
applied  
sciences

Communication

Optimal Steady-State Range Prediction Filter for
Tracking with LFM Waveforms

Kenshi Saho ID

Department of Intelligent Systems Design Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398,
Japan; saho@pu-toyama.ac.jp; Tel.: +81-766-56-7500

Received: 31 October 2017; Accepted: 20 December 2017; Published: 23 December 2017

Featured Application: Moving object tracker for aircrafts, robots, and intelligent vehicles.

Abstract: This communication proposes a gain design method of an α-β filter with linear frequency-
modulated (LFM) waveforms to achieve optimal range prediction (tracking) of maneuvering targets
in steady-state. First, a steady-state root-mean-square (RMS) prediction error, called an RMS-index,
is analytically derived for a constant-acceleration target. Next, a design method of the optimal
gains that minimizes the derived RMS-index is proposed. Numerical analyses demonstrate the
effectiveness of the proposed method, as well as producing a performance improvement over the
conventional Kalman filter-based design method. Moreover, the theoretical relationship between
range tracking performance and a coefficient for range-Doppler coupling of LFM waveforms is
clarified. Numerical simulations using the proposed method demonstrate LFM radar tracking of
maneuvering targets and prove the method’s effectiveness.
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1. Introduction

Maneuvering-target tracking using laser, radar, and/or sonar is essential for monitoring systems
in robots, aircrafts, and intelligent vehicles. For some applications in such technical fields, linear
frequency-modulated (LFM) waveforms are used to improve the tracking accuracy in the range
direction [1–5]. Known as range-Doppler coupling, the important consideration when using LFM
waveforms is the error in the range measurement in relation to the Doppler effect [5]. Hence,
Kalman [6,7] and α-β filters [8–10] based on the state equations that take range-Doppler coupling
into account are used for the tracking of moving objects using LFM waveforms to reduce this type of
error. In particular, the analysis of the α-β filter using LFM waveforms (LFM-α-β filter) is important
because it theoretically clarifies the mathematical formulation of the steady-state performance indices
of tracking systems and establishes design criteria of the filter [8–11].

The steady-state filter analysis that accounts for the effects of range-Doppler coupling is important
in designing the tracking filter with LFM waveforms. Ref. [8] presents a theoretical analysis of the
fundamental performance of the LFM-α-β filter and reveals the relationship between the coefficient of
range-Doppler coupling and the steady-state tracking performance. Although Ref. [8] only considers
random process noise associated with acceleration in modeling the motion, this investigation is
extended to general process noise, which considers random velocities and random jerks, among others,
as given in Ref. [9]. However, in these studies, the design strategy of the tracking filter is not clearly
presented and an empirical design is required. Ref. [10] proposes a gain design method for the LFM
α-β filter based on theoretical performance indices. In this design method, a design parameter called
the deterministic tracking index is introduced. However, the paper optimizes the estimation error of
range or range rate but the prediction performance is not optimized. Moreover, a steady-state Kalman
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filter is assumed in conventional studies. Therefore, the relationship between filter gains is limited
to Kalman filter equations. This assumption does not lead to minimum prediction errors because
the Kalman filter optimizes not the range prediction but the estimation of the state vector. For these
reasons, the range prediction using the LFM α-β filter is not optimized.

In contrast, with respect to a general tracking filter (without LFM waveforms), our previous
work [12,13] introduced an efficiency performance index called a root-mean-square (RMS)-index,
which expresses the steady-state root-mean-square error in position (range) predictions. Using this
index, we achieved accurate tracking compared with conventional gains determined based on the
Kalman filter equations. It is believed that the application of the RMS-index to the LFM α-β filter
resolves the above-mentioned problems.

In this communication, a gain design method used to compose an LFM α-β filter that minimizes
the steady-state range prediction errors is proposed. The RMS-index of the LFM α-β filter is derived
and the proposed design method is introduced using the results obtained. A theoretical analysis
proves that, using the proposed method, a smaller steady-state tracking error is achieved compared
with the conventional design method based Kalman filter. Moreover, an application of the proposed
method to an LFM radar simulation is demonstrated to show its effectiveness.

2. Problem Definition and Conventional Filter Design

This section defines the tracking problem taking into regard the LFM waveforms assumed and
summarizes briefly the conventional filter design methods and their problems.

