthermore, the experimental results from UCI standard data
also showed that the sample number might have a great influence on the final performances of the
GANs-HDI algorithm.

5.2. Simulation Experiments on Intelligent Power Distribution and Utilization Dataset (I)

In this section, the simulation experiment took power cable test data of sixty 22 kV XLPE power
cable samples for performance comparison of heterogeneous data integration in the JetBrains PyCharm
2017.2 environment. The power cable tests include the accelerated thermal aging tensile fracture test,
accelerated thermal extension test, differential scanning calorimetry test, breakdown test, and DC leakage
current test. In this simulation experiment, the incomplete sample proportion in the total samples was set
to be 20%, and information loss rates were set to be 15%. Incomplete data sample and missing indexes
were randomly selected. According to the incomplete sample proportion, 12 samples were randomly
selected from total 60 data samples as the incomplete samples. Then, in these chosen samples, two indexes
were randomly picked out to delete their corresponding information, and formed a set of data samples to
be repaired, according to the information loss rate. Insulating state test indicators of 22 kV XLPE power
cable are as shown in Table 5. After the data restoration, this section employed support vector machine
(SVM) to predict targeted power cable samples’ relative aging times, where 15 samples were treated as
the test group, and the other 45 samples were the training ones.

Table 5. Insulating state test indicators of 22 kV XLPE power cable [14].

Index
Sample No.

Index
Sample No.

1 2 3 1 2 3

Real operation time/year 4 7 11 Breakdown test pressure level diff. 1 17 17 17
Relative aging time 0.15 0.27 0.52 Breakdown test pressure level diff. 2 14 11 7

Elongation at break (%) 240 225 190 Breakdown test 0.13 0.21 0.38
Load elongation (%) 23.7 47.6 97.1 Insulation resistance per unit length/GΩ 41 29 19

Permanent elongation (%) 2.1 3.50 6.4 Operating ambient temperature/◦C 90 90 90
DSC peak temperature/ 263 258 243 Operating ambient temperature/◦C 90 90 90

In order to verify the data integration performance of the proposed GANs-HDI algorithm,
k-nearest neighbors (k-NN), and error-back propagation (BP) were chosen as control groups with parts
of the model parameters selected by experience. The cluster number was equal to the sample class
number in k-NN algorithm. The number of hidden neural nodes was set to be 10 in BP algorithm with
Sigmodal function as the activation function. In the proposed GANs-HDI algorithm, the threshold
of discrimination rate was set to be c = 0.05, the reducing pace was set to be α = 0.0005, the number
of hidden neural nodes was set to be L = 10, initialized threshold values as R1 = 0.85 and R2 = 0.6,
clustering threshold values as k = 2, Sigmodal function was chosen as the activation function, and new
generation proportion N/N was set to be 0.5.

Repair the incomplete data samples with k-NN, BP, and GANs-HDI algorithms, respectively,
and calculated the deviation rate with the real values. After the data restoration, employ SVM to
perform the relative aging time prediction tasks. Repeat 10 trials independently, and calculate the
averages and RMSE of the accuracy values of data restoration results, as shown in Table 6.

Table 6. Performance comparison on heterogeneous datasets for intelligent power distribution
and utilization.

Algorithm Restoration Deviation Rate/% Life Prediction Deviation Rate/% RMSE

SVM / 24.61 /
k-NN + SVM 40.26 58.65 /

BP + SVM 28.58 65.61 0.6216
GANs-HDI + SVM 22.70 86.62 0.2646
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According to the data shown in Table 6, life prediction results could be greatly improve by the
data restoration of missing information in this case. It also demonstrated that the newly proposed
GANs-HDI algorithm can effectively deal with small sample sized life prediction problems, which
cannot be handled by the combinations of traditional algorithms, as caused by the disunity on cable
test categories of different manufacturers.

5.3. Simulation Experiments on Intelligent Power Distribution and Utilization Dataset (II)

In this section, the simulation experiment took the medium voltage basic data of 171 towns
in power quality on-line monitoring system, from 2015 to 2016, for performance comparison of
heterogeneous data integration in the JetBrains PyCharm 2017.2 environment. In this simulation
experiment, the incomplete sample proportion in the total samples was set to be 20%, and information
loss rates were set to be 5%, 15%, 30%, respectively. Incomplete data sample and missing indexes were
randomly selected. According to the incomplete sample proportion, parts of samples were randomly
selected from total 342 data samples as the incomplete samples. Then, in these chosen samples, parts of
indexes were randomly picked out to delete their corresponding information, and formed a set of data
samples to be repaired, according to the information loss rate. Normalized data of typical samples is
as shown in Table 7 (original data in Table A2).

