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Abstract: We propose an efficient logical layer-based reconciliation method for continuous-variable
quantum key distribution (CVQKD) to extract binary information from correlated Gaussian variables.
We demonstrate that by operating on the raw-data level, the noise of the quantum channel can
be corrected in the low-dimensional (scalar) space, and the reconciliation can be extended to
arbitrary dimensions. The CVQKD systems allow an unconditionally secret communication over
standard telecommunication networks. To exploit the real potential of CVQKD a robust reconciliation
technique is needed. It is currently unavailable, which makes it impossible to reach the real
performance of the CVQKD protocols. The reconciliation is a post-processing step separated from
the transmission of quantum states, which is aimed to derive the secret key from the raw data.
The reconciliation process of correlated Gaussian variables is a complex problem that requires either
tomography in the physical layer that is intractable in a practical scenario, or high-cost calculations
in the multidimensional spherical space with strict dimensional limitations. To avoid these issues,
we define the low-dimensional reconciliation. We prove that the error probability of one-dimensional
reconciliation is zero in any practical CVQKD scenario, and provides unconditional security.
The results allow for significantly improving the currently available key rates and transmission
distances of CVQKD.

Keywords: continuous-variable quantum key distribution; quantum Shannon theory

1. Introduction

The QKD (Quantum Key Distribution) systems represent one of the most important practical
applications of quantum information theory [1–18]. The QKD schemes allow for establishing
an unconditionally secret communication between distant parties by exploiting the fundamental
attributes of quantum mechanics [19–53]. The QKD protocols can be classified into three main
classes [1–11,49–53]: DVQKD (Discrete-Variable), CVQKD (Continuous-Variable), and DPR-QKD
(Differential Phase Reference) systems. The firstly introduced QKD protocols were based on discrete
variables, such as photon polarization. Since the polarization of single photons cannot be encoded and
decoded efficiently because of the technological limitations of current physical devices, the CVQKD
systems were proposed. In a CVQKD system, the information is encoded on continuous variables
by a Gaussian modulation, such as in the position or momentum quadratures of coherent states.
In comparison to DVQKD, the modulation and decoding of continuous variables does not require
specialized devices and can be implemented efficiently by standard technologies that are available
and in widespread use. The CVQKD systems also provide higher secret key rates and higher
communication distances. The CVQKD protocols can be further classified into one-way and two-way
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systems. In a one-way CVQKD system, Alice, the sender transmits her continuous variables to the
receiver, Bob, over a quantum channel [9–11]. In a two-way system, Bob starts the communication,
Alice adds her internal secret to the received message, and this is then sent back to Bob (e.g., one mode
of the coupled beam that is outputted from a beamsplitter is transmitted back to Bob). The two-way
CVQKD systems were introduced for practical reasons to exceed the limitations of one-way CVQKD,
such as low key rates and short communication distances [1–8]. The two-way CVQKD protocols exploit
the benefits of multiple channel uses and allow for the leak of only lower valuable information to the
eavesdropper. On the other hand, the achievable distances of one-way CVQKD can be extended by
efficient channel-estimation methods [36], which is important since the one-way protocol currently is
still the focus of the research, owing to the easy experimental implementation.

The CVQKD schemes use continuous-variable Gaussian modulation, which provably provides
optimal key rates against collective attacks at finite-size block lengths [1–11] and also maximizes the
mutual information between Alice and Bob. The security of CVQKD has also been proven against
collective attacks in the asymptotic regime with infinite block sizes, and against arbitrary attacks
in the finite-size regime [9,13,38–40]. One of the most critical points in regard to CVQKD is the
post-processing [1–11,47]. The post-processing is aimed to correct the errors of the quantum channel
that are cumulated in the raw data. The raw data is a correlated binary bitstring at Alice’s and Bob’s side,
as generated by the random quadrature measurements at the parties. Each quadrature measurement
results in a unit in the raw data. The raw data itself is not a secret key; it consists only of the results of
the random quadrature measurements. The secret key is a uniformly distributed long binary string
that will be combined with the raw data elements, and will be added to the picture only in the stage of
logical layer manipulations. The logical layer-based post-processing phase uses purely classical tools:
precisely a classical-authenticated communication channel and classical error-correction algorithms.
This phase basically does the same in the logical layer as the tomography does in the physical layer,
and it consists of two main phases: the reconciliation procedure with several error-correction steps,
and privacy amplification.

The aim of reconciliation is to extract as much valuable information from the correlated raw
data as possible and to generate an error-free key between Alice and Bob. The privacy amplification
operates on the shared, error-corrected common secret to extract the final key between the parties,
and the aim of this phase is to reduce to zero the possible knowledge of an eavesdropper from the
elements of the key. The implementation of tomography in the physical layer is a complex problem,
and it is intractable in a practical scenario. But, well-characterized solutions can be proposed in
the logical layer for the same purpose of giving an analogous, and also more valuable, answer to
the reconciliation of correlated Gaussian variables than the physical-layer tomography ever could.
The theoretical background that makes the logical layer-based reconciliation possible also allow us
to view the noisy physical quantum channel as a binary Gaussian channel in the logical layer [9–11].
This has the immediate consequence that very efficient binary error-correction tools can be integrated
from the world of traditional communication theory into CVQKD—which would not be available for
the physical-layer tomography to extract binary information from the correlated Gaussian variables.

The raw data shared over the quantum channel is noisy, and this must be corrected to distill
the final secret key. Since a large amount of raw data bits have to be shared between the parties,
the complexity of the post-processing phase is a critical point in CVQKD protocols, and it has to be
in order to be as low as possible. The existing logical layer-based solutions require high-complexity
calculations in the high-dimensional spherical space for the reconciliation of Gaussian variables [9–11].
Since a complex reconciliation is so undesirable, the aim is to find a more efficient solution in
the logical layer. A slice method is a different reconciliation approach, which is also used in the
current reconciliation steps of CVQKD for short distances, and can be implemented without spherical
operations [41]. Basically, the error correction in the reconciliation phase consists of two phases:
First, the binary-channel codes (such as LDPC—Low Density Parity Check, turbo codes, polar codes,
etc. [22–35]) that are used for the transmission of the classical bits in the reconciliation phase are
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corrected. Second, the real Gaussian noise on the received raw-data vector must be corrected,
which noise arises from the effect of the quantum channel (i.e., from Eve’s optimal Gaussian attack,
which is considered in CVQKD protocols [1–11]). In this work, we focus on the second phase of
reconciliation, which has a crucial role in CVQKD, since this phase makes it possible to correct
the errors that are incurred on the quantum channel and to share an error-free key between Alice
and Bob. Since the raw data is formulated by continuous real numbers resulted from quadrature
measurements at the parties, the reconciliation problem is analogous to the well-known subject of
binary-channel coding that operates on binary-channel codes. It also follows that the complicated
and difficult to implement physical-layer tomography can be replaced in the logical level by binary
error-correction schemes that are easier to implement. According to a critical security requirement
of QKD, in the reconciliation phase, only uniform distribution can be transmitted over the classical
channel, otherwise the information theoretic security of the protocol cannot be proven [1–13]. The raw
data itself follows Gaussian random distribution because these arise from a Gaussian random source;
however, by applying some trivial operations on the raw data units, the desired uniform distribution
can be reached, and the reconciliation can be performed with unconditional security, as we will show
in detail in Section 3.

A relevant difference of DV and CV protocols is that the physical quantum channel that connects
the parties is characterized in a different way. For DVQKD the appropriate channel model is the Binary
Symmetric Channel (BSC), which allows the use of the well-known channel-coding and error-correction
tools in the post-processing phase. It also follows that for DVQKD there is a clear connection between
the characteristics of the quantum channel and the world of traditional communication theory. On the
other hand, for a CVQKD system the situation is more complicated, because the proper description of
a Gaussian quantum channel requires several physical parameters (transmittance, variance, shot noise,
excess noise, etc.) which allows no to draw a clear connection. To solve the situation for one-way
CVQKD, the multidimensional reconciliation schemes [9–12] have been introduced, which made
possible the conversion of the physical AWGN (Additive White Gaussian Noise) quantum channel
to a logical binary AWGN (BAWGN) channel, where the Gaussian random noise arises directly from
the quantum-level transmission. Precisely, it works only for low dimensions and the resulted logical
channel approximates only a binary Gaussian channel. As the accuracy of the physical-logical channel
conversion gets closer to perfect, the resulting logical channel gets closer to a binary Gaussian channel.
At low SNRs (Signal-to-Noise Ratio) the capacities of the Gaussian quantum channel and the binary
Gaussian channel coincidence, and this is particularly convenient because for low SNRs, the problem
of channel conversion can be reduced to the approximation of a binary Gaussian channel. From this
follows, that the efficiency of the channel conversion procedure can be described by the relevant
parameters of the resulting logical binary channel (such as its variance and capacity). This conversion
efficiency has tremendous importance because it also determines the efficiency of the reconciliation
process, i.e., the performance of the protocol. In the multidimensional reconciliation the conversion
procedure required the use of the spherical space and its sophisticated operations [9–11], which is
a complex process. The difficult computational steps of post-processing just cause further slowing
down in the very sensitive key rates that are so difficult to establish. These requirements of the
reconciliation phase are strongly undesired in a practical CVQKD scenario, so a simpler reconciliation
would be desirable—for both one- and two-way systems. The problem of efficient post-processing is
more crucial for two-way CVQKD, due to its more complex physical architecture.

To exploit the real potential of two-way CVQKD systems, efficient post-processing is needed.
It is still missing, which makes it not possible to attain the true performance of two-way CVQKD.
This is the main reason why the theoretical maximum of key rates and ranges cannot be exceeded
in the current practical scenarios; however, the protocol in its ‘hardware level’ is built to be strong,
and would be capable of more performance than is currently available. To boost up the performance of
the two-way CVQKD protocols over the current limits, we introduce an efficient reconciliation method
that makes it possible to increase the key rates and to extend the currently available distance ranges.
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The mathematical apparatus that stands behind the multidimensional reconciliation puts a strict upper
bound on the available dimensions, and limits its maximum [9–11,42]. The reason is that in higher
dimensions the required spherical division operations do not exist. In our scheme, we also eliminate
this serious drawback and extend the reconciliation of Gaussian variables to arbitrary high dimensions.
The proposed approach also makes possible to get a closer and more precise approximation of the
binary Gaussian channel, in comparison to the multidimensional case.

Since the post-processing phase uses the binary form of the continuous variables, in fact, we do
not have to decode the Gaussian variables in the multidimensional space. As a corollary, arbitrary
high-precision approximation of the logical binary Gaussian channel can be made in the non-spherical
space by using considerable dimensions. We exploit it in this work to construct a scalar reconciliation
that breaks with the traditions of the previously introduced approaches [9–11,42,46], and uses only
the space of scalar variables. The proposed scalar reconciliation is also able to transform the physical
Gaussian quantum channel into a logical binary Gaussian channel in two-way CVQKD, and the same
benefits can be exploited as in the case of multidimensional reconciliation. However since our scheme
is not limited to eight dimensions, an arbitrary precision can be reached in the approximation of the
logical binary Gaussian channel. As follows, the accuracy of the conversion between the physical
Gaussian quantum channel and the logical Gaussian channel can be improved beyond the current
limits. Another issue in the current approaches is the requirement of spherical calculations. To make
the existing post-processing approaches more efficient, we have to eliminate the multidimensional
operations. The reconciliation of Gaussian variables would be much easier, if we found a solution
that would make it possible to extract the final key from the noisy data by simple calculations in the
level of scalar space. It immediately follows that this would significantly increase the efficiency of the
reconciliation process, and would lead to a negligible complexity and computational power in the
error-correction procedure.

