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Abstract: The commercially available nanoscale zerovalent zinc (nZVZ) was used as an adsorbent
for the removal of malachite green (MG) from aqueous solutions. This material was characterized
by X-ray diffraction and X-ray photoelectron spectroscopy. The advanced experimental design tools
were adopted to study the effect of process parameters (viz. initial pH, temperature, contact time
and initial concentration) and to reduce number of trials and cost. Response surface methodology
and rapidly developing artificial intelligence technologies, i.e., artificial neural network coupled
with particle swarm optimization (ANN-PSO) and artificial neural network coupled with genetic
algorithm (ANN-GA) were employed for predicting the optimum process variables and obtaining
the maximum removal efficiency of MG. The results showed that the removal efficiency predicted by
ANN-GA (94.12%) was compatible with the experimental value (90.72%). Furthermore, the Langmuir
isotherm was found to be the best model to describe the adsorption of MG onto nZVZ, while the
maximum adsorption capacity was calculated to be 1000.00 mg/g. The kinetics for adsorption of MG
onto nZVZ was found to follow the pseudo-second-order kinetic model. Thermodynamic parameters
(∆G0, ∆H0 and ∆S0) were calculated from the Van’t Hoff plot of lnKc vs. 1/T in order to discuss the
removal mechanism of MG.

Keywords: malachite green; nanoscale zerovalent zinc; artificial intelligence; artificial neural
network-genetic algorithm; artificial neural network-particle swarm optimization

1. Introduction

The discharge of dyes and pigments from various industries has generated large quantities of
colored wastewater, which pose a potential threat to the environment [1–4]. Malachite green (MG)
(shown in Figure 1) is a cationic dye belonging to the triphenylmethane dye category, which is widely
used for dyeing of textile, leather and paper, printing, and treating parasites, fungal and bacterial
infections in fish and fish eggs [5]. However, this noxious dye can cause carcinogenic, mutagenic and
teratogenic effects on humans and animals [6–9]. Thereby, the removal of MG from wastewater before
being discharged into surface water bodies is indispensible and significant. A variety of decolorization
methods have been used for the removal of MG, including physical (adsorption), chemical (coagulating)
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and biological (decolorizsation–fermentation processes) [10,11]. Since the chemical treatment method
is unsuited for highly soluble dyes and longer time is required for biological method, adsorption is
considered the efficient method due to its comparatively low cost and high removal efficiency [12,13].

Figure 1. Chemical structure of malachite green.

Nanomaterials have been used as promising materials for environmental remediation due to
a series of unique properties, e.g., small size effect, surface effect and quantum size effect [14,15].
Nano-sized zinc oxide is a wide-gap semiconductor with a high photo-catalysis activity, which has
been widely used in the photodegradation of organic pollutants in wastewater [16,17]. A wide range
of studies have discussed the application of nanoscale zerovalent iron (nZVI) in the removal of heavy
metals and organic pollutants [18,19]. Due to its high reactivity, zerovalent zinc exhibited a faster
removal of organic compounds than zerovalent iron [20]. To our knowledge, hitherto there have been
no reports available in the literature regarding MG removal by nanoscale zerovalent zinc (nZVZ).

Modeling and optimization are a vital stage in the contaminant removal process, which are
beneficial for determining the optimum experimental condition and obtaining maximum removal
efficiency [21]. Response surface methodology (RSM) as an experimental design tool was used to build
models, evaluate the effects of factors and search for the optimum experimental conditions [22].
Artificial intelligence (AI) has recently emerged as a promising technology with tremendous
development potential for actual applications, including intelligent search, autonomous driving,
robots, big data, fingerprint identification and human-computer games [23,24]. Artificial neural
networks (ANNs) are a key AI tool commonly used as a black box that works better than RSM in
terms of modeling and prediction, but they cannot obtain the global optimal solutions [25–27]. Particle
swarm optimization (PSO) is inspired by the behavior of bird flocks, which has a potential to find the
optimal solutions via “particles” movement [28]. The genetic algorithms (GA) based on the natural
mechanics and natural selection is utilized for finding optimum solutions [29]. PSO or GA coupled
with ANNs is used to achieve the optimum removal efficiency because it does not easily get trapped
in a local optimum [30].

The aim of the present study was to investigate the feasibility that the the commercially available
nZVZ could be utilized as a potential adsorbent for the removal of MG from aqueous solutions with
the aid of the RSM, ANN-PSO and ANN-GA models. First of all, the nZVZ was characterized via X-ray
diffraction and X-ray photoelectron spectroscopy. Then, the experiments for the adsorption of MG onto
nZVZ were performed based on RSM design using the selected parameters, viz. initial pH, temperature,
contact time and initial concentration. The RSM, ANN-PSO and ANN-GA models were applied to find
the optimum process variables and maximum removal efficiency of MG. Next, the performance of these
models was evaluated and the relative importance of the variables were obtained by sensitivity analysis.
Besides, the equilibrium data for uptake of MG by nZVZ was fitted to the Langmuir, Freundlich, Temkin
isotherms. The pseudo-first-order kinetics and the pseudo-second-order kinetics were employed to
examine the effect between the removal efficiency and contact time. Finally, thermodynamic parameters
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∆G0, ∆H0 and ∆S0 were calculated from the Van’t Hoff plot of lnKc vs. 1/T to discuss the removal
mechanism of MG.

2. Materials and Methods

2.1. Materials

In the present study, all chemicals and reagents (HCl, NaOH) used are of analytical grade and used
without further purification. The commercially available nZVZ (the specific surface area: 33.01 m2/g,
average particles diameter: 50.00 nm) was purchased from Shanghai Naiou Nanotechnology Co.,
Ltd., (Shanghai, China), and the target chemical MG was obtained from Tianjin Kemio Chemical Co.,
Tianjin, China. The MG stock solution (1000.00 mg/L) was prepared by dissolving in deionized water,
which was further diluted for a desired concentration (600.00, 700.00 and 800.00 mg/L). The pH values
of the solutions were measured with a digital pH meter (PHB-5, Hangzhou Qiwei Co., Ltd., Hangzhou,
Zhejiang, China) using a standard buffer solution to calibrate the solid electrode, and pH values of the
test solutions were adjusted by addition of 0.1 M HCl or 0.1 M NaOH. Absorbance of the MG solutions
was determined by using UVmini-1240 spectrophotometer (SHIMADZU, Kyoto, Japan).

2.2. Characterization of the Commercially Available nZVZ

The crystalline structure of nZVZ was measured by X-ray diffraction (XRD) on a Philips
Analytical X-ray (Lelyweg 1 7602, EA, Almelo, the Netherlands) with a Cu-Kα X-ray source
(generator tension 40 kV, current 40 mA). The commercial nZVZ was placed in a glass holder and
scanned from 5◦ to 90◦. The X-ray photoelectron spectroscopy (XPS) data of nZVZ were collected
using an ESCALAB 250Xi spectrometer (Thermo Electron Corporation, Waltham, MA, USA) with
monochromatized Al Kα radiation (1486.6 eV) and the peak energies were corrected with the C1s peak
as a reference.

2.3. Batch Adsorption Experiments

The adsorption experiments were performed using nZVZ as the adsorbent and MG as the
adsorbate. The experiment was carried out using 100 mL conical flask with 50 mL solution of known
initial pH and initial MG concentration by adding 30 mg of the adsorbent. Then, the conical flask
was mounted on a temperature controlled water bath shaker and agitated at 200 rpm for the desired
temperature (20, 25 or 30 ◦C) and contact time (60, 90 or 120 min). After the experiment, the suspension
was centrifuged at 4500 rpm for 5 min, and the concentration of the supernatant was measured at
the maximum absorbance wavelength (616 nm). The removal efficiency of MG and the amount of
adsorption at equilibrium (qe, mg/g) was calculated by using the following equation:

Y =
(c0 − ct)

ct
× 100% (1)

where Y is the removal efficiency of MG, c0 is the initial concentration of MG (mg/L), and ct is the MG
concentration at any time t (mg/L).

qe =
(c0 − ct)

m
× v (2)

where qe is the amount of adsorption at equilibrium (mg/g), v and m represent the solution volume (L)
and the mass of adsorbent used (g), respectively.