Table 7. Normalized data of typical samples.

Index
Sample No.

Index
Sample No.

1 2 3 4 1 2 3 4

User number of
public users 0.0000 0.0002 0.2496 0.5849 Transformer number of

public users 0.0000 0.0002 0.2499 0.5876

Transformer capacity of
public users 0.0255 0.0182 0.3376 0.5819 User number of

specialized users 0.0390 0.1093 0.2618 0.7129

Transformer number of
specialized users 0.0340 0.0765 0.1789 0.4801 Transformer capacity of

specialized users 0.3074 0.4216 0.5614 0.8277

Total number of
transformers 0.0144 0.0305 0.2686 0.6518 Total capacity of

transformers 0.1946 0.2515 0.6253 1.0000

Total number of
electricity users 0.0106 0.0270 0.2616 0.6335 Total capacity of

electricity users 0.1931 0.2495 0.6212 1.0000

Length of power cable line 0.4209 0.3221 0.7628 0.3740 Total length of power line 0.0287 0.0501 0.7030 0.9300

Number of switching
equipment 0.0188 0.0258 0.0500 0.5296 Average segment number 0.1187 0.1115 0.4622 0.3431

In order to verify the data integration performance of the proposed GANs-HDI algorithm on IPDU
heterogeneous dataset, k-nearest neighbors (k-NN), and error-back propagation (BP) were chosen as
control groups with parts of the model parameters selected by experience. The cluster number was equal
to the sample class number in k-NN algorithm. The number of hidden neural nodes was set to be 10 in
BP algorithm with Sigmodal function as the activation function. In the proposed GANs-HDI algorithm,
the threshold of discrimination rate was set to be c = 0.05, the reducing pace was set to be α = 0.0005,
the number of hidden neural nodes was set to be L = 10, initialized threshold values as R1 = 0.85 and
R2 = 0.6, clustering threshold values as k = 2, and Sigmodal function was chosen as the activation function.

Repair the incomplete data samples with k-NN, BP, and GANs-HDI algorithms, respectively,
and calculated the deviation rate with the real values. Repeat 10 trials independently, and calculate the
averages and RMSE of the accuracy values of data restoration results, as shown in Table 8.

According to the data shown in Table 6, information loss rate and deviation rate shown a
significant proportional relationship. Since there is no strong causal link between the indexes in
IPDU heterogeneous datasets, the performance of traditional BP algorithm was not satisfactory in the
experiments. On the other side, the performance of GANs-HDI algorithm was much better than k-NN
and BP on deviation rate with 15 percentage points ahead. Moreover, when the information loss rate
took 30%, the deviation rate of k-NN algorithm zoomed up, and the integration results were far away
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from the real sample space. However, the new proposed GANs-HDI algorithm holds good resistance
to the changes of information loss rates, and showed its outstanding stability.

Table 8. Performance comparison on heterogeneous datasets for intelligent power distribution
and utilization.

Algorithm Information Loss Rate/% Deviation Rate/% RMSE

k-NN
5 29.26 /

15 38.72 /
30 102.16 /

BP
5 45.56 0.7980

15 63.22 0.8384
30 88.36 1.0916

GANs-HDI
5 14.59 0.1460

15 19.73 0.1975
30 26.01 0.2603

When considering the influence of sample number on the algorithm performances shown in
Section 4, it would be necessary to study on the relationship between data integration performance and
parameters in GANs-HDI. In order to further proof the influences of incomplete sample proportion
and information loss rate on the heterogeneous data integration performance of GANs-HDI, deviation
rates were calculated with different incomplete sample proportions and information loss rates on
IPDU heterogeneous datasets, as shown in Figure 5.
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(GANs-HDI) algorithm on heterogeneous datasets for intelligent power distribution and utilization.