In this paper, we define low-dimensional (scalar) reconciliation for CVQKD. It brings significantly
higher noise-resistance and information-transmission capability, extended transmission distances,
and improved key rates.

The proposed method does the reconciliation of Gaussian variables without the need of any
physical-layer tomography or multidimensional operations. We demonstrate the results for two-way
CVQKD. The scheme is backward compatible it also can be applied to one-way CVQKD.

The novel contribution of our paper is as follows:

• The reconciliation process of correlated Gaussian variables is a complex problem that requires
either tomography in the physical layer that is intractable in a practical scenario, or high-cost
calculations in the multidimensional spherical space with strict dimensional limitations.

• To avoid these issues, we propose an efficient logical layer-based reconciliation method for
CVQKD to extract binary information from correlated Gaussian variables.

• We demonstrate that by operating on the raw-data level, the noise of the quantum channel
can be corrected in the low-dimensional scalar space and the reconciliation can be extended to
arbitrary dimensions.

• We prove that the error probability of scalar reconciliation is zero in any practical CVQKD scenario,
and provides unconditional security.

• The results allow to significantly improve the currently available key rates and transmission
distances of CVQKD.

This paper is organized as follows. In Section 2, preliminary findings are summarized. In Section 3,
we introduce the reconciliation scheme. Section 4 provides the theorems and proofs. In Section 5,
numerical evidence is proposed. Finally, in Section 6, we conclude the paper. Supplementary Materials
are also included, notations are summarized in Table S1.
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2. System Model

In comparison to one-way CVQKD protocols, in two-way CVQKD the two uses of the quantum
channel lead to superadditive private classical capacity (more precisely, the superadditivity of security
threshold leads to a subadditive eavesdropper [1–8,14]), which makes it possible to decrease the
amount of valuable information leaked to Eve. The subadditive eavesdropper is a consequence of
the multiple uses of the quantum channel. The superadditivity of the security threshold can also
be expressed in terms of tolerable excess noise and the channel transmission [1]. In the two-way
scenario, Eve perturbs the quantum channel N1, which causes a noise in the transmission that will
have an effect on the success of her second attack. From the two attacks, comparatively lower valuable
information will be available to Eve so that she would not have made an attack on N1. The reason
for this is that the amount of valuable information transmitted over N2 is already decreased by the
attack of N1. More attacks add more noise into the transmission, which also decreases the amount
of mutual information between Alice and Bob. With the increased number of channel uses we allow
Eve to get as much less valuable information as possible. If Alice encodes her information into the
noisy state that is received from N1, and then sends it back to Bob over N2, then the parties can
achieve the desired phenomenon of superadditivity [1–4]. The amount of valuable information leaked
to Eve is also decreased by the multiple uses of the quantum channel. The errors caused by more
channel uses can be corrected in the reconciliation phase by traditional error-correction tools. In fact,
by utilizing multiple channel uses, we ‘set a trap’ for Eve, since again and again she will attack the
quantum channel. Eve will also simultaneously decrease the amount of eavesdropped information
by her actions. The idea works well, because in the post-processing phase the parties can correct the
errors caused by Eve, thus, finally, it can be concluded that it was a correct decision to increase the
number of channel uses. Of course, if we had perfect amplifiers and ideal devices, then, in theory,
it would be possible to completely eliminate Eve from the picture in the asymptotic scenario to make
unnecessary the privacy amplification by allowing an infinite amount of channel uses to maximally
exploit the superadditivity property (more precisely, the superadditivity of the security-threshold
parameter hence the strong subadditivity of Eve). However, in practice it is trivially not possible to
circulate over and over the same beam an infinite amount of times, due to the losses and imperfections
of the physical devices.

Let us review the data components of the protocol that are needed for the appropriate description
of the scalar reconciliation for the two-way CVQKD protocol. Our description will be as detailed as
desired for further analysis, and will not take into account the particular description of any components
of an experimental protocol. The raw data is generated by the use of noisy Gaussian channels N1 and
N2, and by the parties’ internal secrets. The aim of the quantum-level transmission is to generate two
nearly identical classical bitstrings between the parties. All of the quantum-level interactions are closed
at this point, and the post-processing phase, which uses the raw data of the parties and a classical
authenticated channel, is brought to life. The post-processing phase consists of the processes of
reconciliation and privacy amplification. The valuable key will be generated in the reconciliation phase
by using the raw data and a random secret. It consists of error-correction phases as well. The privacy
amplification is geared toward performing security checks on the elements of the generated key, and it
is not part of our description. We will assume reverse reconciliation (RR), which is desirable since the
mutual information between Bob and Eve is provably lower than between Alice and Eve [1–7,9–14].
If Bob starts to run the reconciliation phase using his already noisy raw data, then only lower valuable
information can be leaked to Eve during the procedure in comparison to if Alice would have started to
run the reconciliation, from her ideal raw data (from the perspective of the raw data-level reconciliation,
the noise that arises from the first channel use has no relevance, as will be clarified later, and Alice’s
raw data can be viewed as ideal).

The run of the protocol is sketched as follows. Let us denote Alice’s binary raw data by X,
and Bob’s binary raw data by X′, where |X| = |X′| = N units. Alice’s raw data is generated by
a random quadrature measurement of M1. Alice’s selects two random variables x and p each drawn
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from a Gaussian distribution, which encodes her position and momentum quadratures and obtains
a phase space vector SAlice = |xA + ipA〉. Bob also draws a phase space vector SBob = |xB + ipB〉.
The noisy S′Bob is received by Alice in the first phase via channel N1 in the beam Bout. Alice’s raw data
is defined as follows:

X ≡ M1(Bout + SAlice) = N1(SBob) + SAlice. (1)

The outgoing beam Aout will contain the other mode of the coupled beam. Bob’s raw data is
generated by the M2 random quadrature measurement applied on the beam Aout, as:

X′ ≡ M2(Aout) = B′out + S′Alice = N2(N1(SBob)) +N2(SAlice), (2)

where Aout contains the noisy version of the second mode of the beam. A detailed description will be
given in Section 2.1.

A simplified view of a PM (Prepare-and-Measure: entanglement-free) two-way CVQKD protocol
with homodyne measurements M1, M2 at the parties and with RR is shown in Figure 1. Alice and
Bob are connected by a noisy quantum channel and a classical authenticated channel. The quantum
communication is started by Bob. Alice receives Bob’s quantum message and then couples it with
her quantum message using a BS (Beam Splitter) to create a correlated signal. The first mode of the
beam is measured by Alice, using a random quadrature measurement; the second mode is sent back
to Bob, who will also apply a random quadrature measurement on the received beam. After the
measurements have been performed, the parties inform each other about the used position and
momentum quadratures over the classical channel, and discard the irrelevant data. The resulted raw
data is a collection of correlated Gaussian variables. Since these binary strings follow Gaussian random
distribution, they cannot be transmitted directly over the classical channel. In reverse reconciliation,
Bob has to make the probability distribution of his raw data to uniform. He can do this by applying
an appropriate function C(·) (will be clarified in Section 3) on his j-th raw data block, as denoted
by X′ j. Bob then generates a random key Uj (the full key vector K is granulated into several Uj-s),
and multiplies it with his raw data C

(
X′ j
)
. Alice receives C

(
X′ j
)
Uj, and using her C

(
Xj
)
, she computes

the noisy U′ j. Next, the errors of the secret key that arise from the noise of the quantum channel will
be corrected. This phase is modeled by the scalar reconciliation box at Alice’s side. The aim of the
scalar reconciliation is to share an error-free key K between Alice and Bob. From Alice, it requires the
correction of the noise on U′ j to get back Bob’s Uj, using only scalar operations without the need of the
multidimensional spherical space.
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Figure 1. The simplified view of a Prepare-and-Measure (PM)-reverse reconciliation (RR) two-way
continuous-variable quantum key distribution (CVQKD) protocol with the scalar reconciliation.
The modulated Gaussian variables are sent through a Gaussian quantum channel (AWGN) depicted by
N1 andN2 (same physical link). The classical channel is depicted by the dashed line. Bob sends SBob to
Alice over N1. Alice adds to it her secret SAlice by a BS, and applies measurement M1, which defines
her raw data X = M1(N1(SBob) + SAlice). The other mode is sent back to Bob over N2, who applies
M2, which results in his X′ = M2(N2(N1(SBob) + SAlice)).
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2.1. Physical Coding

In the following description we give a considerable view of the coding of two-way CVQKD,
focusing on the contributions of information theory. Let us denote the quadratures of the i-th signal
SAlice,i in the phase space SA by xA,i, pA,i, and the quadratures of Bob’s signal SBob,i in the phase
space SB by xB,i, pB,i, where xA,i, pA,i ∈ N

(
0, σ2

ω

)
and xB,i, pB,i ∈ N

(
0, σ2

ω

)
are drawn from a Gaussian

random distribution with mean µ = 0, and variance σ2
ω, where σ2

ω is the modulation variance [1–10].
The coherent states SAlice,i = |xA,i + ipA,i〉 ∈ SA and SBob,i = |xB,i + ipB,i〉 ∈ SB are encoded

by Gaussian modulation with dedicated centers (xA,i, pA,i) ∈ SA and (xB,i, pB,i) ∈ SB, respectively

(Note: Each Si define a zero-mean, circular symmetric complex Gaussian random variable CN
(

0, σ2
Si

)
with variance σ2

Si
= E

[
|Si|2

]
in the phase space S, with i.i.d. real and imaginary components xi, pi ∈

N
(
0, σ2

ω

)
, thus σ2

Si
= 2σ2

ω. The squared magnitude |Si|2 is exponentially distributed with density

f
(
|Si|2

)
= 1

/
σ2

Si
exp

(
−|Si|2

/
σ2

Si

)
, |Si|2 ≥ 0. The two beams are correlated at Alice’s BS, which

results in a combined signal in the combined phase space SA×B. The modulation noise ∂ ∈ CN
(
0, σ2

∂

)
,

is precisely centered around (xA,i + xB,i, pA,i + pB,i) ∈ SA×B and (xA,i − xB,i, pA,i − pB,i) ∈ SA×B in
SA×B. After the two beams SAlice,i and S′Bob,i are correlated at a BS at Alice’s side, where S′Bob,i is the
noisy version of SBob,i, Alice applies a random quadrature measurement M1 on the first mode of the
beam, while the second mode is transmitted back to Bob over quantum channelN2. Alice’s state in the
combined phase space SA×B is as follows:

|ϕi〉 =
∣∣∣xA,i + x′B,i + i

(
pA,i + p′B,i

)〉
∈ CN

(
0, σ2

ϕi

)
∈ SA×B, (3)

with Gaussian random quadrature components N
(

0, 2σ2
ω + σ2

N1

)
, where 2σ2

ω is the cumulated

modulation variance, σ2
N1

is the variance of N1, x′B,i, p′B,i are Bob’s noisy quadratures modified

by N1, while σ2
ϕi

= E
[
|ϕi|2

]
. Assuming a homodyne measurement M1, Alice gets an Xi unit of her

raw data, which is a binary string. If she measured in the position quadrature basis she obtains:

Xi = xA,i + x′B,i, (4)

or, if she used the momentum quadrature basis she gets

Xi = pA,i + p′B,i. (5)