Responses surface methodology (RSM) is a collection of mathematical and statistical methods,
which can help better understand the interactive effect of the process parameters and provide
a smaller number of experimental runs [20]. In this study, the optimal conditions for maximum
removal efficiency of MG by nZVZ were identified by the 3-level 4-factor Box–Behnken design
(BBD) under RSM. The four important independent variables, viz. initial pH (A), temperature (B),
contact time (C) and initial concentration (D), were selected to design experiments, whereas the
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removal efficiency (Y) was considered as the dependent variable. This design included 29 experiments
with 5 central points. The levels of factors were coded as−1 (low), 0 (middle) and 1 (high) (Table 1) [31].
The relationship between the response and the independent variables can be represented by the
following quadratic equation:

Y = β0 + β1A + β2B + β3C + β4D + β5AB + β6AC + β7AD + β8BC + β9BD +

β10CD + β11A2 + β12B2 + β13C2 + β14D2 (3)

where Y is the predicted removal efficiency of MG, β0 is the intercept of quadratic model, β1–β14 are
the estimated coefficients, and A, B, C and D are the independent variables.

Table 1. Values of independent variables.

Variables
Range and Levels

−1 0 1

Initial pH 4 5 6
Temperature (◦C) 20 25 30

Contact time (min) 60 90 120
Initial concentration (mg/L) 600 700 800

2.4. Back Propagation Artificial Neural Network (BP-ANN)

ANNs have captured the focus of much attention due to their wide range of applicability,
which can deal with complicated problems [32]. The Neural Network Toolbox of MATLAB software
(2010a) (the MathWorks, Inc., Natick, MA, USA) was chosen in this work to develop the ANN
models using neural network toolbox. Commonly used ANNs include multilayer perception
(MLP), self-organization mapping (SOM), radial basis function (RBF) and fuzzy network [33].
Back propagation (BP) with the multilayer perception architecture is the most popular and widely used
ANN with a good generalization ability and high reliability, which is based on the supervised learning
procedure. In the present study, a three layer (input layer, hidden layer and output layer) feed-forward
artificial neural network was selected to develop the predictive model (Figure 2). The output in each
layer of BP-ANN was produced by summing all the input weight through the activation function [34].
A tangent sigmoid transfer function (tansig) at input-hidden layer was adopted (Equation (7)),
while a linear transfer function (purelin) was used in hidden-output layer (Equation (8)). The network
was trained by traingdx algorithm and the number of training epochs was set as 2000 with the learning
rate at 10−5 (Figure 3).

Figure 2. Illustration of Back Propagation Artificial Neural Network (BP-ANN) architecture.
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Figure 3. Flow diagram of BP-ANN training.

It is an important step to determine the number of neurons in hidden layer for training the
network. In the present research, the computations were performed in which the number of neurons
was varied from 1 to 10. The inputs (independent variables) and output (dependent variable) was
normalized in the range of −1–+1 to avoid numerical overflow due to excessively large or small
weights. The normalization equation is described as follows:

yi = 2× x− xmin
xmax − xmin

− 1 (4)

where yi is the normalized value of x, and the xmin and xmax are the minimum and maximum values of
x, respectively. The weight of a neuron in hidden layer is calculated as follows:

Wi = ∑k
i=1 wijxi (5)

where xi is value of neuron i in input layer, wij is the corresponding connection weight between neuron
(i) in input layer and neuron (j) in hidden layer, and the weight of a neuron in output layer is calculated
as follows:

Wi = ∑k
i=1 wjl xj (6)

where xj is value of neuron j in hidden layer, wjl is the corresponding connection weight between
neuron (j) in hidden layer and neuron (l) in output layer. The tangent sigmoid (tansig) was used as
transfer function between input and hidden layers which is given by:

f (x) =
2

1 + e−2x − 1 (7)

The following is linear transfer function (purelin) used between hidden and output layers:

f (x) = x (8)
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The output was produced by weight and bias of neuron through the activation function using
Equation (9):

Y = f × (w + b) (9)

where y, f, w and b represent the output, activation function, weight and bias in hidden layer or output
layer, respectively.

The relative influence of the individual variable was calculated by the following Garson
equation [35,36]:

Iab =
∑n

g=1

(
|wag|

∑m
z=1|wzg|

∣∣∣wgb

∣∣∣)
∑n

h=1

(
∑n

g=1

(
|wag|

∑m
z=1|wzg|

∣∣∣wgb

∣∣∣)) (10)

where Iab is the relative importance of the jth input variable on the output variable, wx is the
connection weight, a, g and b are the number of neurons in the input layer, hidden layer and output
layer, respectively.

2.5. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart, which is an
efficient optimization technique simulating the social behavior, e.g., bird flocking and fish training [37].
An initial population randomly generated was called particles (solutions). Each particle had a position
and a velocity, which was scattered throughout the multi-dimensional search space. The fitness
function was used for evaluating fitness values of the particles. In every iteration, the particles could
update their position and velocity according to their own history (personal best) and the knowledge of
the swarm (global best) in comparison with the particle’s fitness values [38,39]. The particles continued
to move in the search space until the maximum iteration number or the desired value of the objective
function was reached (Figure 4). The operation parameters were as follows: 20 for the swarm size,
50 for maximum iteration, 2 for personal learning coefficient (c1), 2 for global learning coefficient (c2),
0.3 for minimum inertia weight and 0.9 for maximum inertia weight.

Figure 4. Flow diagram of particle swarm optimization (PSO).
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2.6. Genetic Algorithm (GA)

The genetic algorithm operation was started by the blind random population (a possible solution)
that was represented by a set of chromosomes coded as a binary string [40]. Each of chromosomes
included four different genes, i.e., initial pH, temperature, contact time and initial concentration.
First of all, the initialization of populations was identified. The fitness function was applied for
evaluating the merit of each chromosome. Then, selection operation was to choose some individuals
from initial generation (parents) to breed a new generation (offspring) by utilizing the roulette wheel
selection method [41]. Next, crossover operator was aimed to swap the information of parents that led
to generating new individuals for the next generation. With the aid of crossover, the offspring had
both the strength and weakness of its parents. The last operator was the mutation that was able to
increase the randomness of individuals and prevent the GA from getting stuck in a local optimum
(Figure 5) [42]. The optimum parameters used for GA optimization were size of population (20),
number of generation (100), probability of crossover (0.8) and probability of mutation (0.01).

Figure 5. Flowchart of Genetic Algorithm (GA) optimization.

3. Results and Discussion

3.1. Characterization of the Commercially Available nZVZ

In the present study, the XRD pattern obtained for the nZVZ shows the characteristic peak at the 2θ
angles of 36.0, 39.5 and 44.5 corresponding to (002), (100) and (101) facets, respectively. These peaks are
compatible with the standard XRD data for the hexagonal Zn lattice (JCPDS file 04-0831) (Figure 6) [43].
The characteristic peaks of ZnO at 32◦ and 34.7◦ are assigned to (100) and (002) facets [44,45]. The XPS
spectrum of wide scan demonstrates that the binding energy of 284.5, 532.7 and 1023.6 are attributed
to C1s, O1s and Zn 2p, respectively. In the spectrum of Zn 2p, the peaks for Zn 2p3/2 and Zn 2p1/2 are
located at 1022.5 eV and 1047.6 eV, respectively (Figure 7a). The satellite peaks at around 1021.4 eV
and 1023.6 eV are the feature peaks of Zn2+ and Zn0, respectively, which suggest that the surface of
nZVZ was partially oxidized (Figure 7b) [45].
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Figure 6. The XRD pattern of the commercially available nanoscale zerovalent zinc (nZVZ).