2.1. α-β Filter for LFM Waveforms

We focus attention on a steady-state second-order tracking filter for moving objects tracked
using LFM waveforms. Filter gains become fixed values in steady-state tracking; a fixed-gain
second-order tracking filter is known as an α-β filter [9,10,13]. For LFM waveforms, a tracking
of the range and range rate are considered along with range-Doppler coupling in range measurements.
We investigate the range prediction performance using the α-β filter characterized by the coefficient of
range-Doppler coupling.

The tracking filter invokes an iterative prediction and smoothing (update) process. The prediction
process of the α-β filter is [14]::

rp,k = rs,k−1 + Tvs,k−1, (1)

vp,k = vs,k−1, (2)

where rs,k is the smoothed target range at time kT, T the sampling interval, rp,k the predicted range,
vs,k the smoothed range rate, and vp,k the predicted range rate. The smoothing process of the α-β filter
for the LFM waveforms is [8–10]:

rs,k = xp,k + α(ro,k − rp,k − ∆tvp,k), (3)

vs,k = vp,k + (β/T)(ro,k − rp,k − ∆tvp,k), (4)

where ro,k is the measured range, ∆t the coefficient of range-Doppler coupling, and α and β are fixed
filter gains. ro,k and ∆t is expressed as [10]:

ro,k = rt,k + vt,k∆t + wk, (5)

∆t = f0τ/Bw, (6)

where rt,k and vt,k are the true range and range rate, wk the white noise associated with a Gaussian
measurement with standard deviation of σw, and f0, τ, and Bw are the carrier frequency, the pulse
length, and the bandwidth of LFM waveform, respectively. Bw becomes a negative value when a
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down-chirp waveform is used. Hence, ∆t > 0 corresponds to an up-chirp waveform and ∆t < 0
corresponds to a down-chirp waveform. We refer to the α-β filter assumed by Equations (1)–(4) as the
LFM α-β filter.

The purpose of this communication is finding the optimal α and β values that achieves minimum errors
for the range prediction in steady-state conditions. For simplicity, we assume that ∆t and σw are known
and constant.

2.2. Conventional Filter Design Methods

Steady-state performance analysis and filter design of the LFM α-β filter have been investigated
in some studies [8–10]. These conventional studies derive the optimal filter gains based on the
Kalman filter equations because the α-β filter is approximated as a steady-state Kalman filter. In the
conventional filter design, the following relationship between α and β in steady-state conditions is
used [10]:

β± =
2

1 + 4cRD
×
(
−α(1 + 2cRD) + 2± 2

√
(1− αcRD)2 − α

)
, (7)

where
cRD = ∆t/T (8)

is the normalized coefficient of range-Doppler coupling. To apply relation (7) in gain design, the
following two methods are proposed.

1. Tracking-index-based method [8]: a well-known and useful design parameter is the tracking
index, which is defined as [8,14]:

Γ = T2σv/σw =
√

β2/(1− α− βcRD), (9)

where σv is the standard deviation of the process noise of the measurement model used in Kalman
filter tracking [14]. Equation (9) is obtained by steady-state assumption for the Kalman filter
using a random acceleration process noise [8]. In steady-state conditions, both the prediction
and estimation error covariance matrices converge and the optimal gain relations are obtained
using these fixed matrices in the Kalman filter equations. The value of Γ determines α and β by
Equations (7) and (9). In filter design, a suitable Γ is selected empirically based on the assumed
degree of maneuvering of targets.

2. Maximum RMS error (RMSE)-based method [10]: the tracking index-based approach requires
an empirical setting of Γ. To resolve this problem, Jain and Blair [10] proposed the deterministic
evaluation function and a design parameter to optimize the range estimation. Their proposed
evaluation function corresponds to a maximum RMSE determined by a maximum target
acceleration, which is defined as:

RMSEp
max ≡

√
E[(rca

t,k − rs,k)2] = σw

√
s11/σ2

w + (LpΓD)2, (10)

where E[ ] denotes the mean, rca
t,k the true range of the target undergoing constant acceleration,

s11 the steady-state variance of the range estimation error assuming only measurement noise,
LpΓ2

D corresponds to the steady-state lag (bias error) for constant-acceleration target, and ΓD is
called the deterministic tracking index defined using the maximum acceleration and σw; these
are expressed as:
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s11 =
2α2 + β(2− 3α)− β2cRD

α(4− β− 2α)− cRD(4β(α− 1) + β2(2cRD + 1))
σ2

w, (11)

Lp =
2(α− 1) + (2α + β)cRD

2β
, (12)

ΓD = AmaxT2/σw, (13)

where Amax is the maximum acceleration of the target. The optimal α is determined by minimizing
RMSEp

max using Equation (7) and the known ΓD (i.e., Amax and σw are known).

