
Supplementary Materials: New insights in the ion beam sputtering deposition of ZnO-fluoropolymer nanocomposites

Maria Chiara Sportelli¹, Marco Valentini^{2,3}, Rosaria Anna Picca¹, Antonella Milella¹, Angelo Nacci¹, Antonio Valentini^{2,3}, Nicola Cioffi^{1,*}

Eq. S1. Detail of φ calculation. V_{PTFE} and V_{ZnO} are the deposited volumes of PTFE and ZnO, and r_{PTFE} and r_{ZnO} are the deposition rates of the two materials, experimentally measured for any deposition run and expressed as film thickness per second.

$$\varphi = \frac{V_{Zn0}}{V_{PTFE} + V_{Zn0}} = \frac{r_{Zn0}}{r_{PTFE} + r_{Zn0}} = \frac{r_{Zn0}/r_{PTFE}}{1 + (r_{Zn0}/r_{PTFE})}$$
(s1)

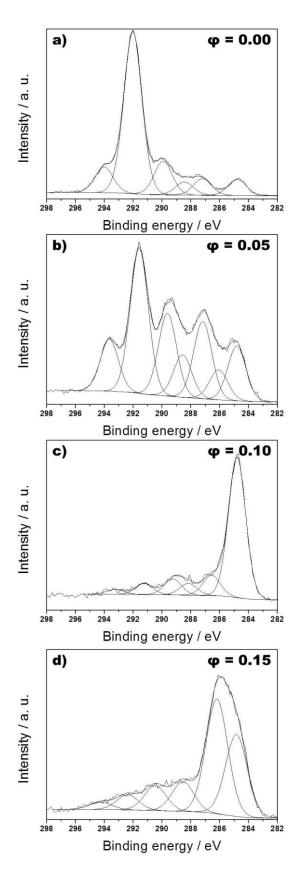

Figure S1. 150-nm-tick ZnO-CF_x composite films were morphologically characterized by SEM analysis, at 30 kV with a Hitachi SEM-FEG 5000 microscope on gold-coated sample.

Table S1. Relative abundances (%) of different carbon moieties, derived from the C1s curve-fitting, as a function of φ .

Φ	CF ₃	CF ₂	CF, COOH	CF=C,	C-CF,	C-C
				C=O	C-OH ¹	
0.05	10.5 ± 0.3	29.4 ± 0.5	16.7 ± 0.4	9.6 ± 0.9	/	11.1 ± 0.3
0.10	20.6 ± 0.5	11.7 ± 0.4	6.7 ± 0.9	4.1 ± 0.2	6.9 ± 0.2	50.0 ± 1.3
0.15	3.9 ± 1.1	6.0 ± 1.5	8.9 ± 0.2	9.8 ± 1.0	39.7 ± 2.2	31.7 ± 1.8

¹ For a metal oxide volume fraction of φ = 0.05 this ambiguous component is present as two distinct chemical environments, centered at 286.4 ± 0.2 eV (C-OH) and 287.4 ± 0.2 eV (C-CF), whose relative abundances are 6.3 ± 0.2 and 16.4 ± 0.4, respectively.

Figure S2. C1s XP-high resolution regions of ZnO-CF_x nanocomposites having an inorganic phase volume fraction $\varphi = 0$ (**a**), $\varphi = 0.05$ (**b**), $\varphi = 0.10$ (**c**), and $\varphi = 0.15$ (**d**).