Figure 7. The X-ray photoelectron spectroscopy (XPS) spectra of nZVZ (a); The XPS spectra of the Zn-2p
core level. Regions (b).
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3.2. Modeling and Optimization by RSM

In the present study, the normal plot of studentized residuals vs. predicted probability values
indicates that the model is suitable owing to the data distributed homogeneously on either side
of the straight line following the Gaussian distribution (Figure 8) [46]. A satisfactory correlation
(R2 = 0.9813) between the experimental and predicted removal efficiency suggests that the model is
reliable (Figure 9). Three dimensional response surface plots are shown in Figure 10, which represent
the changes in removal efficiency depending on every two factors when the other factors are set to the
fixed values [47]. Initial pH as an important independent variable does not only affect the aqueous
chemistry of molecules but also the surface binding sites of the adsorbents. The zero point of charge
(pHzpc) indicates a net surface charge equal to zero [48]. MG (pKa = 10.3) becomes more protonated
in acidic solutions and deprotonated in basic solutions [49]. The surface of nZVZ is positive when the
solution pH is above the pHzpc, whereas the surface of nZVZ is negative when the solution pH is
below the pHzpc [50]. From Figure 10a, it can be observed that an increase in pH and temperature
enhances the removal efficiency of MG. Furthermore, the final pH of the solution was higher than the
initial pH of the solution. The initial pH of the solution was acidic while the final pH of the solution
was found to be alkaline (Figure 11). At higher pH, the number of negatively charged sites increase so
that the adsorption was favored between the adsorbent and the cationic MG molecules due to a strong
electrostatic attraction [30]. According to the RSM-BBD experimental design, the corresponding
quadratic polynomial regression model is expressed by Equation (11). Notably, the positive values
of coefficients for A (initial pH), B (temperature), especially C (contact time) illustrate the synergistic
effect on the response.

Y = 63.12 + 10.44 A + 10.34 B + 12.71 C − 2.21 D − 4.50 AB − 8.53 AC + 6.22 AD

+ 2.38 BC + 2.63 BD + 1.10 CD + 6.21 A2 − 3.12 B2 − 3.32 C2 + 1.97 D2 (11)

Figure 8. Normal plot of studentized residuals vs. normal % probability.
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Figure 9. The plot of correlation between experimental and predicted removal efficiency.

Figure 10. Cont.
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Figure 10. Three dimensional response surface plots for the malachite green (MG) removal: (a) Initial
pH—Temperature; (b) Initial pH—Contact time; (c) Initial pH—Initial concentration (d) Temperature—Contact
time; (e) Temperature—Initial concentration; (f) Contact time—Initial concentration.

Figure 11. The difference between the initial and final pH of the solutions.

The results for the analysis of variance (ANOVA) are summarized in Table 2, which can be used
for identifying the significant factors. The F-value for the model is 52.57 implying that the model is
significant. Since the p-values are less than 0.050, all first-order terms (initial pH (A), temperature (B),
contact time (C) and initial concentration (D)) exhibit a high significance on the removal efficiency of
MG. The combined effects of initial pH and temperature (AB), initial pH and contact time (AC), initial
pH and initial concentration (AD) and the square of the initial pH (A2) also show a significance on the
removal efficiency of MG at the 95% confidence level. Based on the F-values of independent variables,
the order for these parameters influencing the removal efficiency of MG is: contact time > initial pH >
temperature > initial concentration.
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Table 2. Analysis of variance (ANOVA) for the experimental results from the Box–Behnken design
(BBD).

Source Sum of Squares df Mean Square F-Value p-Value

Model 5669.53 14 404.97 52.57 <0.0001 significant
A 1306.67 1 1306.67 169.63 <0.0001
B 1283.61 1 1283.61 166.64 <0.0001
C 1937.26 1 1937.26 251.49 <0.0001
D 58.52 1 58.52 7.60 0.0155

AB 80.82 1 80.82 10.49 0.0059
AC 290.70 1 290.70 37.74 <0.0001
AD 154.50 1 154.50 20.06 0.0005
BC 22.61 1 22.61 2.94 0.1087
BD 27.56 1 27.56 3.58 0.0794
CD 4.84 1 4.84 0.63 0.4412
A2 249.84 1 249.84 32.43 <0.0001
B2 63.24 1 63.24 8.21 0.0125
C2 71.50 1 71.50 9.28 0.0087
D2 25.14 1 25.14 3.26 0.0924

Residual 107.84 14 7.70 - -
Lack of Fit 107.84 10 10.78 - -
Pure Error 0 4 0 - -

Total 5777.37 28 - - -

3.3. Modeling and Prediction by BP-ANN

BBD experimental sets were used as input data for developing a BP-ANN model. Four fifth of
experimental data (1–24) were utilized for training, while the rest (25–29) was used as the test set
(Table 3). The mean absolute error between the experimental and predicted removal efficiency of MG is
0.54% with a high correlation (R2 = 0.9999), which suggests that the BP-ANN model possesses a good
prediction strength (Figure 12). The number of neurons in the hidden layer has a direct influence on the
fitting performance of the network. Nevertheless, too many neurons in the hidden layer could lead to
overfitting [40]. As shown in Figure 13, the optimum number of neurons in hidden layer was selected
on the basis of mean square error (MSE), and one neuron was found to be the suitable structure in the
hidden layer with the minimum MSE (0.0018). Thus, the final topological structure of the BP-ANN was
4-1-1 (four neurons in the input layer, one neuron in the hidden layer and one neuron in output layer).

Table 3. Comparison of the removal efficiency between experimental and Back Propagation Artificial
Neural Network (BP-ANN) model predicted.

Runs A B (◦C) C (min) D (mg/L) Experimental Value (%) Predicted Value (%) Absolute Error (%)

1 6 25 60 700 72.21 72.45 0.24
2 5 25 60 800 42.94 42.85 0.09
3 4 25 90 800 51.56 51.59 0.03
4 6 20 90 700 67.84 67.74 0.10
5 5 25 90 700 63.12 63.07 0.05
6 6 25 120 700 82.29 82.25 0.04
7 5 25 120 600 77.01 77.13 0.12
8 5 20 60 700 36.34 36.31 0.03
9 5 30 60 700 51.04 51.11 0.07

10 5 20 90 800 50.07 50.13 0.08
11 5 25 90 700 63.12 63.07 0.05
12 4 20 90 700 41.20 41.28 0.08
13 5 30 90 600 70.09 70.00 0.09
14 5 25 90 700 63.12 63.07 0.05
15 5 20 90 600 54.72 54.74 0.02
16 5 20 120 700 57.47 57.55 0.08
17 5 30 90 800 75.94 75.95 0.01
18 6 25 90 800 87.94 87.95 0.01
19 4 25 90 600 66.99 66.99 0.00
20 5 25 120 800 68.36 68.35 0.01
21 4 25 60 700 34.15 34.06 0.09
22 4 25 120 700 78.33 78.23 0.1
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Table 3. Cont.

Runs A B (◦C) C (min) D (mg/L) Experimental Value (%) Predicted Value (%) Absolute Error (%)

23 4 30 90 700 72.17 72.26 0.09
24 6 25 90 600 78.51 78.38 0.13

25 * 5 25 90 700 63.12 63.07 0.05
26 * 5 25 60 600 55.99 45.78 10.21
27 * 6 30 90 700 80.83 81.76 0.93
28 * 5 30 120 700 81.68 79.82 1.86
29 * 5 25 90 700 63.12 63.07 0.05

Mean absolute error (%) 0.54

* representation test set.