The second mode of the combined signal in SA×B is transmitted directly back to Bob over the
noisy channel N2, given as:

|φi〉 =
∣∣∣xA,i − x′B,i + i

(
pA,i − p′B,i

)〉
∈ CN

(
0, σ2

φi

)
∈ SA×B, (6)

with N
(

0, 2σ2
ω + σ2

N1

)
Gaussian random quadratures, and σ2

φi
= E

[
|φi|2

]
. The Gaussian noise of

the quantum channel N2 defines a noise vector ∆i ∈ CN
(

0, σ2
∆i

)
∈ SA×B, with noise components

∆xi ∈ N
(

0, σ2
N2

)
, ∆pi ∈ CN

(
0, σ2
N2

)
, which results in the noisy state |ξi〉 ∈ SA×B as follows:

|ξi〉 = |φi〉+ ∆i =
∣∣∣x′A,i − x′′ B,i + i

(
p′A,i − p′′ B,i

)〉
∈ CN

(
0, σ2

ξi

)
∈ SA×B, (7)

withN
(

0, 2σ2
ω + σ2

N1
+ σ2
N2

)
distributed Gaussian random quadratures, and σ2

ξi
= E

[
|ξi|2

]
, where x′A,i,

p′A,i are Alice’s noisy quadratures modified by N2, while x′′ B,i, p′′ B,i are Bob’s noisy quadratures
modified by N2.
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In the next phase, Bob applies a random quadrature measurement M2 (assumed to be homodyne)
and gets block Yi. If he used a position quadrature basis, he gets

Y′ i = x′A,i − x′′ B,i, (8)

and for the momentum quadrature basis he obtains:

Y′ i = p′A,i − p′′ B,i. (9)

Bob, calibrating his resulted block Yi
′ by 2x′′ B,i or 2p′′ B,i (depending on the used quadrature

measurement), gets back the noisy version X′ i of Alice’s raw data unit Xi as:

Xi
′ = Y′ i + 2x′′ B,i = x′A,i − x′′ B,i + 2x′′ B,i = x′A,i + x′′ B,i (10)

and
Xi
′ = Y′ i + 2p′′ B,i = p′A,i − p′′ B,i + 2p′′ B,i = p′A,i + p′′ B,i. (11)

which is referred as Bob’s raw data unit. The nature of the of error of the quantum channel will
be characterized in detail in Section 4, however, at this point, we can surmise that the noise of the
quantum channel is analogous to the addition of a non-standard Gaussian random noise vector ∆i to
Alice’s raw data block Xi.

Alice’s and Bob’s modes in the combined phase space SA×B right after being outputted from the
BS are |ϕi〉 and |φi〉, as shown in Figure 2. Alice obtains the first mode of the beam, |ϕi〉, the second
mode |φi〉 is sent back to Bob. The noise that exists in SA×B arises from the modulation noise ∂ ∈
CN
(
0, σ2

∂

)
(already included in the quadrature distributions) and the two channel uses, N1 and

N2. The measurements performed on |ϕi〉 and |ξi〉 result in raw data units Xi ∈ N
(
0, σ2

X
)

and Xi
′ ∈

N
(
0, σ2

X′
)
. The noise of the first channel changes the Gaussian random distribution of the quadratures

from N
(
0, 2σ2

ω

)
to N

(
0, 2σ2

ω + σ2
N1

)
in the combined phase space SA×B, with mean µ = 0, and results X

raw data level variance σ2
X =

(
2σ2

ω + σ2
N1

)
, and where noise variance σ2

N1
arises from the first channel

use. The quadratures of the second mode of the coupled beam are also characterized by the same
variance, i.e., |φi〉 ∈ CN

(
0, σ2

φi

)
. The noise of N2 transforms |φi〉 ∈ SA×B into |ξi〉 ∈ SA×B and further

modifies the distribution, so finally Bob’s received quadratures will follow a Gaussian distribution
N
(

0, 2σ2
ω + σ2

N1
+ σ2
N2

)
. The X′ raw data level variance is evaluated as σ2

X′ =
(

2σ2
ω + σ2

N1
+ σ2
N2

)
,

which, in fact, arises from the cumulated Gaussian random noise of N1 and N2.
One can recognize that on the raw data level, only the difference of the variance of Alice’s and

Bob’s raw data σ2
X and σ2

X′ has relevance and σ2
N1

vanishes from the picture. This difference is, indeed,
σ2
N2

. In the level of raw data manipulations Alice’s Xi will serve as a reference unit to correct Bob’s noisy
unit, X′ i. In other words, the first channel use will have no relevance in the raw data-level calculations,
hence the noise of N1 can be excluded from the error-correction process. Precisely, the use of N1 has
only one consequence: it increases the initial variance 2σ2

ω by σ2
N1

, which finally results in N
(
0, σ2

X
)

on the level of raw data blocks. In particular, only N2 will have significance, and, in fact, only the
noise of the second channel use has to be corrected in the reconciliation phase. (Note: Throughout the
manuscript, the noise will be modeled on the quadrature-level via a real vector).

In the reconciliation phase, our task is to share an error-free secret key between the parties.
This requires the raw data-level error-correction of the noise that arises from the quantum-level
transmission. First, we review the background of the multidimensional reconciliation, and then we
introduce our solution.
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The noise ∆i ∈ N
(

0, σ2
N2

)
of quantum channel N2 distorts the distribution of the quadratures

from N
(

0, 2σ2
ω + σ2

N1

)
into N

(
0, 2σ2

ω + σ2
N1

+ σ2
N2

)
. Alice’s raw data variance is σ2

X =
(

2σ2
ω + σ2

N1

)
,

while Bob’s raw data variance is σ2
X′ =

(
2σ2

ω + σ2
N1

+ σ2
N2

)
.

2.2. Uniform Distribution in the Spherical Space

In this section we review the background of the multidimensional approaches, and the properties
of Gaussian random vectors in the spherical space. The multidimensional reconciliation processes
for CVQKD were not implementable without the use of spherical codes and a high-dimensional
spherical space.

First, let us clarify how a d-dimensional Gaussian random vector is formulated in the framework of
a two-way CVQKD protocol. The outcoming beam from Alice (and Bob) can be regarded as a collection
of Gaussian random variables. A standard Gaussian random variable g ∈ N(0, 1) ∈ R is a real variable
selected from a Gaussian distribution. A standard Gaussian variable g ∈ N(0, 1) has probability
density function [15,18]:

f (g) =
1√
2π

e
−g2

2 . (12)

A non-standard Gaussian random variable g∗ ∈ N
(
µ, σ2) ∈ R with nonzero mean µ 6= 0,

and variance σ2, can be expressed from g ∈ N(0, 1) as g∗ = gσ + µ. A non-standard Gaussian random
variable g∗ has probability density function:

f (g∗) =
1√

2πσ2
e
−(g∗−µ)2

2σ2 . (13)

In Alice’s raw data, a d-dimensional Gaussian vector

Xj =
(

Xj,0, . . . , Xj,d−1

)T
∈ N

(
0, σ2

X

)
d
∈ Rd (14)

is a collection of d independent Gaussian random variables Xj,0, . . . , Xj,d−1, where each Xj,i is a real
variable R drawn from a Gaussian random distribution N

(
0, σ2

X
)
. Alice’s Gaussian vector is referred

by Xj ∈ N
(
0, σ2

X
)

d ∈ Rd, and its noisy version at Bob’s side is denoted by X′ j ∈ N
(
0, σ2

X′
)

d ∈ Rd.
The values of Bob’s units are affected by the Gaussian noise that arises from the quantum channel.
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First, let us evaluate why the normalized vector structure has importance in the multidimensional
scenario. The normalized d-dimensional Gaussian vectors change the probability distribution from
Gaussian random to uniform on the d-dimensional unit sphere, Γd−1. It has a relevance, since only
uniform distribution is allowed in the reconciliation phase. The result clearly follows from the Rayleigh
law [18], the application of Stirling’s formula [19], Gersho’s conjecture [22], and Sakrison’s result [23],
which are connected to the contributions of spherical coding [24].

We formulate d-length blocks X′ j =
(

X′ j,0, . . . , X′ j,d−1

)T
∈ N

(
0, σ2

X′
)

d ∈ Rd, where X′ j,i ∈
N
(
0, σ2

X′
)
∈ R, for i ∈ [d]. The d-length Gaussian random vector X′ j has norm ‖X′ j‖, mean

E
[
‖X′ j‖

]
= σX′

√
d− 1

2
(15)

and variance

var
[
‖X′ j‖

]
≤

σ2
X′

2
. (16)

We step further from this point. Since the variance of X′ j is not unit, the covariance matrix C
(
X′ j
)

is not equal to identity, but the random units X′ j,i are uncorrelated, so C
(
X′ j
)

is diagonal.

The normalized vector X′ j j

/√
dσ2

X′ with norm ‖X′ j
/√

dσ2
X′ ‖, can be identified on the unit

sphere Γd−1 [18,24], with radius r = ‖X′ j
/√

dσ2
X′ ‖. The mean of ‖X′ j‖

/√
dσ2

X′ is

E
[
‖X′ j‖

/√
dσ2

X′

]
= σX′

√
d− 1

2

/√
dσ2

X′ . (17)

The vector X′ j
/√

dσ2
X′ on the unit sphere Γd−1 is identified as

X′ j

/√
dσ2

X′ = r
X′ j
‖X′ j‖

=
‖X′ j

/√
dσ2

X′ r‖X
′
j

‖X′ j‖
. (18)

Precisely, the normalized quantity ‖X′ j‖
/√

dσ2
X′ has variance var

[
‖X′ j‖

/√
dσ2

X′

]
≤ σ2

X′
2

/
dσ2

X′ .

From the spherical symmetry, it follows that if d→ ∞, the normalized random vector X′ j
/√

dσ2
X′

will be equipped with uniform distribution on Γd−1. The background of this phenomenon is as follows.

First, for d→ ∞, the mean E[·] of the normalized quantity ‖X′ j‖
/√

dσ2
X′ will tend to one, i.e.,

lim
d→∞

E

 ‖X′ j‖√
dσ2

X′

 = lim
d→∞

σX′

√
d− 1

2√
dσ2

X′

= 1. (19)

Second, the variance var[·] of ‖X′ j‖
/√

dσ2
X′ will tend to zero,

lim
d→∞

var

 ‖X′ j‖√
dσ2

X′

 = lim
d→∞

1
2 σ2

X′

dσ2
X′

= 0. (20)

These imply that for d → ∞, the normalized Gaussian random vector X′ j
/√

dσ2
X′ becomes

uniformly distributed on the unit sphere Γd−1. Third, as the dimension increases the distribution of the

norm of X′ j
/√

dσ2
X′ (i.e., the radius on Γd−1) will approximate the Dirac distribution D(d) [9–11,18],
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and it will also converge to one, r = lim
d→∞
‖X′ j

/√
dσ2

X′ ‖ = 1. The unit norms of X′ j
/√

dσ2
X′ play

exactly the role of unit fading-coefficients for a logical binary Gaussian channel, since during the

transmissions of the messages generated from X′ j
/√

dσ2
X′ the unit norms r = ‖X′ j

/√
dσ2

X′ ‖ = 1 are
also transmitted [11,21].

To be more exact, the unit norms are only approximated and the distribution of the unit norms
also depends on d, and as d→ ∞, it precisely can be described by the Dirac distribution

Dd(x) =
(

1
/

a
√

π
)
e− (x−r)2

/
a2

, (21)

where a = 1
/√

d and

r = lim
d→∞

‖X′ j‖√
dσ2

X′

= 1. (22)

From Dd(x) it immediately follows, that the unit norms of the normalized random Gaussian
vectors gets closer to 1, as d goes to infinity [18]. As follows from these, for low values of d the uniform

distribution of X′ j
/√

dσ2
X′ cannot be achieved.