Details on C1s XP spectral deconvolution

S3 of SX

The first two components from the left-side of each spectra, falling at 293.8 ± 0.2 eV and 291.8 ± 0.1 eV, were attributed to -<u>C</u>F₃ chain-terminations and -<u>C</u>F₂ groups, respectively. Their intensity decreased significantly as φ increased. The spectral region falling at lower BE values comprised several peaks, with equivocal attribution. Both fluorinated and oxygenated species were expected to contribute to them. The peak at 289.6 ± 0.2 eV was attributed to -<u>C</u>F functionalities or to carboxyl moieties. Unsaturated fluorinated carbon (<u>C</u>F=C) and carbonyl groups were both responsible for the peak centered at 288.0 ± 0.3 eV (the presence of large amounts of <u>C</u>=O groups is confirmed by the analysis of the O1s region, data not shown). Fluorine- α -substituted carbon (<u>C</u>-CF) and alcohol groups (<u>C</u>-OH) well accounted for the peaks at 287.2 ± 0.3 eV and 286.3 ± 0.2 eV. Finally, the component at 285.1 ± 0.2 eV had a double nature, too: it was attributed to unsubstituted carbons in a quaternary fluorinated environment (<u>C</u>-C) and to adventitious hydrocarbon contaminants. All these attributions are in agreement with literature [1–4].

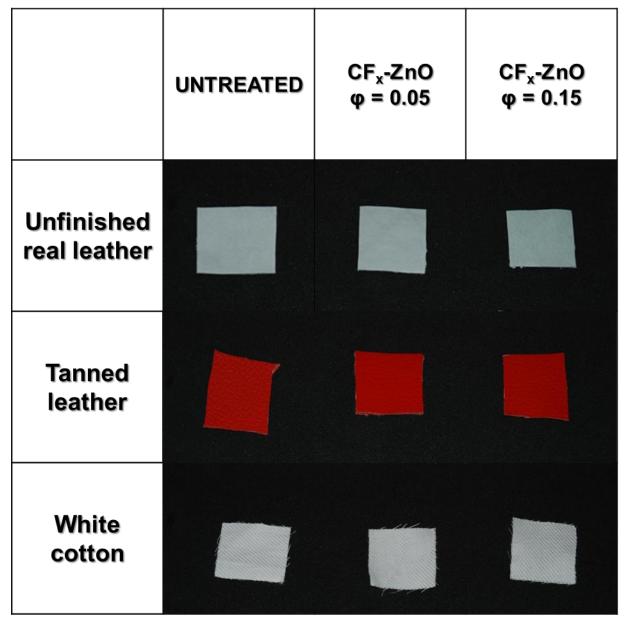
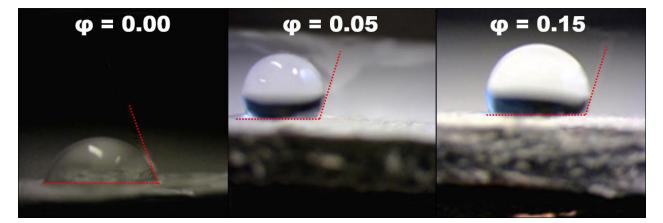



Figure S3. Real textile materials modified with ZnO-fluoropolymer nanocomposites at different inorganic loading.

Figure S4. Water contact angle measurement on unfinished real leather modified with ZnO-fluoropolymer nanocomposites at different inorganic loading. Measured values are: $69.5 \pm 0.5^{\circ}$ at $\varphi = 0, 114.1 \pm 0.5^{\circ}$ at $\varphi = 0.05$, and $103.5 \pm 0.5^{\circ}$ at $\varphi = 0.15$.

References

- Cioffi, N.; Losito, I.; Torsi, L.; Farella, I.; Valentini, A.; Sabbatini, L.; Zambonin, P. G.; Bleve-Zacheo, T. Analysis of the Surface Chemical Composition and Morphological Structure of Vapor-Sensing Gold–Fluoropolymer Nanocomposites. *Chem. Mater.* 2002, *14*, 804–811, doi:10.1021/cm0111940.
- 2. Wagner, C. D. Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy; Perkin-Elmer Corp.: Waltham, MA, USA 1979.
- 3. NIST XPS Database Available online: http://srdata.nist.gov/xps (accessed on 3 December 2017).
- 4. Cioffi, N.; Ditaranto, N.; Torsi, L.; Picca, R. A.; Sabbatini, L.; Valentini, A.; Novello, L.; Tantillo, G.; Bleve-Zacheo, T.; Zambonin, P. G. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. *Anal. Bioanal. Chem.* **2005**, *381*, 607–616, doi:10.1007/s00216-004-2761-4.