Figure 12. Regression plot of the actual and predicted results.

Figure 13. Mean square error (MSE) of neurons in the BP-ANN model.

The relationship between the MSE and the number of epochs showed that the MSE reached
a minimum (10−5) when the training was converged after 909 epochs (Figure 14). In Table 4, we
present the values of weights and biases in input-hidden layer (wi and bi) and hidden-output layer
(wj and bj) by the BP-ANN model used in this study. According to the results calculated with the
Garson equation (Equation (10)), contact time appears to be the most influential variables followed by
temperature and initial pH. Initial concentration has the least influence on the removal efficiency of
MG among the independent variables. This finding is in accordance with the ANOVA results where
contact time is deemed significant to the removal efficiency of MG (Table 5).
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Figure 14. The MSE of the number of epochs.

Table 4. The weights and biases of BP-ANN in input-hidden layer (wi and bi) and hidden-output layer
(wj and bj).

Number of
Neurons

wi

bi wj bjInput Variables

Initial pH Temperature Contact Time Initial Concentration

1 0.2899 −1.4754 −1.9836 −0.05183 −2.4896 −0.9964

0.2743

2 −0.04558 1.9856 1.1144 1.0057 1.9363 0.4235
3 −1.0854 0.2040 −1.7355 −1.4023 1.3831 0.7355
4 1.9209 −0.9750 −0.5651 −1.1128 −0.8299 −0.7634
5 −1.3428 0.3335 −0.4420 2.0220 0.2766 −0.9220
6 1.3265 1.5239 1.4140 0.3420 0.2766 0.1964
7 −1.4517 1.2288 −1.4871 −0.6076 −0.8299 0.2086
8 −0.6918 −0.07202 1.4166 1.9255 −1.3831 0.03286
9 1.1988 −0.2760 −1.0214 1.9083 1.9363 −0.9850

10 0.7757 −1.0114 −1.3414 −1.6655 2.4896 0.3779

Table 5. Relative significance of input variables.

Input Variables Relative Significance (%) Order

Initial pH 7.63 3
Temperature 38.82 2
Contact time 52.19 1

Initial concentration 1.36 4

3.4. Prediction of Optimal Conditions by ANN-PSO

As presented in Table 6, the maximum removal efficiency was 89.50% by using the RSM model
corresponding to initial pH of 4.16, temperature of 29.16 ◦C, contact time of 114.54 min and initial
concentration of 619.61 mg/L. The confirmatory experiment was carried out under the following
conditions: 4.20 for initial pH, 29.20 ◦C for temperature, 115.00 min for contact time and 620.00 mg/L
for initial concentration. As shown in Figure 15, the performance of ANN-PSO demonstrates that
the maximum removal efficiency (92.55%) was achieved after 10 iterations. The optimum conditions
obtained by the ANN-PSO model are 4.00 for initial pH, 30.00 ◦C for temperature, 120.00 min for
contact time and 600.00 mg/L for concentration. Based on the process parameters, the confirmatory
values of the RSM and ANN-PSO models are 77.37% and 84.87%, respectively. The absolute errors
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between the confirmatory and predicted results (12.13% and 7.68%) illustrate that the ANN-PSO model
has a better predictive capacity than the RSM model.

Figure 15. The removal efficiency vs. iterations.

3.5. Prediction the Optimal Conditions by ANN-GA

The optimum fitness value was obtained when the iterations of GA stopped after 57 generations as
shown in Figure 16. The predicted removal efficiency of MG under the ANN-GA optimized condition
was 94.12% when initial pH, temperature, contact time and initial concentration were 5.70, 27.19 ◦C,
110.62 min and 607.03 mg/L, respectively, whereas the confirmatory removal efficiency (90.72%)
was achieved under the conditions of 5.70 for initial pH, 27.20 ◦C for temperature, 111.00 min for
contact time and 600.00 mg/L for initial concentration. A small absolute error (3.40%) between the
confirmatory and predicted results reveals a good prediction by using the ANN-GA model.

Figure 16. Evolvement of fitness with 100 generations.

3.6. Comparison of the Optimum Results with RSM, ANN-PSO and ANN-GA

The coefficient of determination (R2) is used as a criterion in relation to the confirmatory and
predicted results, which gives a clear insight into the performance of the models. The value of R2

(0.9999) manifests that the BP-ANN model has a better capability for predicting the removal efficiency
of MG than the RSM model (R2 = 0.9813). The predicted optimum conditions by using the RSM,
ANN-PSO and ANN-GA models are clearly different. The predicted maximum removal efficiency
of MG by using the ANN-GA model is higher than the RSM model by 4.62% and higher than the
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ANN-PSO model by 1.57%, while the confirmatory experiments show that the relatively higher
removal efficiency of MG is obtained by using the ANN-GA model (Table 6). The absolute errors of
removal efficiency between the confirmatory and predicted are 12.13% (RSM), 7.68% (ANN-PSO) and
3.40% (ANN-GA), which indicate that the ANN-GA model outperformed the other models presented
in this study.

Table 6. Comparison of the confirmatory results with predicted results. RSM: Response Surface
Methodology; ANN-PSO: Artificial neural network coupled with particle swarm optimization; ANN-GA:
Artificial neural network coupled with genetic algorithm.

Process Variables
RSM ANN-PSO ANN-GA

Predicted
Parameters

Experimental
Parameters

Predicted
Parameters

Experimental
Parameters

Predicted
Parameters

Experimental
Parameters

Initial pH 4.16 4.20 4.00 4.00 5.70 5.70
Temperature (◦C) 29.16 29.20 30.00 30.00 27.19 27.20

Contact time (min) 114.54 115.00 120.00 120.00 110.62 111.00
Initial concentration (mg/L) 619.61 620.00 600.00 600.00 607.03 600.00
Percentage of removal (%) 89.50 77.37 92.55 84.87 94.12 90.72

Absolute errors (%) 12.13 7.68 3.40

3.7. Equilibrium Isotherms

Adsorption isotherms provide critical information that describes the interaction between the
adsorbate and the adsorbent [48]. In the present research, the characteristics of the adsorption were
investigated by fitting the experimental data to the Langmuir, Freundlich and Temkin isotherms.

The Langmuir isotherm, as one of the commonly used isotherms, is valid for monolayer
adsorption, which takes place onto a homogenous surface containing a finite number of adsorption
sites [51]. The linear form of Langmuir isotherm is as follows:

Ce

qe
=

1
qmKL

+
Ce

qm
(12)

RL =
1

1 + KLc0
(13)

where c0, ce and qe represent the initial concentration of MG (mg/L), the equilibrium concentration of
the MG solution (mg/L) and the amount of adsorbate adsorbed per unit mass at equilibrium (mg/g),
respectively, qm is the maximum adsorption capacity of the adsorbent (mg/g), KL is the Langmuir
constant (L/mg), and RL is a dimensionless constant. The value of RL suggests the adsorption to be
irreversible (RL = 0), favorable (0 < RL < 1), linear (RL = 1), or unfavorable (RL > 1) [52].

The Freundlich isotherm, as an empirical equation, assumes that the adsorption takes place
on heterogeneous surfaces and the sorption is not restricted to the formation of the monolayer [53].
The linear form of Freundlich isotherm is expressed as follows:

log qe = log k f +
1
n

log ce (14)

where kf is the Freundlich constant and 1/n represents the heterogeneity factor. A close to zero value
of 1/n manifests the rise of heterogeneity on the surface [54], and the value of 1/n between 0 and 1
shows a favorable adsorption process, while 1/n above 1 demonstrates bi-mechanism and cooperative
adsorption [55].