In comparison to the multidimensional reconciliation, where the required mathematical operations
(the spherical division operator at Alice’s side) exist only in d = 1, 2, 4, or 8 dimensions [9–11,18],
the scalar reconciliation process are also existent for arbitrary high dimensions, which makes possible
to give a more closer approximation, however it will not refer to the Dirac distribution. Analyzing
the situation if the noisy raw data follows Gaussian random distribution with σ2

X′ > 1, the speed

of convergence of the mean E
[

X′ j
/√

dσ2
X′

]
and variance var

[
X′ j
/√

dσ2
X′

]
will be lower for any d,

in comparison if σ2
X′ = 1 would have hold.

For σ2
X′ = 1, the situation for various dimensions of X′ j is summarized in Figure 3.
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X′ ‖ of the normalized Gaussian random vector X′ j

/√
dσ2

X′ . Vector X′ j is formulated from d

number of X′ j,i elements of Bob’s noisy raw data X′. The approximation of the logical binary Gaussian
gets more precise as the norm approaches to one, which requires the use of higher dimensions.

As we have mentioned, the multidimensional approaches are limited in the dimension, specifically,
d = 8 in [9–11]. In this case, the Gaussian random vectors form the so-called octonions [20]. In the level
of Gaussian random raw data, an octonion Oj ∈ R8 is built up from eight units Xj,0...j,7 ∈ N

(
0, σ2

X
)
, as:

Oj = Xj,0Re + Xj,1Im1 + . . . + Xj,7Im7, (23)
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where Re ∈ R stands for the real part, while Imi ∈ C, for i = 1, i ≤ 7 identifies the i-th imaginary units,
respectively. Bob’s noisy O′ j is O′ j = X′ j,0Re + X′ j,1Im1 + . . . + X′ j,7Im7, where X′ j,0...7 ∈ N

(
0, σ2

X′
)
.

In the multidimensional case the uniformity of the d-dimensional Gaussian random raw data vectors
Xj ∈ Rd, d ≤ 8, can be achieved only in the multidimensional spherical space, over the unit sphere
Γd−1. The process requires complex operations and transformations [9–11] that are so undesirable in
a practical CVQKD scenario. In comparison to these approaches, our proposed scalar reconciliation
uses only simple scalar operations on the raw data, which makes it possible to eliminate the spherical
calculations from the reconciliation phase.

3. Low-Dimensional Reconciliation

We start our description from the point at which the quantum states are completely transmitted
through the quantum channel from Alice to Bob. At this point, all of the interactions with the quantum
channel are closed, and the post-processing phase is being started. First, Alice and Bob exclude from
the raw data those measurements that have been performed in different quadratures that result in
the N-unit length raw data vectors. Then, formulate N

/
d number of d-dimensional vectors Xj ∈ Rd,

X′ j ∈ Rd. These quantities are introduced as follows.

3.1. Notations

Let X ∈ RN and X′ ∈ RN the N-unit length raw data of Alice and Bob. The d-dimensional vectors
Xj ∈ Rd and X′ j ∈ Rd, for j = 0, j ≤

(
N
/

d
)
− 1, of Alice and Bob are defined as:

Xj =
(

Xj,0, . . . , Xj,d−1

)T
∈ N

(
0, σ2

X

)
d

(24)

and
X′ j =

(
X′ j,0, . . . , X′ j,d−1

)T
∈ N

(
0, σ2

X′

)
d
, (25)

where
Xj,i ∈ N

(
0, σ2

X

)
∈ R (26)

and
X′ j,i ∈ N

(
0, σ2

X′

)
∈ R (27)

refer to the i-th unit of the j-th vector, respectively. Alice and Bob have to share a common secret by
using their correlated raw data. For this purpose, they establish a proper code-alphabet A = {a, b},
where a ∈ R and b ∈ R are two public variables (i.e., Eve also has access to it). In the reverse
reconciliation, these will be selected uniformly at random in the form of several Uj ∈ {a, b}-s at Bob’s
side, with Pr(a) = Pr(b) = 0.5.

A secret d-dimensional key vector Uj is drawn from a uniform distribution U and built up from d
units, Uj,i ∈ R, as:

Uj ∈ Rd :
(

Uj,0, . . . , Uj,d−1

)T
, for j = 0, j ≤

(
N
/

d
)
− 1. (28)

The d units Uj,i ∈ U of Uj are uniform random variables, and define Uj ∈ R as follows:

Uj = ∑d−1
i=0 Uj,i ∈ U . (29)

The noisy version of (29), U′ j, is defined as

U′ j = ∑d−1
i=0 U′ j,i. (30)
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From (29) follows, that (28) can be rewritten as Uj ∈ {A, B} ∈ Rd, with vectors A, B as:

A :
(

aj,0, . . . , aj,d−1

)T
,
{
∑d−1

i=0 aj,i = a
}

, B :
(

bj,0, . . . , bj,d−1

)T
,
{
∑d−1

i=0 bj,i = b
}

. (31)

As follows, Bob granulates the selected a or b into d number of uniformly random variables Uj,i,
so that the sum of the units will be equal to the selected value.

The full key K is built up as:

K ∈ RN/d :
(

U0, . . . , U( N/d )−1

)T
. (32)

Alice and Bob first agree on d. Bob then sends the d blocks of

C
(
X′ j
)
Uj =

(
C
(
X′ j,0

)
Uj,0, . . . , C

(
X′ j,d−1

)
Uj,d−1

)T
∈ Rd, (33)

for j = 0, j ≤ (N/d)− 1, over a classical channel. The scalar quantities C
(
Xj
)
, C
(
X′ j
)
, and C

(
X′ j
)
Uj

are evaluated as
C
(
Xj
)

= ∑d−1
i=0 C

(
Xj,i
)
∈ R, C

(
X′ j
)

= ∑d−1
i=0 C

(
X′ j,i

)
∈ R, (34)

and
C
(
X′ j
)
Uj = ∑d−1

i=0 C
(
X′ j,i

)
Uj,i ∈ R, (35)

respectively.
Alice receives the d noisy U′ j,i units, and by the addition of the d units, and via the application of

C
(
Xj
)

she computes U′ j as

U′ j = ∑d−1
i=0 U′ j,i = C

(
X′ j
)
Uj

1
C(Xj)

=
(

∑d−1
i=0 C(X′ j,i)

/
∑d−1

i=0 C(Xj,i)
)

∑d−1
i=0 Uj,i .

(36)

Thus, Alice has to make an error-correction to remove the noise from U′ j to get achieve Uj.

3.2. Achieving the Uniform Distribution

In comparison to the multidimensional reconciliation, the scalar reconciliation uses a fundamentally
different solution to achieve the uniform distribution of the raw data. While the former is based on
sophisticated multidimensional spherical operations, our solution requires only the use of a simple
function in the scalar space. In our scheme, the uniform distribution of the correlated raw data units
is achieved by the Gaussian Cumulative Distribution Function (CDF) [26,43–45]. Another important
difference is that the approximation of the logical binary Gaussian channel can be achieved by arbitrary
dimension with arbitrary accuracy, which is justified by the Central Limit Theorem (CLT) [26,43–45].

3.2.1. Gaussian Cumulative Distribution Function

On Alice’s and Bob’s side, the Gaussian CDF function can be used to reach the uniform distribution
of the correlated raw data. Since we assumed reverse reconciliation, let us to start the description
from Bob’s perspective. Let Bob’s raw data unit X′ j,i with Gaussian random distribution N

(
0, σ2

X′
)
.

The Gaussian CDF-transformation C(·) : R→ R for a unit X′ j,i is as follows:

C
(
X′ j,i

)
=

1
2

1 + er f

 X′ j,i√
2σ2

X′

, for i ∈ [d], (37)
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where

er f

 X′ j,i√
2σ2

X′

 =
2√
π

∫ X′ j,i
/√

2σ2
X′

0
e−t2

dt (38)

is the Gauss error function, and C
(
X′ j,i

)
∈ R is a real variable from the range of [0, 1], with U

uniform distribution (for a plausible example Section 5). The quantity C
(
X′ j,i

)
will be referred as the

CDF-transformed unit.
Alice also applies the CDF transformation, and takes into account her raw data variance σ2

X for
the units of Xj,i to get C

(
Xj,i
)
:

C
(
Xj,i
)

=
1
2

1 + er f

 Xj,i√
2σ2

X

, for i ∈ [d], (39)

and the result of (37) and (39) is the correlated uniform raw data C
(
Xj,i
)
≈ C

(
X′ j,i

)
. In the reconciliation

process, only Alice can correct U′ j into Uj, because nobody knows the CDF-transformed raw data
units C

(
Xj,i
)
, except Alice.

For a given Xj ∈ Rd, the CDF function C(·) : R→ R reads as

C
(
Xj
)

= C
(
Xj,0

)
, . . . , C

(
Xj,d−1

)
=

1
2

(
1 + er f

( Xj,i√
2σ2

))
∈ R, for i ∈ [d], (40)

Applying the results for Bob’s raw data the CDF-transformed vector is:

C
(
X′ j
)

= C
(
X′ j,0

)
, . . . , C

(
X′ j,d−1

)
=

1
2

(
1 + er f

(
X′ j,i√

2σ2

))
∈ R, for i ∈ [d]. (41)

The CDF-transformed C
(
Xj
)
, C
(
X′ j
)

raw data vectors each consist of d real R variables as:

C
(
Xj
)

=
(

C
(
Xj,0

)
, . . . , C

(
Xj,d−1

))T
, C
(
X′ j
)

=
(

C
(
X′ j,0

)
, . . . , C

(
X′ j,d−1

))T
. (42)

3.2.2. Central Limit Theorem

In the multidimensional case, the precision of the approximation of the logical binary Gaussian
channel (i.e., the quality of the physical-logical channel conversion) was quantified by the Dirac
distribution [9–11]. Since in the scalar reconciliation the spherical space is eliminated, a different
solution was needed to analyze the accuracy of the conversion between the physical-logical
Gaussian channels. Our answer for the problem is the Central Limit Theorem [26,43–45] and
a mathematical result from the 19th century—the so-called Lyapunov-condition [26,45]. The accuracy
of the physical-logical conversion of scalar reconciliation can be maximized, and it can be made in
arbitrary high dimensions, as it is being stated in Lemma 1.

Lemma 1. The noise variance of the converted logical binary Gaussian channel asymptotically coincidences
with the noise variance of the physical quantum channel, which allows to reach the theoretical maximum of the
capacity of the converted logical binary channel.

Proof. Let Xj,i ∈ R and X′ j,i ∈ R the j-th units of Alice’s and Bob’s raw data, respectively.

For a d-dimensional vector Uj =
(

U′ j,0, . . . , U′ j,d−1

)T
, the sum of the independent noise{

δj,0, . . . , δj,d−1

}
units on the secret noisy key units U′ j,i = Uj,i + δj,i will approximate a zero-mean
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Gaussian random variable with mean E
[
δj,i
]

= µδj,i = 0, noise variance var
[
δj,i
]

= σ2
δj,i

(see Sections 3.1
and 3.3 for a detailed derivation) as follows:

CLT : 1√
∑d−1

i=0 σ2
δj,i

δj = 1√
∑d−1

i=0 σ2
δj,i

(
∑d−1

i=0 δj,i

)
→ N(0, 1)d

δj =
(

∑d−1
i=0 δj,i

)
→ N

(
0, ∑d−1

i=0 σ2
δj,i

)
= N

(
0, σ2

δj,i

)
d
.

