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Supplementary Materials: Low-Dimensional
Reconciliation for Continuous-Variable Quantum
Key Distribution

Laszlo Gyongyosi and Sandor Imre
S.1. Preliminaries

5.1.1. Spherical Code

A d-dimensional spherical code X is defined over the d-dimensional unit sphere T'"!, given
by ré-t = (:v = (:L"O,xl,...,:vdil) e R? ||:17|| = 1) , and ||x|| =1 1is the wunit norm. The

(d—l)—dimensional surface S(Fd‘l) of T% ! is defined as S(Fd‘l) = 27rd/2/g(d/2), where
g(d/ 2) = fo > t<d/ 2>7le’tdt is the gamma function [24]. The number of codewords of the code is
|x

, the smallest dimension d_;, of any Euclidean space for the spherical code X is

d

min

r=y, is D= min{"x - y||2}

:dim|)(

, while the minimum distance between any two elements z and y of X C ré-t,

S.1.2. Gaussian Random Spherical Vectors

Let X = (XO,...,X d—1 )T € R? be a Gaussian random vector with independent components,
and with norm ||% " drawn from an N(O, 02) memoryless Gaussian source. Over the
d-dimensional unit sphere I'"!, spherical Gaussian random vector E[".’{"](}I/ ||.’£||) ertenRr!

has radius r = E".’{ , defined [24] as

, where E isthe mean of the norm " X
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where ﬁ(:c,y) = %i(yy)), is the beta function, while E["%"?} = do?. The Gaussian random

vector X € R? over I has a probability density function
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and variance

var[}:] = do? — 210’

#[41] ®)

For d — oo, ]E“%/\/daQ “ 1, and 7= lim “36/\/d02 “ _,1. The distribution of r

d—o00

approximates the Dirac distribution D, (:c ) , and gets to arbitrary close for d — oo.

S.2. Notations

The notations of the manuscript are summarized in Table S1.
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Table S1. Summary of the notations.

Notation Description
The first mode of the combined beam, phase space vector,
|‘Pi> = | Ty, + wé,i + i(pA‘Z. + pé‘l. )> where xé‘i and Daio p1/3.z' are the position and
momentum quadratures.
The second mode of the combined beam, phase space vector,
! - ! . !/ /
|¢7> = |$A,¢ —Zp; + Z(pAJ — Pp; )> transmitted to Bob, where TypTp; and Da,>Pp,; are the
position and momentum quadratures.
) The noisy version of phase space state |¢,), with the noisy
| 1" I 1" ’
&) = — =5, + (ks — p5,)) Y

quadratures.

Alice’s N-unit length raw data generated by N random

quadrature measurements. Binary string, consists of N / d

X number of d-dimensional Gaussian random vectors
X; e R".
Bob’s N-unit length raw data generated by N random
quadrature measurements. Binary string, consists of N / d
X/

number of noisy d-dimensional Gaussian random vectors

X;eRd.

, Alice’s raw data unit, obtained from a random quadrature
X =1y, +ap,

X — , measurement, where A,wxz?,i and p A,i’pZIZ,i are the
i = Pai T Ppy

position and momentum quadratures.

Bob’s noisy raw data unit, obtained from a random
X = x;l 4+ xg . quadrature measurement and by a correction +2x, or
i K K 5t

[—— " . ’ 7 ’ 1" .
Xi = pa; + g, +2pp,;, while z,;, x5, and p,;,pp, arethe noisy

position and momentum quadratures.

Alice’s d-dimensional Gaussian random vector (d unit length

Xj e RY: {XJ’O,XJJ,...X% dil} Gaussian random vector), where X ;i is a Gaussian random
variable.
lez- e R, Xj/.j eR The i-th unit of j-th vector Xj and X;

Bob’s noisy d-dimensional Gaussian random vector (d unit

length vector), where X' =z’ . + 2!/ or
X/ c Rd . {X/ X/ X/ } ) ) J5t Ai + Bii
J : 700 gd—1 X! = "o . d . ined
ji = Pa; T Pp; is a Gaussian random units obtaine

from a quadrature measurement.

N/d
K:{U()’"'U(N/d)—l}ER / , , ) )
Bob’s secret key vector. The full key is granulated into IV / d
d
U, ={U,,U,,-.U, g, } €RY,

number of Uj e R? vectors.

U, ef{ab}er
X;U j € R Bob’s d-dimensional vector sent to the classical channel.
X ]/ 7_ Uj.j, cR A unit of Bob's d—dimensi;zﬂ :ellefssage sent to the classical
C () The Gaussian CDF function.
¢ () Covariance matrix.
D, () Dirac distribution of a d-dimensional vector.

iy Lyapunov coefficient, £ > 0.
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UJ/' = Zjl;;U]/7’
U/’[ = (C<X‘7/‘,z’)UJ.,f) .

The noisy version of Bob’s secret U i and its unit U i

' o(X,)
1—1
51/ 51,’7; Noise on U]/' = Z;:o U]’Z , and on unit Uj,i .
n = (og ) Standard deviation of the noise vector ¢ IE
7 ld

Standard Gaussian random noise vector, and the noise of the
i-th unit of the j-th block Xj i

Gaussian random noise vector of the quantum channel N,

on Xj.

The i-th unit of j-th noise vector, that results raw data unit
I
Xjo =X, + 4,

S.3. Abbreviations

AWGN Additive White Gaussian Noise
BAWGN Binary Additive White Gaussian Noise
BS Beam Splitter
BSC Binary Symmetric Channel
CDF Cumulative Distribution Function
CLT Central Limit Theorem
Ccv Continuous-Variable
DPR Differential Phase Reference
DV Discrete-Variable
LDPC Low Density Parity Check
PM Prepare-and-Measure: entanglement-free protocol
RR Reverse Reconciliation

SNR Signal-to-Noise Ratio