The Temkin isotherm assumes that the adsorption energy would decrease linearly with the surface
coverage due to the adsorbent-adsorbate interactions [56]. The linear form of Temkin isotherm is given
as follows:

qe = B lnA + B lnce (15)
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where B is the Temkin isotherm energy constant (L/mol) and A is the Temkin isotherm equilibrium
binding constant (L/g).

The values of parameters obtained from the three isotherm models are summarized in Table 7.
For the adsorption isotherms, the fitting results manifest that the Langmuir isotherm with R2 of 0.9988
is suitable for describing the adsorption of MG onto nZVZ. Furthermore, its calculated adsorption
capacity is in a satisfactory agreement with the experimental adsorption capacity, which further proves
the suitability of the Langmuir isotherm model (Figure 17). According to this model, the maximum
adsorption capacity was calculated to be 1000.00 mg/g, which was significantly higher than those
of the other materials (Table 8). It can be noted that the RL value is between 0.008045 and 0.02375
indicating that the equilibrium adsorption is favorable under the studied conditions. On the basis of
the Freundlich isotherm model, the value of 1/n is 0.1277 indicating that the adsorption process is
favorable. For the Temkin isotherm model, A and B are 152.19 (L/g) and 92.29 (J/mol), respectively.

Table 7. The isotherm parameters for adsorption of Malachite Green (MG) onto nanoscale zerovalent
zinc (nZVZ).

Isotherms Equations Parameters Values

Langmuir
Ce
qe

= 1
qmKL

+ Ce
qm

RL = 1
1+KLc0

KL (L/mg) 0.1370
qm (mg/g) 1000.00

RL 0.008045–0.02375
R2 0.9988

Freundlich log qe = log k f +
1
n log ce

Kf (mg/g) 488.65
1/n 0.1277
R2 0.9809

Temkin qe = B lnA + B lnce

A (L/g) 152.19
B (J/mol) 92.29

R2 0.9677

Table 8. Adsorption capacity of MG for different adsorbents.

Materials Contact Time Adsorption Capacity (mg/g) References

Cyclodextrins-based adsorbent 120 91.9 [1]
AMP a 120 335 [57]

CCB beads b 120 435 [58]
nZVZ 120 1000 This study

a Aminopropyl functionalized magnesium phyllosilicate; b Chitosan coated bentonite beads.

Figure 17. The isotherms for adsorption of MG onto nZVZ (initial pH = 5, temperature = 25 ◦C and
contact time = 120 min).
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3.8. Adsorption Kinetics

The kinetics study depicts the uptake rate of an adsorbate, and obviously this rate controls the
residence time of adsorption at the solid-solution interface in the whole adsorption process [59]. In the
present study, the experimental data were fitted to the pseudo-first-order and pseudo-second-order
kinetic models. The pseudo first-order equation can be expressed as follows [60,61]:

log(qe − qt) = log qe −
k1t

2.303
(16)

where qe and qt are the amount of MG adsorbed (mg/g) on the adsorbent at the equilibrium and at
time t (min), respectively, and k1 is the rate constant of adsorption (L/min). The pseudo-second-order
equation is given as [62]:

t
qt

=
1

k2q2
e
+

t
qe

(17)

where k2 (g/mg·min) is the rate constant of pseudo-second-order adsorption.
The values of parameters obtained from these two models are presented in Table 9. From the

values of R2, it can be concluded that the adsorption data is well fitted to the pseudo-second-order
kinetic model. Nevertheless, its calculated removal efficiency has a slight deviation compared with
the experimental removal efficiency. As shown in Figure 18, the full removal process reached an
equilibrium within 120 min.

Figure 18. The kinetics for adsorption of MG onto nZVZ (initial pH = 5, temperature = 25 ◦C, initial
concentration = 700.00 mg/L).

Table 9. The kinetic parameters for the adsorption of MG onto nZVZ.

Models Equations Parameters Values

The pseudo-first-order kinetics log(qe − qt) = log qe − k1t
2.303

k1 (1/min) 1.4 × 10−2

qe (mg/g) 990.19
R2 0.9344

The pseudo-second-order kinetics t
qt

= 1
k2q2

e
+ t

qe

k2 (g/mg·min) 8.0 × 10−6

qe (mg/g) 1428.57
R2 0.9463

3.9. Adsorption Thermodynamics

Thermodynamic parameters, i.e., standard free energy (∆G0), enthalpy (∆H0) and entropy
(∆S0) provide in-depth information of the heat change, feasibility and spontaneity in an adsorption
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process [63,64]. The effect of temperature at 293, 298, 303 and 308 K was investigated by the experiments
with initial pH of 5, initial MG concentration of 700.00 mg/L and nZVZ dosage of 30 mg. The values
of ∆H0, ∆S0 and ∆G0 were calculated from the following Van’t Hoff equation [65]:

Kc =
qe

ce
(18)

∆G0 = −RTlnKc (19)

lnKc =
∆S0

R
− ∆H0

RT
(20)

where qe is the adsorption capacity at equilibrium (mg/g), ce is the equilibrium concentration (mg/g),
Kc is the equilibrium constant, the universal gas constant value (R) is 8.314 J/mol/K and T (K) is the
absolute solution temperature.

The results of ∆G0 for the adsorption of MG onto nZVZ in this study were −1.2512, −2.8320,
−4.1823 and −5.7419 kJ/mol at 293, 298, 303 and 308 K, respectively (Table 10). The negative values
of ∆G0 illustrate that the spontaneous nature of this adsorption process was observed in the range of
temperature studied (293 K–308 K). In addition, the values of ∆H0 and ∆S0 were calculated from the
slope and intercept of the plot between lnKc and 1/T (Figure 19) [66]. The positive value of ∆H0 implies
that the adsorption of MG onto nZVZ is an endothermic process. The value of ∆S0 is positive reflecting
the degree randomness at the solid/liquid interface during the adsorption process. The positive values
of ∆S0 and ∆H0 show that the interaction of nZVZ with MG is basically entropy driven [67].

Figure 19. Plot of lnKc vs. 1/T for initial pH of 5, contact time of 120 min and initial concentration
of 700.00 mg/L.

Table 10. The thermodynamic parameters for adsorption of MG onto nZVZ.

K ∆G0 (KJ/mol) ∆S0 (kJ/mol/K) ∆H0 (kJ/mol)

293 −1.2512

0.2965 85.5990
298 −2.8320
303 −4.1823
308 −5.7419

4. Conclusions

In this study, the commercially available nZVZ was characterized by means of XRD and XPS.
Comparison between the experimental and prediction values obtained by the RSM and the BP-ANN
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models showed that the BP-ANN model was more accurate based on the value of R2 (0.9999).
The maximum removal efficiency of MG under the optimum conditions was obtained with the
aid of the RSM, ANN-PSO and ANN-GA models. The mean absolute errors between confirmatory
and predicted results for the RSM, ANN-PSO, and ANN-GA models are 12.13%, 7.68% and 3.40%,
respectively, which demonstrate that the ANN-GA model manifest a better agreement in predicting the
removal efficiency of MG than the other two models. Additionally, both the ANOVA and sensitivity
analysis demonstrate that the important process parameter is contact time. The equilibrium data
of MG uptake by nZVZ were fitted to Langmuir, Freundlich and Temkin isotherms. The Langmuir
model was found to fit the adsorption data well with maximum adsorption capacity of 1000.00 mg/g.
The experimental data were well described by the pseudo-second order model (R2 = 0.9463) with higher
correlation coefficients than the pseudo-second order model (R2 = 0.9302). From the thermodynamic
study, it is concluded that the adsorption of spontaneous nature occurred in the range of temperature
studied (293 K–308 K) due to the negative value of ∆G0. The positive value of ∆H0 indicated the
endothermic nature of the adsorption interaction. This is in agreement with the results where the MG
dye adsorption increases with an increase in temperature. The positive value of ∆S0 reflects the affinity
of the adsorbate for the adsorbent and the increased randomness at the solid-solution interface during
the adsorption process. In conclusion, nZVZ can be a promising adsorbent for the removal of MG from
aqueous solutions. Further studies should investigate the regeneration efficiency of the nZVZ for the
removal of MG or other dyes (e.g., Methyl orange, Methylene Blue) as well as the removal efficiency of
dyes via the permeable reactive barrier in the laboratory.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant
No. 21367009, the National 111 Project of China under Grand No. D17016 and the Postgraduate Educational
Innovation Project of Guizhou Province under project No. GZS [2016] 04.