(43)

To show that (43) holds for the d-dimensional noise parameter δj, we exploit the
Lyapunov-condition [26]. Applying the standard mathematical description of the Lyapunov
condition [45], let L > 0, then

lim
d→∞

1(√
∑d−1

i=0 σ2
δj,i

)2+L∑d−1
i=0 E

[∣∣δj,i
∣∣2+L

]
= 0 (44)

is satisfied for any d→ ∞, by theory. As follows, the noise on Uj ∈ Rd will converge to

δj =
(
∑d−1

i=0 δj,i

)
∈ N

(
0, σ2

δj

)
d
, (45)

and the resulting logical channel will be equivalent to a logical binary Gaussian channel with noise
variance σ2

δj
. By the same argumentation, the variance of the resulting logical binary Gaussian channel

will converge to the variance of the physical Gaussian quantum channel σ2
N2

for N → ∞.
Let again L > 0, and d is an appropriate dimension for which (44) is satisfied, and let the expected

variance of δj is var
[
δj
]

= σ2
N2

. Then

lim
N→∞

1(√
∑

( N/d )−1
j=0 σ2

N2

)2+L∑( N/d )−1
j=0 E

[∣∣δj
∣∣2+L

]
= 0, (46)

is satisfied by theory, from which

CLT : 1√
∑

( N/d )−1
j=0 σ2

N2

(
∑

( N/d )−1
j=0 δj

)
→ N(0, 1) N/d(

∑
( N/d )−1
j=0 δj

)
→ N

(
0, ∑

( N/d )−1
j=0 σ2

N2

)
= N

(
0, σ2
N2

)
N/d

,
(47)

follows, which proves the statement. Hence, one can readily recognize that

lim
N→∞

var
[
δ0...( N/d )−1

]
=
(

σ2
N2

)
N/d

. (48)

To conclude the situation, in (43) and (47) the variances of δj and ∑
( N/d )−1
j=0 δj, indeed, are not

scaled up by d and N
/

d , which makes possible to convert the physical Gaussian quantum channel to
a logical binary Gaussian channel with noise variance dσ2

δj
≈ σ2

N2
for arbitrary d.

These results allow for one to obtain the lowest noise variance, and hence, the highest SNR of
the logical channel that is possible by theory. At the resulting SNR, the capacity of the logical binary
Gaussian channel also picks up its maximum. From this, one can immediately conclude, that, in fact,
it is a favorable result because the logical channel is indeed a binary Gaussian channel that is equipped
with the same capacity at low SNRs (which is the situation in an experimental long-distance scenario)
than the physical Gaussian quantum channel. In our solution, the lower bound σ2

δj
= σ2

N2
is precisely

reached and is justified by the Lyapunov-condition, which means that our conversion provides the
best approximation that is possible.
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3.2.3. Application

In comparison to the multidimensional approaches, here, one can recognize that these results
make no necessary the use of the multidimensional spherical space. The key idea is as follows: do the
reconciliation in the scalar space to reduce the problem from Γd−1 of Rd into R. The main drawback
of the multidimensional reconciliation approaches is the use of spherical space Γd−1 of Rn to achieve
the uniform distribution. As we have found in a CVQKD scenario it is not a required condition,
and completely can be eliminated. The uniformly distributed elements of Rd have to be transmitted
over the classical authenticated channel, but it per se, does not imply that the reconciliation has to be
executed in the spherical space. The spherical correction of the errors of the raw data is a completely
undesirable and unwanted event in a practical CVQKD, because it would just cause a further decrease
in the very fragile, sensitive, and so strenuously established secret key rates. The use of Γd−1 of Rd

served only one purpose in the multidimensional reconciliation: to guarantee the security requirements
of the QKD post-processing phase. From this, it immediately can be concluded that the use of spherical
space is, in fact, unnecessary, and a mathematically equivalent and more efficient solution exists in the
scalar space of R.

One can recognize two improvements in our proposed scheme in comparison to the existing
approaches. First, the uniform distribution will be reached by a simple operation, the Gaussian-CDF
function applied separately on each unit of the raw data. Second, the approximation of the
Gaussian channel will be justified by the CLT, using arbitrary dimensional vectors. As follows,
the physical-logical channel conversion can be established with arbitrary high precision, since the d ≤ 8
limitation has also been eliminated from the picture. To conclude, the spherical space can be replaced
by the CDF transformation on the raw data units, and the Dirac distribution can be replaced by the CLT.
It is clear now that the existing reconciliation methods require a revision since its application just leads
to further slow-down in a practical CVQKD scenario. By these reasons, we drop away the spherical
space, and instead of it, use the CDF-transformed units. These improvements allow for very efficient
decoding and error-correction, however, this step does not modify any fine property of the code:
in other words, it keeps the desired uniform distribution and guarantees the arbitrary high-precision
in the approximation of the logical binary Gaussian channel. Finally, we have to emphasize again that
the whole reconciliation procedure is implemented through the logical layer only, without any need of
physical-layer tomography.

3.3. Run of Scalar Reconciliation

The run of scalar reconciliation (assuming reverse reconciliation) is sketched as follows.
Bob divides his N-unit length raw data X′ into n = N

/
d number of d-dimensional vectors

X′ j =
(

X′ j,0, . . . , X′ j,d−1

)T
∈ Rd, where d is the length of the vectors measured in units X′ j,i in

the raw data.
Then, for each X′ j, applies CDF transformation on the units X′ j,i ∈ R of X′ j, f or i = 0, i ≤ d− 1,

f or j = 0, j ≤
(

N
/

d
)
− 1. Bob generates Uj =

(
Uj,0 . . . Uj,d−1

)T
∈ Rd, Uj,i ∈ R, computes C

(
X′ j
)
Uj =(

C
(
X′ j,0

)
Uj,0, . . . , C

(
X′ j,d−1

)
Uj,d−1

)T
, and sends it to Alice over the classical authenticated channel.

Alice also divides her N-unit length raw data X, into n = N
/

d number of d-dimensional vectors

Xj =
(

Xj,0, . . . , Xj,d−1

)T
∈ Rd, computes the CDF-transformed C

(
Xj
)

=
(

C
(
Xj,0
)
, . . . , C

(
Xj,d−1

))T
∈ Rd

and using (29), (34), and (35) computes as

U′ j = C
(
X′ j
)
Uj

1
C(Xj)

= ∑d−1
i=0 X′ j,iUj,i∑d−1

i=0 U′ j,i

=
∑d−1

i=0 C(X′ j,i)Uj,i

∑d−1
i=0 C(Xj,i)

.

(49)
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Next, she corrects the Gaussian noise on U′ j to get Uj. From these she rebuilds the error-free
full key

K ∈ RN/d :
(

U0, . . . , U(N/d)−1

)T
. (50)

3.4. Security

The scalar reconciliation provides unconditional security. It will be demonstrated for reverse
reconciliation. The security of scalar reconciliation is guaranteed by the fact that the transmitted
C
(
X′ j
)
Uj messages follow uniform distribution, and the multiplied Uj and X′ j vectors are also uniform

and independent.
The following conditional probability holds for each Uj, Uj = U0...1 (see also (29),(34) and (35)):

Pr
(

Uj = U0...1
∣∣C(X′ j)Uj

)
=

1
2

. (51)

Since C
(
X′ j
)
Uj are uniformly distributed, and also independent [11], it follows that:

Pr
(
C
(
X′ j,i

)
= C

(
X′ j,0

)
. . . C

(
X′ j,N−1

))
=

1
N

(52)

and
Pr
(
Uj = U0...1

)
=

1
2

. (53)

Since the overall number of d-dimensional Uj ∈ Rd vectors is N
/

d , the probability that Eve
obtains the full key K is

PrEve

(
K =

(
U0, . . . , U( N/d )−1

)T
)

=
1

2N/d . (54)

3.5. Noise on the Data

This section reveals the mathematical description of the noise vector of the Gaussian quantum
channel N2 and its impacts on Bob’s raw data and Alice’s received secret key. We also can exploit that
in the evaluation of the noise vector, only the second channel useN2 has to be taken in to consideration
in the error correction.

The d-dimensional noise vector ∆j ∈ N
(

0, σ2
N2

)
d
∈ Rd of the Gaussian channel N2 on the j-th X′ j is

a Gaussian random vector defined as:

∆j = X′ j − Xj =
{

∆j,0, . . . , ∆j,d−1

}
∈ N

(
0, σ2
N2

)
d
∈ Rd, (55)

where ∆j,i ∈ N
(

0, σ2
N2

)
∈ R identifies the Gaussian noise on the i-th unit Xi of X′ j as:

∆j,i = X′ j,i − Xj,i ∈ N
(

0, σ2
N2

)
∈ R. (56)

The noise vector ∆j is added to Alice’s Xj, hence Bob’s noisy X′ j is:

X′ j = Xj + ∆j ∈ Rd. (57)

In terms of raw-data vector units, the Gaussian noise vector ∆j,i is described as follows:

X′ j,i = Xj,i + ∆j,i ∈ R, (58)
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and (57) can be rewritten as:

X′ j =
{

X′ j,0, . . . , X′ j,d−1

}
=
{

Xj,0 + ∆j,0, . . . , Xj,d−1 + ∆j,d−1

}
.

(59)

In the scalar reconciliation, the error-correction is performed on the level of unit sums
U′ j = ∑d−1

i=0 U′ j,i in R as follows. Alice receives the d-dimensional C
(
X′ j
)
Uj from Bob, from which

she obtains C
(
X′ j
)
Uj (see (35)) and divides it by her C

(
Xj
)

(see (34)). The effect of Gaussian noise [9]
results in a distorted secret U′ j ∈ R as:

U′ j = ∑d−1
i=0 U′ j,i =

∑d−1
i=0 C

(
X′ j,i

)
Uj,i

∑d−1
i=0 C

(
Xj,i
) = ∑d−1

i=0 Uj,i + ∑d−1
i=0 δj,i = Uj + δj ∈ R, (60)

where δj,i is the noise on Uj,i (for a plausible example, see Section 5):

δj,i =
Uj,i

C
(
Xj,i
)C
(
∆j,i
)
∈ N

(
0, σ2

δj,i

)
, (61)

where σ2
δj,i

is the variance of the distribution of δj,i, while C
(
∆j,i
)

is the noise of the CDF-transformed
raw data units:

C
(
∆j,i
)

= C
(
X′ j,i

)
− C

(
Xj,i
)
∈ R, (62)

where C
(
∆j,i
)
∈ N

(
0, σ2

C(∆j,i)

)
, and C

(
∆j
)

= C
(
X′ j
)
−C

(
Xj
)
∈ Rd, with a distribution of N

(
0, σ2

C(∆j)

)
d
.