In Figure 5, the color of each color block indicates the reciprocal of the mean of deviation rates
from 10 independent repeated experiments with same incomplete sample proportion and information
loss rate. The brighter the color, the better the algorithm works. With the decreases of incomplete
sample proportion and information loss rate, data integration performance of GANs-HDI algorithm
gradually improves. In Figure 4, the boundaries of deviation rate 20% and 50% were marked. It is
obvious that, when the incomplete sample proportion is less than 30%, and the information loss rate is
less than 20%, the confidence of IPDU heterogeneous data integration is considerably higher. Generally
speaking, the larger volume of dataset is, the higher accuracy of data integration would be, and the
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confidence level of the results of heterogeneous data integration of distribution network will also show
an overall upward trend.

6. Summary

Aiming at the low utilization efficiency problem of heterogeneous data resources for intelligent
power distribution and utilization in the small sample environment, this paper proposed a so-called
GANs based heterogeneous data integration technology. In this proposed method, the sample space is
expanded by introducing GANs theory, according to the targeted samples with all of the measurement
indexes complete. Then, a novel peak clustering model is constructed to realize the finite open
coverage of the expanded sample space, and repair those incomplete samples. At last, the repaired
samples are checked by using well-trained discriminator of GANs. Generally speaking, according
to creative establishment the finite open coverage of targeted sample space, this paper succeeded
in combining of GANs learning and clustering theory, and provided a novel heterogeneous data
integration, which cannot be realized by any individual theory alone.

It is worth noting that, as an important part of this work, generative adversarial network
models’ convergence has not been perfectly proved in theory by any experts and scholars yet, and its
convergence rate still needs further improvement. In the next stage of our team’s works, we would like
to study on the improved convergence schemes of GANs for vector data samples, and the distributed
learning schemes of GANs with heterogeneous hardware.

Author Contributions: Yuanpeng Tan and Xiaojing Bai developed the theory and carried out the experiment.
Yuanpeng Tan wrote the manuscript with support from Wei Liu and Jian Su.

Conflicts of Interest: There are no conflicts of interest.

Appendix A

Table A1. Comparison detail information of four algorithms on UCI datasets.

Algorithm Dataset
Accuracy/%

1 2 3 4 5 6 7 8 9 10

k-NN
Abalone 42.87 42.87 42.87 42.87 42.87 42.87 42.87 42.87 42.87 42.87

Heart Disease 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
Bank Marketing 60.02 60.02 60.02 60.02 60.02 60.02 60.02 60.02 60.02 60.02

Peak
Clustering

Abalone 59.28 60.12 61.08 58.32 61.08 58.20 56.53 58.20 57.60 59.28
Heart Disease 43.33 39.93 43.33 48.33 43.33 41.67 41.67 41.67 44.88 44.88

Bank Marketing 69.54 67.63 69.48 70.02 69.48 63.64 67.96 63.64 67.41 69.59

BP
Abalone 60.72 60.00 67.78 63.83 67.78 59.40 63.95 59.40 55.33 68.86

Heart Disease 28.33 34.98 36.67 65.02 36.67 60.07 63.33 60.07 43.33 65.02
Bank Marketing 66.47 59.32 67.72 67.49 67.72 60.01 61.81 60.01 67.74 59.80

GANs-HDI
Abalone 92.22 91.26 94.01 95.21 94.01 96.05 95.21 96.05 93.65 94.49

Heart Disease 68.33 66.67 66.67 71.67 66.67 71.67 68.33 71.67 69.97 68.33
Bank Marketing 89.69 89.66 89.79 89.77 89.79 89.96 89.59 89.96 89.71 90.65
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Appendix B

Table A2. Original data of typical samples.

Index Unit
Sample No.

Index Unit
Sample No.

1 2 3 4 1 2 3 4

User number of public users / 66 74 8053 18,782 Transformer number of public users / 66 74 8062 18869
Transformer capacity of public users kVA 63,626 45,600 843,967 1,454,859 User number of specialized users / 359 1006 2409 6559

Transformer number of specialized users / 510 1147 2683 7202 Transformer capacity of specialized users kVA 461,078 632,421 842,045 1,241,475
Total number of transformers / 576 1221 10,745 26,071 Total capacity of transformers kVA 524,704 678,021 1,686,012 2,696,334

Total number of electricity users / 425 1080 10,462 25,341 Total capacity of electricity users kVA 524,704 678,021 1,688,102 2,717,469
Length of power cable line km 117.01 89.53 212.06 103.98 Total length of power line km 270.83 473.35 6644.55 8789.97

Number of switching equipment / 150 206 400 4237 Average segment number km/per segment 2.48 2.33 9.66 7.17
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