Author Contributions: Jiwei Hu, Wenqian Ruan, Xuedan Shi and Xionghui Wei conceived and designed the
experiments, performed the experiments and wrote the paper; Yu Hou, Mingyi Fan and Rensheng Cao analyzed
the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous
solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol.
2007, 53, 97–110. [CrossRef]

2. Hamdaouia, O.; Saoudi, F.; Chiha, M.; Naffrechoux, E. Sorption of malachite green by a novel sorbent, dead
leaves of plane tree: Equilibrium and kinetic modeling. Chem. Eng. J. 2008, 143, 73–84. [CrossRef]

3. Khan, T.A.; Ali, I.; Singh, V.V.; Sharma, S. Utilization of Fly ash as Low-Cost Adsorbent for the Removal of
Methylene Blue, Malachite Green and Rhodamine B Dyes from Textile Wastewater. J. Environ. Prot. Sci. 2009,
3, 11–22.

4. Carneiro, J.O.; Samantilleke, A.P.; Parpot, P.; Fernandes, F.; Pastor, M.; Correia, A.; Luís, E.A.; Chivanga Barros, A.A.;
Teixeira, V. Visible light induced enhanced photocatalytic degradation of industrial effluents (Rhodamine B) in
aqueous media using TiO2 nanoparticles. J. Nanomater. 2016, 51, 21. [CrossRef]

5. Oualid, H.; Mahdi, C.; Emmanuel, N. Ultrasound-assisted removal of malachite green from aqueous solution
by dead pine needles. Ultrason. Sonochem. 2008, 15, 799–807.

6. Srivastava, S.; Sinha, R.; Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 2004, 66, 319–329.
[CrossRef] [PubMed]

7. Berberidou, C.; Poulios, I.; Xekoukoulotakis, N.P.; Mantzavinos, D. Sonolytic, photocatalytic and
sonophotocatalytic degradation of malachite green in aqueous solutions. Appl. Catal. B 2007, 74, 63–72.
[CrossRef]

8. Panandiker, A.; Fernandes, C.; Rao, T.K.G.; Rao, K.V.K. Morphological transformation of Syrian-hamster
embryo cells in primary culture by Malachite Green correlates well with the evidence for formation of
reactive free radicals. Cancer Lett. 1993, 74, 31–36. [CrossRef]

http://dx.doi.org/10.1016/j.seppur.2006.06.018
http://dx.doi.org/10.1016/j.cej.2007.12.018
http://dx.doi.org/10.1155/2016/4396175
http://dx.doi.org/10.1016/j.aquatox.2003.09.008
http://www.ncbi.nlm.nih.gov/pubmed/15129773
http://dx.doi.org/10.1016/j.apcatb.2007.01.013
http://dx.doi.org/10.1016/0304-3835(93)90040-G


Appl. Sci. 2018, 7, 3 21 of 23

9. Frontistis, Z.; Hapeshi, E.; Kassinos, D.F.; Mantzavinos, D. Ultraviolet-activated persulfate oxidation of
methyl orange: A comparison between artificial neural networks and factorial design for process modelling.
Photochem. Photobiol. Sci. 2015, 14, 528–535. [CrossRef] [PubMed]

10. Shi, B.Y.; Li, G.H.; Wang, D.S.; Feng, C.H.; Tang, H.X. Removal of direct dyes by coagulation: The performance
of preformed polymeric aluminum species. J. Hazard. Mater. 2007, 143, 567–574. [CrossRef] [PubMed]

11. Robinson, I.M.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical
review on current treatment technologies. Bioresour. Technol. 2001, 77, 247–255. [CrossRef]

12. Ahmad, M.A.; Alrozi, R. Removal of malachite green dye from aqueous solution using rambutan peel-based
activated carbon: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2011, 171, 510–516.
[CrossRef]

13. Ahmad, M.A.; Alrozi, R. Optimization of preparation conditions for mangosteen peel-based activated
carbons for the removal of Remazol Brilliant Blue R using response surface methodology. Chem. Eng. J. 2010,
165, 883–890. [CrossRef]

14. Li, L.Y.; Hu, J.W.; Shi, X.D.; Fan, M.Y.; Luo, J.; Wei, X.H. Nanoscale zero-valent metals: A review of synthesis,
characterization, and applications to environmental remediation. Environ. Sci. Pollut. Res. 2016, 18,
17880–17900. [CrossRef] [PubMed]

15. Naddeo, J.J.; Ratti, M.; O’Malley, S.M.; Griepenburg, J.C.; Bubb, D.M.; Klein, E.A. Antibacterial Properties
of Nanoparticles: A comparative review of chemically synthesized and laser-generated particles. Adv. Sci.
2015, 7, 1044–1057. [CrossRef]

16. Mir, N.; Salavati-Niasari, M.; Davar, F. Preparation of ZnO nano-flowers and Zn glycerolate nanoplates using
inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 2012,
181–182, 779–789. [CrossRef]

17. Zhu, L.P.; Wang, L.F.; Xue, F.; Chen, L.B.; Fu, J.Q.; Feng, X.L.; Li, T.F.; Wang, Z.L. Piezo-phototronic effect
enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Adv. Sci. 2017, 4, 1600185.
[CrossRef] [PubMed]

18. Khan, M.S.; Ahmad, A.; Bangash, F.U.K.; Shah, S.S.; Khan, P. Removal of basic dye from aqueous solutions
using nano scale zero valent iron (NZVI) as adsorbent. J. Chem. Soc. Pak. 2013, 35, 744–748.

19. Zhuang, Y.; Ahn, N.; Luthy, A. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent
iron: Pathways, kinetics, and reactivity. Environ. Sci. Technol. 2010, 44, 8236–8242. [CrossRef] [PubMed]

20. Hernandez, R.; Zappi, M.; Kuo, C.H. Chloride Effect on TNT Degradation by Zerovalent Iron or Zinc during
Water Treatment. Environ. Sci. Technol. 2004, 38, 5157–5163. [CrossRef] [PubMed]

21. Shojaeimehr, T.; Rahimpour, F.; Khadivi, M.A.; Sadeghi, M.A. Modeling study by response surface
methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light
expended clay aggregate (LECA). J. Ind. Eng. Chem. 2014, 20, 870–880. [CrossRef]

22. Nourouzi, M.M.; Chuah, T.G.; Choong, T.S. Optimisation of reactive dye removal by sequential
electrocoagulation–flocculation method: Comparing ANN and RSM prediction. Water Sci. Technol. 2011, 63,
984–994. [CrossRef] [PubMed]

23. Zhang, Y.; Pan, B. Modeling batch and column phosphate removal by hydrated ferric oxide-based
nanocomposite using response surface methodology and artificial neural network. Chem. Eng. J. 2014,
249, 111–120. [CrossRef]

24. Peralta, D.; Triguero, I.; Sanchez-Reillo, R.; Herrera, F.; Benitez, J.M. Fast fingerprint identification for large
data bases. Pattern Recogn. 2014, 47, 588–602. [CrossRef]