The error-corrected Uj can be expressed from the noisy U′ j,i, as follows:

Uj = ∑d−1
i=0 U′ j,i −∑d−1

i=0 ς j,i = Uj − ς j ∈ R, (63)

where ς j,i ∈ N
(

0, σ2
ς j,i

)
characterizes the same amount of noise as (61), i.e., and ς j,i = δj,i, however it is

evaluated from the noisy raw-data units U′ j,i, C
(
X′ j,i

)
as:

ς j,i =
U′ j,i

C
(
X′ j,i

)C
(
∆j,i
)
∈ R, (64)

with ς j,i ∈ N
(

0, σ2
ς j,i

)
. The d-dimensional vector U′ j ∈ Rd can be expressed as:

U′ j = Uj +
→
δ j ∈ Rd, (65)

where the noise vector
→
δ j =

{
δj,0, . . . , δj,d−1

}
∈ Rd is as follows:

→
δ j =

Uj

C
(
Xj
)C
(
∆j
)
∈ N

(
0, σ2

δj

)
d

= N
(

0, σ2
δj,0,...,δj,d−1

)
. (66)

According to the CLT, the sum of independent noise on units U′ j,i in U′ j ∈ Rd is evaluated by
a Gaussian random variable as:

δj = ∑d−1
i=0 δj,i =

∑d−1
i=0 C

(
∆j,i
)
Uj,i

∑d−1
i=0 C

(
Xj,i
) ∈ N

(
0, σ2

δj
= ∑d−1

i=0 σ2
δj,i

)
. (67)
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The d-dimensional vector Uj ∈ Rd can be expressed as

Uj = U′ j −
→
ς j ∈ Rd, (68)

and the noise vector
→
ς j =

{
ς j,0, . . . , ς j,d−1

}
∈ Rd is as follows:

→
ς j =

U′ j
C
(
Xj
)

+ C
(
∆j
)C
(
∆j
)
∈ N

(
0, σ2

→
ς j

)
d
. (69)

The sum of independent noise on units U′ j,i of U′ j ∈ Rd can also be identified as:

ς j = ∑d−1
i=0 ς j,i =

∑d−1
i=0 C

(
∆j,i
)
U′ j,i

∑d−1
i=0 C

(
X′ j,i

) = N
(

0, σ2
ς j

= ∑d−1
i=0 σ2

ς j,i

)
. (70)

From the physical properties of a Gaussian quantum channel [1–11], we know exactly what
happens during the transmission of the coherent combined signal from Alice to Bob. The noise on X′ j,i
has a non-standard Gaussian random distribution ∆j,i ∈ N

(
0, σ2
N2

)
.

We have to analyze in detail the properties of the noise vector. The noise vector ∆j ∈ N
(

0, σ2
N2

)
d
∈ Rd

of N2 that generates the noisy X′ j from Xj is characterized, as follows. First we decompose the noise
vector ∆j into its components:

∆j = AjΛj, (71)

where matrix Aj represents a linear transformation in Rd, while Λj is a the standard Gaussian noise
vector Λj ∈ N(0, 1)d ∈ Rd. The probability density function of Λj is:

f
(
Λj
)

=
1(√
2π
)d e−

‖Λj‖
2

2 , (72)

where ‖Λj‖ =
√

Λ2
j,0 + . . . + Λ2

j,d−1 is magnitude, in other words, the Euclidean distance from

the origin to Λj ∈ Rd. This type of noise exhibits different behavior than the real Gaussian noise
of a quantum channel, and it is characterized by the same magnitude ‖Λj‖ in every direction.
This property is connected to the standard Gaussian random noise, and it cannot be applied in
a realistic CVQKD scenario, because it does not properly describe the noise characteristic of the
quantum channel. The probability density function of ∆j ∈ Rd is:

f
(
∆j
)

=
1(√

2π
)d√

detAjAT
j

e−
1
2 ∆T

j (AjAT
j )
−1∆j , (73)

where AjAT
j stands for the C

(
∆j
)

covariance matrix of ∆j, and it analogous of σ2
N2

, i.e., in a more

precise form C
(
∆j
)

= E
(

∆j∆T
j

)
= AjAT

j . The noise on the units X′ j,i of X′ j at Bob’s side arises from

the quantum-level transmission of the combined phase space states
∣∣φj,i

〉
∈ SA×B, and vectors Λj ∈

N(0, 1)d and ∆j ∈ N
(

0, σ2
N2

)
d

is built up by d components, Λj,i ∈ N(0, 1) ∈ R and ∆j,i ∈ N
(

0, σ2
N2

)
∈ R.

The error ∆j,i on the i-th unit X′ j,i is as follows:

∆j,i = Aj,iΛj,i, for i = 0, i ≤ d− 1, (74)
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where Aj,i is a linear transformation that scales Λj,i. The probability density function of Λj,i is:

f
(
Λj,i
)

=
1√
2π

e−
‖Λj,i‖

2

2 , (75)

where ‖Λj,i‖ =
√

Λ2
j,i is the magnitude of Λj,i. The probability density function of ∆j,i is:

f
(
∆j,i
)

=
1

√
2π
√

detAj,iAT
j,i

e−
1
2 ∆T

j,i(Aj,iAT
j,i)
−1∆j,i , (76)

where Aj,iAT
j,i = E

(
∆j,i∆T

j,i

)
= C

(
∆j,i
)
.

From Λj,i and ∆j,i, the correction of Bob’s noisy secret Uj can be approached by the units{
U′ j,0, . . . , U′ j,d−1

}
, because the noise of N2 is survived in the raw data level and lives also on

U′ j,i, but in a modified form, see (61).
Let us denote by

∣∣φj,i
〉
, the phase-space representation of Alice’s noise-free raw data unit Xj,i

given by (6), and by
∣∣ξ j,i

〉
the noisy raw data unit X′ j,i of Bob, from (7). (State

∣∣φj,i
〉

is the second mode
of the combined beam, while

∣∣ξ j,i
〉

is its noisy version).
The effect of the real Gaussian noise of the quantum channel is shown in Figure 4. The noise

vector ∆j ∈ N
(

0, σ2
N2

)
d
∈ SA×B of the quantum channel is a non-standard Gaussian random vector,

which distorts the density. The circles of Λj,i ∈ N(0, 1) are scaled by Aj,i, resulting in ellipses.
The magnitude ‖∆j,i‖ of ∆j,i is not preserved in all directions, which leads to a different density.
The x and p quadratures of

∣∣φj,i
〉
∈ SA×B are modified by ∆x and ∆p in

∣∣ξ j,i
〉
∈ SA×B.
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Figure 4. The real Gaussian noise of the quantum channel N2 causes a rotation and rescaled vector in
the combined phase space SA×B (x: position quadrature, p: momentum quadrature). The magnitude

‖∆j,i‖ of the noise vector ∆j,i ∈ N
(

0, σ2
N2

)
is not preserved, since the noise characteristic describes

an ellipse in the combined phase space.

4. Theorems and Proofs

First, we show that Alice’s noisy secret can be corrected in the v vector space of Rd by using
an error-correction rule based on the apparatus provided by the maximum-likelihood decision [15–19,24,25],
which renders unnecessary the use of the spherical space of Γd−1.

Proposition 1 (Vector reconciliation of correlated Gaussian variables). The Gaussian noise δj on the

received vector U′ j ∈ Rd :
{

U′ j,0, . . . , U′ j,d−1

}
can be corrected in the vector space v of Rd.
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Proof. First, Bob selects the d-dimensional vector Uj ∈
{

Uj,0, . . . , Uj,d−1

}
∈ Rd where ∑d−1

i=0 Uj,i = a or

∑d−1
i=0 Uj,i = b, Uj,i ∈ U and sends C

(
X′ j
)
Uj over the classical channel. Alice uses her CDF-transformed

raw data C
(
Xj
)

=
{

C
(
Xj,0

)
, . . . , C

(
Xj,d−1

)}
to obtain U′ j ∈ Rd. Since Alice knows a, b and d, she can

draw two vectors A = (A0, . . . , Ad−1)T ∈ Rd, with norm ‖A‖ =
√

∑d−1
i=0 (Ai)

2, where
{

∑d−1
i=0 Ai = a

}
,

Ai ∈ U and B = (B0, . . . , Bd−1)T ∈ Rd, with ‖B‖ =
√

∑d−1
i=0 (Bi)

2, where
{

∑d−1
i=0 Bi = b

}
, Bi ∈ U .

She then corrects the noise on U′ j by the following error-correction rule [15–19]:

Uj = A : ‖U′ j −A‖ < ‖U′ j − B‖, (77)

Uj = B : ‖U′ j −A‖ > ‖U′ j − B‖, (78)

where the quantity ‖U′ j −Uj‖, Uj ∈ {A, B} is evaluated as

‖U′ j −Uj‖ =
√

∑d−1
i=0

(
U′ j,i −Uj,i

)2
=

√
∑d−1

i=0

(
Uj,i

C(Xj,i)
C
(
∆i,j
))2

=
√

∑d−1
i=0

(
δj,i
)2

= ‖
→
δ j‖,

(79)

which precisely coincidences with the norm of the Gaussian noise in (67). However, since Alice does not
know Bob’s Uj,i, in (79) an additional noise, Υj, also brings up, i.e., ‖U′ j −Uj‖ = ‖δj + Υj‖. The noise

vector
→
Υj with expected variance σ2

→
Υj

is independent from the real noise on U′ j,i. This problem will be

resolved in Theorem 1 and will be shown that this quantity completely vanishes from the picture.
Alice receives the d-dimensional vectors U′ j ∈

{
U′ j,0, . . . , U′ j,d−1

}
∈ Rd, and corrects U′ j into

Uj and then from the components she rebuilds the full key K =
(

U0, . . . , U(N/d)−1

)T
∈ RN/d .

The error-vector
→
δ j ∈ Rd on a given noisy U′ j is

→
δ j = δj,i =

(
Uj

C(Xj)

)T
C
(
∆j
)
∈ N

(
0, σ2

→
δ j

= C

((
Uj

C(Xj)

)T
C
(
∆j
)))

d

= N
(

0, σ2
δj,i

= C

((
Uj,i

C(Xj,i)

)T
C
(
∆j,i
)))

∈ Rd, 0 ≤ i ≤ d− 1,
(80)

The covariance matrix of (80) is expressed as:

C

( Uj

C
(
Xj
))T

C
(
∆j
) = E

( Uj

C
(
Xj
))T

C
(
∆j
)( Uj

C
(
Xj
))T

C
(
∆j
)T

 =

(
σ2
→
δ j

)
d

(81)

along with

δj,i =

(
Uj,i

C
(
Xj,i
))T

C
(
∆j,i
)
∈ N

0, σ2
δj,i

= C

( Uj,i

C
(
Xj,i
))T

C
(
∆j,i
) ∈ R, (82)

and (82) is characterized by covariance matrix

C

(
Uj,i

C
(
Xj,i
)C
(
∆j,i
))

= E

 Uj,i

C
(
Xj,i
)C
(
∆j,i
)( Uj,i

C
(
Xj,i
)C
(
∆j,i
))T

 = σ2
δj,i

. (83)
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The error-corrected Uj can be expressed as:

Uj = U′ j −
→
ς j ∈ Rd, (84)

where
→
ς j =

(
U′ j

C(Xj)+C(∆j)

)T
C
(
∆j
)
∈ N

(
0, σ2

→
ς j

= C

((
U′ j

C(Xj)+C(∆j)

)T
C
(
∆j
)))

d

= N
(

0, σ2
ς j

= C

(
U′ j,i

C(Xj,i)+C(∆j,i)
C
(
∆j,i
)))

∈ Rd, 0 ≤ i ≤ d− 1.
(85)

The covariance matrix of (85) is as follows:

C

((
U′ j

C(Xj)+C(∆j)

)T
C
(
∆j
))

= E

( U′ j
C(Xj)+C(∆j)

)T
C
(
∆j
)(( U′ j

C(Xj)+C(∆j)

)T
C
(
∆j
))T

 =

(
σ2
→
ς j

)
d

(86)

and

ς j,i =
U′ j,i

C
(
Xj,i
)

+ C
(
∆j,i
)C
(
∆j,i
)
∈ N

(
0, σ2

ς j,i
= C

(
U′ j,i

C
(
Xj,i
)

+ C
(
∆j,i
)C
(
∆j,i
)))

, (87)

along with

C

(
U′ j,i

C(Xj,i)+C(∆j,i)
C
(
∆j,i
))

= E
(

U′ j,i
C(Xj,i)+C(∆j,i)

C
(
∆j,i
)( U′ j,i

C(Xj,i)+C(∆j,i)
C
(
∆j,i
))T

)
= σ2

ς j,i
. (88)

From (82) and (87) the quantities Uj,i and U′ j,i are evaluated as follows:

Uj,i = U′ j,i −
U′ j,i

C
(
X′ j,i

)C
(
∆j,i
)

= U′ j,i − ς j,i ∈ R, (89)

and

U′ j,i =
C
(
X′ j,i

)
C
(
Xj,i
) Uj,i = Uj,i + δj,i ∈ R. (90)

Let us denote by ν the standard deviation of
→
δ j +

→
Υj = δj,i + Υj,i, 0 ≤ i ≤ d− 1, which is evaluated

from (86) and σ2
→
Υj

as

ν =

√√√√(σ2
→
δ j

+ σ2
→
Υj

)
d

. (91)

The maximum-likelihood-based correction rules can be given in the form of:

Uj = A :
1

(π2ν2)
d/2

e−
‖U′ j−A‖2

2ν2 ≥ 1

(π2ν2)
d/2

e−
‖U′ j−B‖2

2ν2 , (92)

and:

Uj = B :
1

(π2ν2)
d/2

e−
‖U′ j−A‖2

2ν2 ≤ 1

(π2ν2)
d/2

e−
‖U′ j−B‖2

2ν2 . (93)

The error probability for the case of decoding vector Uj = A, is

Pre

(
‖
→
δ j +

→
Υj‖

2
> ‖

(
A +

→
δ j +

→
Υj

)
− B‖

2
)

= Pre

(
(A− B)T

(→
δ j +

→
Υj

)
< −‖A− B‖2

2

)
. (94)
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For the case of correction of Uj = B, the error probabilities are evaluated as

Pre

(
‖
→
δ j +

→
Υj‖

2
> ‖

(
B +

→
δ j +

→
Υj

)
−A‖

2
)

= Pre

(
(B−A)T

(→
δ j +

→
Υj

)
< −‖B−A‖2

2

)
. (95)

The decision regions can be separated into two hyperplanes H1 and H2 along B − A,
which separate Uj = A and Uj = B. In other words, the correction-condition of a given noisy
U′ j is reduced to the following decision problem:

Uj =

{
A, i f U′ j ∈ H1,
B, i f U′ j ∈ H2.

(96)

As follows, by applying the procedure Alice can retrieve Uj ∈ {A, B} from the noisy Uj in the
vector space v of Rd. From the error-corrected Uj components, Alice finally rebuilds the full key vector

K =
(

U0, . . . , U( N/d )−1

)T
∈ RN/d , which concludes the proof.

Proposition 1 demonstrated that there is no need for the use of Γd−1 of Rd in the error correction,
however the corrected noise is not precisely a Gaussian. Theorem 1 reveals that the reconciliation
process, in fact, does not require vector operations in Rd, and the noise is a real Gaussian noise in the
scalar space R.

Theorem 1 (Scalar reconciliation of correlated Gaussian variables). The Gaussian noise δj on the received
scalar U′ j = ∑d−1

i=0 U′ j,i can be corrected in R.

Proof. We exploit that the noise on U′ j,i-s is δj,i =
Uj,i

C(Xj,i)
C
(
∆j,i
)
∈ N

(
0, σ2

δj,i

)
, while on the sum of the

noise of the d units is a zero-mean Gaussian random variable ∑d−1
i=0 δj,i ∈ N

(
0, σ2

δj

)
, that is justified by

the CLT and the Lyapunov-condition. Alice will correct the units in the following form:

U′ j = ∑d−1
i=0 U′ j,i =

∑d−1
i=0 C

(
X′ j,i

)
Uj,i

∑d−1
i=0 C

(
Xj,i
) = Uj + δj ∈ R. (97)

First, expresses the secret vector Uj ∈ Rd as follows:

Uj = x(A− B) +
1
2

(A + B), (98)

where x ∈ {−0.5, 0.5} ∈ R is a scalar. From this, Alice can also rewrite the noisy U′ j as:

U′ j = x(A− B) +
1
2

(A + B) +
→
δ j. (99)

From (99), follows that:

U′ j = ∑d−1
i=0

(
x(Ai − Bi) + 1

2 (Ai + Bi) + δj,i

)
= ∑d−1

i=0

(
x(Ai − Bi) + 1

2 (Ai + Bi)
)

+ δj

= ∑d−1
i=0 U′ j,i

= Uj +
Uj

C(Xi)
C
(
∆j
)
,

(100)



Appl. Sci. 2018, 8, 87 24 of 35

where C
(
Xj
)

= ∑d−1
i=0 C

(
Xj,i
)
, C
(
∆j
)

= ∑d−1
i=0 C

(
∆j,i
)
, Uj = ∑d−1

i=0 Uj,i and δj = ∑d−1
i=0 δj,i. In fact,

Alice does not have to use all elements from (100), because she can apply a simpler process. For this
purpose, she draws a new vector, d:

d =
A− B
‖A− B‖ , (101)

where ‖A− B‖ =
√

∑d−1
i=0 (Ai − Bi)

2 is the effective distance of A and B. A useful property of vector d
drawn in (101), that any independent noise [15] (i.e., independent from the noise on U′ j) could live
only in the orthogonal directions to d, i.e., (n1, . . . , nl)⊥d. It immediately follows, that the n1, . . . , nl
orthogonal directions will have no further importance for Alice in the decoding [15–19]. Since x is
a scalar and in (99) the term 1

2 (A + B) is a constant, Alice introduces vector χ ∈ v as follows:

χ ≡ U′ j −
1
2

(A + B) = x(A− B) +
→
δ j. (102)

She also draws an orthogonal matrix M, which contains d and the orthogonal directions n1, . . . , nl ,
with unit norm as:

M =


d
n1

n2
...

nl

. (103)

By multiplying M with χ leads to:

Mχ =


x‖A− B‖

0
0
...
0

+ M
→
δ j. (104)

From (104), it clearly follows that only x‖A− B‖ and the first component of M
→
δ j have relevance

in the error-correction process, because all of the other components are orthogonal to d [15]. Since the
evolution of d is a trivial process on Alice’s side, the received U′ j can be projected by P onto the
direction of d, since all of the valuable information, including the real noise, is carried only by this
direction. The projection P on U′ j is made by dTχ, which then results in:

P
(
U′ j
)

= dTχ

=
(

A−B
‖A−B‖

)T
(x(A− B) +

→
δ j)

= dT
(

U′ j − 1
2 (A + B)

)
.

(105)

The projected vector P
(
U′ j
)

is analogous to the scalar representation Uj = ∑d−1
i=0 Uj,i in R,

and makes it possible to correct the noise in the scalar space R. The received U′ j = Uj + δj has
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mean µa = a or µb = b, and the decision boundary is µa+µb
2 , which defines a separator in R. According

to the previously obtained calculations, (104) can be rewritten as follows:

Mχ =



x
√

∑d−1
i=0 (Ai − Bi)

2

0
0
...
0


+ δj. (106)

As follows, only the first component of M
→
δ j has relevance in the error-correction, which in

particular coincidences with the scalar quantity δj = ∑d−1
i=0 δj,i =

∑d−1
i=0 C(∆j,i)Uj,i

∑d−1
i=0 C(Xj,i)

shown in (79). Putting

the pieces together, P
(
U′ j
)

is evaluated as:

P
(
U′ j
)

= x
√

∑d−1
i=0 (Ai − Bi)

2 + ∑d−1
i=0 δj,i (107)

which contains all of the sufficient information for the error correction in R, which completes the proof.

In Theorem 2, the error probability of scalar reconciliation is proposed in an exact form.

Theorem 2. The error probability Pr(error) = Q
(
|a−b|

2
1
η

)
of scalar reconciliation depends only on |a− b|,

where Q
(
|a−b|

2
1
η

)
= Pr

(
|a−b|

2
1
η < g

)
is the Q-function (tail function), g is a standard Gaussian random

variable g ∈ N(0, 1) , and η =
√

σ2
δj

=
√

∑d−1
i=0 σ2

δj,i
is the standard deviation of the Gaussian noise δj .

The Pr(error) exponentially converges to zero for any |a− b| > 2η.

Proof. Let Uj = ∑d−1
i=0 Uj,i from (100), C

(
Xj
)

= ∑d−1
i=0 C

(
Xj,i
)

and C
(
∆j
)

= ∑d−1
i=0 C

(
∆j,i
)
. Exploiting the

result of Theorem 1, in the scalar reconciliation process Alice decides on the scalar quantity U′ j = a, if:

Pr
(

Uj = a
∣∣U′ j) ≥ Pr

(
Uj = b

∣∣U′ j). (108)

Similarly, she decides on U′ j = b, if:

Pr
(

Uj = b
∣∣U′ j) ≥ Pr

(
Uj = a

∣∣U′ j). (109)

Conditioned on a or b, the received U′ j has mean µa = a or µb = b, with N
(
µa, η2) and N

(
µb, η2).

Applying the maximum-likelihood-based correction rule [15–19], Alice calculates with the following
inequalities:

1√
2πη2

e
(−

(U′ j−a)
2

2η2 )
≥ 1√

2πη2
e
(−

(U′ j−b)
2

2η2 )
(110)

and:
1√

2πη2
e
(−

(U′ j−b)
2

2η2 )
≥ 1√

2πη2
e
(−

(U′ j−a)
2

2η2 )
, (111)

which then leads to (for a comparison see (77) and (78)):∣∣U′ j − a
∣∣ < ∣∣U′ j − b

∣∣ (112)

and: ∣∣U′ j − a
∣∣ > ∣∣U′ j − b

∣∣. (113)
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The received U′ j has mean µa = a or µb = b, hence one obtains the following conditional
probability for an error event, conditioned on Bob has sent Uj = a:

Pr

(
U′ j =

Uj

C
(
Xj
)C
(
∆j
)
<

µa + µb
2

∣∣∣∣Uj = a

)
= Pr

((
U′ j −Uj

)
>
|µa − µb|

2

)
, (114)

where |µa−µb |
2 assigns a decision boundary. The tail function Q

(
|a−b|

2
1
η

)
= Pr

(
|a−b|

2
1
η < g

)
,

where g ∈ N(0, 1), has exponential decay for any |a− b| > 2η, hence:

1
√

2π
(
|a−b|

2
1
η

)
1− 1(

|a−b|
2

1
η

)2

e−
(
|a−b|

2
1
η )

2

2 < Q
(
|a− b|

2
1
η

)
< e−

(
|a−b|

2
1
η )

2

2 , (115)

which clearly demonstrates that the error probability of scalar reconciliation exponentially converges
to zero. As one can readily obtain from (115), for arbitrary large differences between a and b,
Q
(
|a−b|

2
1
η

)
→ 0 [15–17]. Then, by applying the maximum-likelihood decision theory and the Bayes’

rule [15–19], for a given Uj, one obtains error probability via the tail function:

Pr
(

U′ j <
µa+µb

2

∣∣∣Uj = a
)

= Q
(
|a−b|

2
1
η

)
= Pr

(
|a−b|

2
1
η < g

)
= Pr(error),

(116)

where g ∈ N(0, 1) is a standard Gaussian random variable such that Q(x) = Pr(x < g), which clearly
demonstrates that Pr(error) depends only on the distance |a− b| of a and b.