25. Kwon, S.K.; Jung, H.S.; Baek, W.K.; Kim, D. Classification of forest vertical structure in south Korea from
aerial orthophoto and lidar data using an artificial neural network. Appl. Sci. 2017, 7, 1046. [CrossRef]

26. Shi, X.D.; Ruan, W.Q.; Hu, J.W.; Fan, M.Y.; Cao, R.S.; Wei, X.H. Optimizing the removal of rhodamine B in
aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nZVI/rGO) using an
artificial neural network-genetic algorithm (ANN-GA). Nanomaterials 2017, 7, 134. [CrossRef] [PubMed]

27. Rajendra, M.; Jena, P.C.; Raheman, H. Prediction of optimized pretreatment process parameters for biodiesel
production using ANN and GA. Fuel 2009, 88, 868–875. [CrossRef]

28. Pedram, G.; Member, S.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm
and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 2014, 12, 309–313.

http://dx.doi.org/10.1039/C4PP00277F
http://www.ncbi.nlm.nih.gov/pubmed/25338014
http://dx.doi.org/10.1016/j.jhazmat.2006.09.076
http://www.ncbi.nlm.nih.gov/pubmed/17070993
http://dx.doi.org/10.1016/S0960-8524(00)00080-8
http://dx.doi.org/10.1016/j.cej.2011.04.018
http://dx.doi.org/10.1016/j.cej.2010.10.049
http://dx.doi.org/10.1007/s11356-016-6626-0
http://www.ncbi.nlm.nih.gov/pubmed/27094266
http://dx.doi.org/10.1166/asem.2015.1811
http://dx.doi.org/10.1016/j.cej.2011.11.085
http://dx.doi.org/10.1002/advs.201600185
http://www.ncbi.nlm.nih.gov/pubmed/28105394
http://dx.doi.org/10.1021/es101601s
http://www.ncbi.nlm.nih.gov/pubmed/20923154
http://dx.doi.org/10.1021/es049815o
http://www.ncbi.nlm.nih.gov/pubmed/15506212
http://dx.doi.org/10.1016/j.jiec.2013.06.017
http://dx.doi.org/10.2166/wst.2011.280
http://www.ncbi.nlm.nih.gov/pubmed/21411950
http://dx.doi.org/10.1016/j.cej.2014.03.073
http://dx.doi.org/10.1016/j.patcog.2013.08.002
http://dx.doi.org/10.3390/app7101046
http://dx.doi.org/10.3390/nano7060134
http://www.ncbi.nlm.nih.gov/pubmed/28587196
http://dx.doi.org/10.1016/j.fuel.2008.12.008


Appl. Sci. 2018, 7, 3 22 of 23

29. Ghaedi, A.M.; Ghaedi, M.; Pouranfard, A.R.; Ansari, A.; Avazzadeh, Z.; Vafaei, A.; Tyagi, I.; Agarwal, S.;
Gupta, V.K. Adsorption of Triamterene on multi-walled and single-walled carbon nanotubes: Artificial
neural network modeling and genetic algorithm optimization. J. Mol. Liq. 2016, 216, 654–665. [CrossRef]

30. Ahmadi, M.A.; Zendehboudi, S.; Lohi, A.; Elkamel, A.; Chatzis, I. Reservoir permeability prediction by
neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys. Prospect.
2013, 61, 582–598. [CrossRef]

31. Evans, M. Optimization of Manufacturing Processes: A Response Surface Approach; Taylor & Francis Group:
Oxford, UK, 2003.

32. Lek, S.; Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model.
1999, 120, 65–73. [CrossRef]

33. Gupta, N. Artificial neural network. Netw. Complex Syst. 2013, 1522, 36–62.
34. Lópeza, M.E.; Renea, E.R.; Bogerc, Z.; Veigaa, M.C.; Kennesa, C. Modelling the removal of volatile pollutants

under transient conditions in a two-stage bioreactor using artificial neural networks. J. Hazard. Mater. 2017,
324, 100–109. [CrossRef] [PubMed]

35. Montano, J.J.; Palmer, A. Numeric sensitivity analysis applied to feedforward neural networks.
Neural Comput. Appl. 2003, 12, 119–125. [CrossRef]

36. Aleboyeh, A.; Kasiri, M.B.; Olya, M.E.; Aleboyeh, H. Prediction of azo dye decolorization by UV/H2O2

using artificial neural networks. Dye. Pigment. 2008, 77, 288–294. [CrossRef]
37. Das, G.; Pattnaik, P.K.; Padhy, S.K. Artificial neural network trained by particle swarm optimization for

non-linear channel equalization. Expert Syst. Appl. 2014, 41, 3491–3496. [CrossRef]
38. Assareh, E.; Behrang, M.A.; Assari, M.R.; Ghanbarzadeh, A. Application of PSO (particle swarm optimization)

and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 2010, 35, 5223–5229.
[CrossRef]

39. Soesanti, I.; Syahputra, R. Batic production process optimization using particle swarm optimization method.
J. Theor. Appl. Inf. Technol. 2016, 86, 272–278.

40. Dil, E.A.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Bazrafshana, A.A.; Ghaedi, A.M. Trace determination
of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural
network-genetic algorithm and response surface methodology. Ultrason. Sonochem. 2016, 33, 129–140.
[CrossRef] [PubMed]

41. Bagheria, M.; Mirbagheria, S.A.; Bagherib, Z.; Kamarkhanica, A.M. Modeling and optimization of activated
sludgebulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm
approach. Process Saf. Environ. Prot. 2015, 95, 12–25. [CrossRef]

42. Kundua, P.; Paul, V.; Kumara, V.; Mishra, I.M. Formulation development, modeling and optimization of
emulsification process using evolving RSM coupled hybrid ANN-GA framework. Chem. Eng. Res. Des. 2015,
104, 773–790. [CrossRef]

43. Morozov, I.G.; Belousova, O.V.; Ortega, D.; Mafina, M.K.; Kuznetcov, M.V. Structural, optical, XPS and
magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloys Compd. 2015, 633, 237–245.
[CrossRef]

44. Qin, J.L.; Li, R.; Lu, C.Y.; Jiang, Y.; Tang, H.; Yang, X.F. Ag/ZnO/graphene oxide heterostructure for the
removal of rhodamine by thesynergistic adsorption-degradation effects. Ceram. Int. 2015, 41, 4231–4237.
[CrossRef]

45. Biesinger, M.C.; Laua, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis
of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.
[CrossRef]

46. Fan, M.Y.; Li, T.J.; Hu, J.W.; Cao, R.S.; Wu, Q.; Wei, X.H.; Li, L.Y.; Shi, X.D.; Ruan, W.Q. Synthesis and
characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites
used for Pb(II) removal. Materials 2016, 9, 687. [CrossRef] [PubMed]

47. Chenna, M.; Messaoudi, K.; Drouiche, N.; Lounici, H. Study and modeling of the organophosphorus
compound degradation by photolysis of hydrogen peroxide in aqueous media by using experimental
response surface design. J. Ind. Eng. Chem. 2016, 33, 307–315. [CrossRef]