The exponential decay of Pr(error) is depicted in Figure 5.
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Figure 5. The error probability of the scalar reconciliation process. It converges exponentially to zero
as |a− b| > 2η.

The condition |a− b| > 2η can be trivially satisfied by the parties in any practical CVQKD
scenario; the proposed results complete the proof.

5. Numerical Evidence and Noise Model

5.1. Reconciliation Characteristics

In this section, we analyze the performance of the proposed reconciliation for Gaussian
modulation, in terms of secret key rates (bits/pulse) and distances. The excess noise N of the Gaussian
quantum channel is expressed as

N =
(

σ2
ωE
− 1
)

(1− T)T−1, (117)
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where T is the transmission, and σ2
ωE

is Eve’s modulation variance [1]. Assuming reconciliation
efficiency 0 ≤ β ≤ 1, the key rate can be rewritten as

R = βI(A : B)− χ(B : E), (118)

where I(A : B) is the mutual information between Alice and Bob, while χ(B : E) is the Holevo
information between Bob and Eve, respectively, with relation

χ(B : E) < χ(A : E), (119)

where χ(A : E) is the Holevo information between Alice and Eve at a direct reconciliation [1–13].
At a given SNR, the mutual information of Alice and Bob is [1–8]

χ(A : B) ≥ 1/2 log2(1 + SNR), (120)

where
SNR = σ2

φ

/
σ2
N2

, (121)

where σ2
φ is the transmit signal’s variance, σ2

N2
is the variance of N2, which has parameters that can

be calculated from T and N. In Figure 6a the dσ2
δj

quantities of the converted logical binary Gaussian
channel for various dimensions are shown. As depicted by the red line, the Lyapunov-condition can
be exploited to get variance

lim
N/d→∞

dvar
[
δ0... N/d

]
= var

[
δ0... N/d

]
≈
(

σ2
N2

)
d

(122)

for arbitrary d to maximize the SNR value,

SNR = σ2
X

/
σ2

δj
(123)

of the converted logical channel. As depicted in Figure 6b, for d→ ∞, the efficiency converges to one,
β→ 1, because the noise perfectly converges to a zero-mean Gaussian random variable.
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The performance of scalar reconciliation is summarized in Figure 8. The performance of the 
simulated protocol without scalar reconciliation with reconciliation efficiency 0.9b = , is depicted 
by the blue curve [7,8]. At 16d = , improved the reconciliation efficiency to 0.97b = , which 
resulted in significantly higher transmission distances and secret key rates. 

Figure 6. (a) The Signal-to-Noise Ratio (SNR) of the resulting logical binary channel is maximized by the
Lyapunov-condition (red line). It makes possible to convert the physical Gaussian quantum channel to
a logical channel with the same noise variance for arbitrary d. For the blue line the Lyapunov-condition
is not satisfied. (b) The capacity of the logical channel for various dimensions. At low SNRs the capacity
of the physical Gaussian quantum channel (dashed line) coincidences with the capacity of the binary
Gaussian channel (red). For d = 16, the capacity of the logical channel is very close to the capacity of
a binary Gaussian channel, and at low SNRs it perfectly coincidences with the capacity of the Gaussian
quantum channel. The reconciliation efficiency at d = 16 is β = 0.97. The curves for lower d-s do
not exist because the resulting logical channels are not Gaussian, since the Lyapunov-condition is not
satisfied in the low-regimes.
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The numerical analysis uses a two-way CVQKD protocol, with homodyne measurements.
The parameters are as follows. Excess noise N = 0.015, T = 0.8, variance σ2

X = 1.06, channel
correlation nC = 0.5, which parameter describes the correlation of the Gaussian attacks of Eve in the
range of 0 ≤ nC ≤ 1 [7,8]. (Note: If nC = 0, there is no correlation between her attacks of N1 and
N2 [7,8]).

In Figure 7 the SNR of the logical binary Gaussian are depicted for various dimensions.
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Figure 8. The performance of scalar reconciliation in two-way PM-RR continuous-variable quantum
key distribution (CVQKD) at d = 16 (homodyne measurement at both sides). Excess noise: N = 0.015,
transmittance: T = 0.8, Eve’s variance σ2

ωE
= 1.06, channel correlation: nC = 0.5, signal variance

σ2
φ = 20.

The scalar reconciliation applied on the two-way CVQKD protocol resulted in approximately
160 km of achievable transmission distance (for the computations of the secret key rate, and the
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detection parameters, see the derivations of [1,7,8]). The results indicate that the range of the current
two-way CVQKD without our post-processing technique can be significantly extended, and the
maximal 80.5 km range of the current one-way CVQKD systems [12] can be doubled, and almost
tripled compared with existing two-way CVQKD systems [7,8]. The reason behind the phenomenon is
the possibility of the conversion of the Gaussian quantum channel to a logical binary Gaussian channel,
similar to the multidimensional reconciliation approaches developed for one-way CVQKD.

The favorable properties of the multidimensional solutions are preserved here, however the
proposed scalar reconciliation does not require any multidimensional spherical calculations [9–11]
and can be extended to arbitrary high dimensions thanks to the fact that it completely eliminates the
spherical operations. From the use of higher dimensions, a more precise approximation of the logical
binary Gaussian channel has also become available which resulted in significantly higher reconciliation
efficiency in comparison to current two-way CVQKD reconciliation methods.

The proposed scalar reconciliation is available at low SNRs, and the transmission ranges of
experimental long-distance CVQKD can significantly be improved because at low SNRs the capacity of
the logical binary Gaussian channel coincidences with the capacity of the Gaussian quantum channel,
and the logical channel resulted from the conversion can approximate it with arbitrary-high precision.

5.2. Noise Analysis

5.2.1. Noise on the Raw Data

The following example demonstrates the change of behavior of the probability distribution of
raw data units and the CDF-transformed units, and serves only demonstration purposes.

For an illustrative example, let N = 1000 units, the amount of sample raw data units Xj,i, X′ j,i
(the units are resulted from random quadrature measurements) taken from Alice’s and Bob’s raw data,
respectively. The Gaussian random units Xj,i are characterized with zero mean and variance σ2

X = 100.
In Figure 9a, the distribution of the Xj,i Gaussian random raw data units is shown. Figure 9b

depicts the result of the C(·) Gaussian CDF function applied on Xj,i. The Gaussian random behavior is
eliminated and is changed into uniform.
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The distribution of the Gaussian noise vector ∆j,i ∈ N
(

0, σ2
N2

)
of the quantum channel N2,

at σ2
N2

= 4 is shown in Figure 10.
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At Bob’s side, the received noisy units X′ j,i and the CDF-transformed C
(
X′ j,i

)
units have

a modified distribution with variance σ2
X′ = σ2

X + σ2
N2

= 104, as depicted in Figure 11. The Gaussian

noise on the units is added by ∆j,i ∈ N
(

0, σ2
N2

)
.
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This example showed that the uniform distribution of the Gaussian random raw data could be
achieved by trivial operations, without any multidimensional calculations or coding.

5.2.2. Noise on the Random Secret

This example demonstrates that the noise δj =
∑d−1

i=0 C(∆j,i)Uj,i

∑d−1
i=0 C(Xj,i)

on the secret U′ j = ∑d−1
i=0 U′ j,i

is inherited from the Gaussian quantum channel and by applying the Central Limit Theorem
(CLT), the noise of the logical binary channel can be approximated by a Gaussian random variable
δj = ∑d−1

i=0 δj,i ∈ N
(

0, σ2
δj

)
.

Let N = 1000 units, the amount of sample raw data units Xj,i, X′ j,i. The quantity
C
(
∆j
)

= C
(
X′ j
)
− C

(
Xj
)

measures the difference of C
(
X′ j
)

and C
(
Xj
)
, i.e., the noise of Bob’s
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CDF-transformed data. Let Xj ∈ N
(
0, σ2

X = 100
)

and X′ j ∈ N
(
0, σ2

X′ = 104
)
. The example uses

an d = 16 dimensional approximation.
The distribution of the error C

(
∆j,i
)

of the CDF-transformed raw data units C
(
X′ j,i

)
, C
(
Xj,i
)

are
depicted in Figure 12.
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Figure 12. The distribution of the error C

(
∆j,i

)
= C

(
X′ j,i

)
− C

(
Xj,i

)
on the CDF-transformed raw

data units.

In Figure 13a the ratio C
(
X′ j,i

)/
C
(
Xj,i
)

of the CDF-transformed units is shown in Figure 13a.
In the ideal (noise-free) case the ratio equals to 1. In Figure 13b the distribution of the quantity
C
(
∆j,i
)/

C
(
Xj,i
)

is shown.
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Figure 13. (a) The distribution of the ratio of the raw data level noise and Alice’s CDF-transformed
raw data units. It equals to 1 for a noise-free case; (b) The distribution of quantity C

(
∆j,i

)/
C
(

Xj,i

)
.

In Figure 14a the distribution of noise δj,i on units U′ j,i is shown, assuming that Bob selects
Uj,i ∈ {−400/16, 400/16}.

In Figure 14b the distribution of δj on U′ j, using Uj = ∑d−1
i=0 Uj,i ∈ {−400, 400} is depicted.

The distribution of δj is given by the formula of N
(

0, σ2
δj

)
, and the approximation of the binary

Gaussian logical channel is justified by the CLT and the Lyapunov-condition.
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Figure 14. (a) The distribution of the unit-level noise δj,i on U′ j,i, Uj,i ∈ {−25, 25}, σ2
X = 100, σ2

X′ = 104;

(b) The noise δj = ∑d−1
i=0 δj,i ∈ N

(
0, σ2

δj

)
on U′ j = ∑d−1

i=0 U′ j,i at d = 16. The precision of the
physical-binary channel conversion gets closer to perfect as d→ ∞.

The results make it possible to achieve a high-precision conversion of the physical Gaussian
quantum channel into a logical binary Gaussian channel. Precisely, only an approximation is possible
by the logical layer manipulations, which gets closer to perfect as d→ ∞. At d = 16 the approximation
is almost perfect, and the noise on U′ j = ∑d−1

i=0 U′ j,i is a real Gaussian noise N
(

0, σ2
δj

)
.

6. Conclusions

The CVQKD protocols are based on Gaussian modulation, and powerful post-processing is
needed to maximize the extractable valuable information from the correlated raw data. The physical
layer solutions for the reconciliation of Gaussian variables require tomography that is intractable
in a practical CVQKD scenario. The reconciliation is also possible in the level of the logical
layer by a classical authenticated communication channel, and by traditional algorithmical tools.
The multidimensional approaches were developed for this purpose, however the use of complex
multidimensional calculations is also not desirable in a practical scenario. The proposed scalar
reconciliation eliminates the use of multidimensional spherical space along with the dimensional
boundaries. The scalar reconciliation process neither requires any physical-layer tomography, and only
standard operations and calculations needed in the level of raw data. The method provides an easy
implementation to maximize the extractable valuable binary information from the correlated raw data
to significantly boost up the key rates and to improve the distance ranges of CVQKD.

Supplementary Materials: Available online at www.mdpi.com/2076-3417/8/1/87/s1, Table S1: Summary of
the notations.
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