48. Ofomaja, A. Equilibrium studies of copper ion adsorption onto palm kernel fibre. J. Environ. Manag. 2010,
91, 1491–1499. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.molliq.2016.01.068
http://dx.doi.org/10.1111/j.1365-2478.2012.01080.x
http://dx.doi.org/10.1016/S0304-3800(99)00092-7
http://dx.doi.org/10.1016/j.jhazmat.2016.03.018
http://www.ncbi.nlm.nih.gov/pubmed/27021263
http://dx.doi.org/10.1007/s00521-003-0377-9
http://dx.doi.org/10.1016/j.dyepig.2007.05.014
http://dx.doi.org/10.1016/j.eswa.2013.10.053
http://dx.doi.org/10.1016/j.energy.2010.07.043
http://dx.doi.org/10.1016/j.ultsonch.2016.04.031
http://www.ncbi.nlm.nih.gov/pubmed/27245964
http://dx.doi.org/10.1016/j.psep.2015.02.008
http://dx.doi.org/10.1016/j.cherd.2015.10.025
http://dx.doi.org/10.1016/j.jallcom.2015.01.285
http://dx.doi.org/10.1016/j.ceramint.2014.11.046
http://dx.doi.org/10.1016/j.apsusc.2010.07.086
http://dx.doi.org/10.3390/ma9080687
http://www.ncbi.nlm.nih.gov/pubmed/28773813
http://dx.doi.org/10.1016/j.jiec.2015.10.016
http://dx.doi.org/10.1016/j.jenvman.2010.02.029
http://www.ncbi.nlm.nih.gov/pubmed/20346574


Appl. Sci. 2018, 7, 3 23 of 23

49. Mittal, A. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen
feathers. J. Hazard. Mater. 2006, 133, 196–202. [CrossRef] [PubMed]

50. Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L. Water remediation using low cost adsorbent walnut shell for removal
of malachite green: 1 equilibrium, kinetics, thermodynamic and regeneration studies. J. Environ. Chem. Eng.
2015, 2, 1434–1444. [CrossRef]

51. Dastkhoon, M.; Ghaedi, M.; Asfaram, A.; Goudarzi, A.; Langroodi, S.M.; Tyagi, I.; Agarwal, S.; Gupta, V.K.
Ultrasound assisted adsorption of malachite green dye onto ZnS: Cu-NPAC: Equilibrium isotherms and
kinetic studies-Response surface optimization. Sep. Purif. Technol. 2015, 156, 780–788. [CrossRef]

52. Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and
Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified
rice husk. J. Appl. Chem. 2012, 3, 38–45.

53. Mohammadi, M.; Hassani, A.J.; Mohamed, A.R.; Najafpour, G.D. Removal of Rhodamine B from aqueous
solution using palm shell-based activated carbon: Adsorption and kinetic studies. J. Chem. Eng. Data 2010,
55, 5777–5785. [CrossRef]

54. Dubey, R.; Bajpai, J.; Bajpai, A.K. Green synthesis of graphene sand composite (GSC) as novel adsorbent for
efficient removal of Cr (VI) ions from aqueous solution. J. Water Process Eng. 2015, 5, 83–94. [CrossRef]

55. Fytianos, K.; Voudrias, E.; Kokkalis, E. Sorption–desorption behavior of 2,4-dichloriphenol by marine
sediments. Chemosphere 2000, 40, 3–6. [CrossRef]

56. Agarwal, S.; Tyagi, I.; Gupta, V.K.; Ghasemi, N.; Shahivand, M.; Ghasemi, M. Kinetics, equilibrium studies
and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using
phosphoric acid and zinc chloride. J. Mol. Liq. 2016, 218, 208–218. [CrossRef]

57. Lee, Y.C.; Kim, E.J.; Yanga, J.W.; Shin, H.J. Removal of malachite green by adsorption and precipitation
using aminopropyl functionalized magnesium phyllosilicate. J. Hazard. Mater. 2011, 192, 62–70. [CrossRef]
[PubMed]

58. Ngah, W.S.W.; Ariff, N.F.M.; Hashim, A.; Hanafiah, M.A.K.M. Malachite green adsorption onto chitosan
coated bentonite beads: Isotherms, kinetics and mechanism. Clean Soil Air Water 2010, 38, 394–400. [CrossRef]

59. Sun, X.F.; Wang, S.G.; Liu, X.W.; Gong, W.X.; Bao, N.; Gao, B.Y.; Zhang, H.Y. Biosorption of Malachite Green
from aqueous solutions onto aerobic granules: Kinetic and equilibrium studies. Bioresour. Technol. 2008, 99,
3475–3483. [CrossRef] [PubMed]

60. Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Bihang till K Svenska Vet-Akad. Handlingar
1898, 24, 1–39.

61. Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [CrossRef]
62. Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 4, 451–465.

[CrossRef]
63. Fan, M.Y.; Li, T.J.; Hu, J.W.; Cao, R.S.; Wei, X.H.; Shi, X.D.; Ruan, W.Q. Artificial neural network modeling

and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene
oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials 2017, 10, 544. [CrossRef]
[PubMed]

64. Shenvi, S.S.; Isloor, A.M.; Ismail, A.F.; Shilton, S.J.; Ahmed, A.A. Humic Acid Based Biopolymeric Membrane for
Effective Removal of Methylene Blue and Rhodamine B. Ind. Eng. Chem. Res. 2015, 4, 4965–4975. [CrossRef]

65. Tan, I.; Ahmad, A.; Hameed, B. Adsorption isotherms, kinetics, thermodynamics and desorption studies
of 2,4,6-trichlorophenol on oil palmempty fruit bunch-based activated carbon. J. Hazard. Mater. 2009, 164,
473–482. [CrossRef] [PubMed]

66. Romero-Gonza’lez, J.; Peralta-Videa, J.R.; Rodrı’guez, E.; Ramirez, S.L.; Gardea-Torresdey, J.L. Determination
of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass.
J. Chem. Thermodyn. 2005, 37, 343–347. [CrossRef]

67. Simone, M.S.; Klicia, A.S.; Roberta, C.; Roland, V.; Christian, S.; Wim, D.G.; Antonio, J.A.M. Adsorption
of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and
thermodynamics. J. Food Eng. 2013, 118, 341–349.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhazmat.2005.10.017
http://www.ncbi.nlm.nih.gov/pubmed/16326001
http://dx.doi.org/10.1016/j.jece.2014.07.008
http://dx.doi.org/10.1016/j.seppur.2015.11.001
http://dx.doi.org/10.1021/je100730a
http://dx.doi.org/10.1016/j.jwpe.2015.01.004
http://dx.doi.org/10.1016/S0045-6535(99)00214-3
http://dx.doi.org/10.1016/j.molliq.2016.02.073
http://dx.doi.org/10.1016/j.jhazmat.2011.04.094
http://www.ncbi.nlm.nih.gov/pubmed/21616589
http://dx.doi.org/10.1002/clen.200900251
http://dx.doi.org/10.1016/j.biortech.2007.07.055
http://www.ncbi.nlm.nih.gov/pubmed/17855080
http://dx.doi.org/10.1016/S0923-0467(98)00076-1
http://dx.doi.org/10.1042/bj3440451
http://dx.doi.org/10.3390/ma10050544
http://www.ncbi.nlm.nih.gov/pubmed/28772901
http://dx.doi.org/10.1021/acs.iecr.5b00761
http://dx.doi.org/10.1016/j.jhazmat.2008.08.025
http://www.ncbi.nlm.nih.gov/pubmed/18818013
http://dx.doi.org/10.1016/j.jct.2004.09.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Characterization of the Commercially Available nZVZ 
	Batch Adsorption Experiments 
	Back Propagation Artificial Neural Network (BP-ANN) 
	Particle Swarm Optimization (PSO) 
	Genetic Algorithm (GA) 

	Results and Discussion 
	Characterization of the Commercially Available nZVZ 
	Modeling and Optimization by RSM 
	Modeling and Prediction by BP-ANN 
	Prediction of Optimal Conditions by ANN-PSO 
	Prediction the Optimal Conditions by ANN-GA 
	Comparison of the Optimum Results with RSM, ANN-PSO and ANN-GA 
	Equilibrium Isotherms 
	Adsorption Kinetics 
	Adsorption Thermodynamics 

	Conclusions 
	References