It is well known that the tracking index-based method is useful in the design of Kalman and
α-β filters. However, an empirical setting for Γ is required. The maximum RMSE-based approach
automatically determines optimal α and β from ΓD. The setting of Amax of ΓD is easily compared with
Γ because its physical meaning is clear. However, the two above-stated methods assume only random
acceleration process noise in the Kalman filter equations [8,10]. The gain relation of Equation (7) is
derived using this assumption. Although an arbitrary random motion parameter (not only acceleration
but also velocity, for example) is assumed for process noise in [9], this study also assumes Kalman filter
equations using white-Gaussian process noise. This means that the above conventional design methods
are not optimal when other process noise is assumed (including situations where white-Gaussian
process noise is not assumed). Moreover, the Kalman filter optimizes the estimation of the target state,
whereas the prediction of the range is not optimized.

3. Proposed Optimal Range Prediction Filter Design

To resolve the problems arising with conventional approaches, this section proposes the optimal
gain setting method to optimize range prediction. To achieve this, the RMS-index-based design
approach that was proposed in previous work [13] is adapted to an LFM α-β filter. This approach can
be considered as a modification of the maximum RMSE-based method for the minimization of errors
in rp,k, and not for rs,k. Moreover, as the RMS-index-based approach does not require assuming process
noise, the problems caused by the Kalman filter equations and described in the previous section do
not exist.

3.1. RMS-Index for LFM α-β Filter

The RMS-index approach minimizes the RMSE of the prediction error of range (or position).
In this section, the RMS-index is defined and derived for the LFM α-β filter. Similar to Equation (10),
the RMS-index for the range prediction is defined as [13]:

RMSEpred ≡
√

E[(rca
t,k − rp,k)2]=

√
σ2

r + (Lrp AmaxT2)2 = σw

√
σ2

r /σ2
w + (Lrp)2Γ2

D, (14)

where σ2
r is the steady-state variance of the range prediction errors assuming only sensor noise and

Lrp AmaxT2 is the steady-state bias error of the range prediction assuming a target moving with constant
acceleration Amax. The RMS-index expresses the maximum RMS error for the prediction of the range
(or position) in steady-state conditions. Because the LFM α-β filter is using the constant-velocity
model as indicated in Equations (1) and (2), there is a bias error in the steady state associated with
the accelerating target, and the filter diverges for the target moving with constant jerk. Thus, the
maximum (worst-case) error for the steady-state LFM α-β filter is calculated by assuming the target
moving with Amax [10].

To derive RMSEpred, σ2
r (steady-state variance of random errors) and Lrp AmaxT2 (steady-state

bias error) are calculated one by one. First, σ2
r of the LFM α-β filter is calculated. There is no bias error

associated with targets moving with constant velocity because the α-β filter uses the constant-velocity
model. Hence, in the constant-velocity target tracking, there are only random errors arising from
the radar measurement noise. These mean that σ2

r is calculated by the mean square error for the
constant-velocity target, and is calculated as
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σ2
r ≡ E[(rcv

t,k − rp,k)
2] =

2α2 + 2β + αβ− β2cRD

α(4− β− 2α)− cRD(4β(α− 1) + β2(2cRD + 1))
σ2

w, (15)

where rcv
t,k is the true range of the target moving with constant velocity. Equation (15) contains the

effects on sensor noise only and does not contain the errors resulting from differences between the
model and the motion. The derivation of Equation (15) is given in Appendix A.

Next, Lrp AmaxT2 is calculated as the bias error for the target for which the acceleration is Amax.
The bias error is the mean range prediction error in the steady-state, and is calculated from

lim
k→∞

E[rca
t,k − rp,k] =

[
1
β
−
(

1
2
+

α

β

)
cRD

]
AmaxT2 ≡ Lrp AmaxT2. (16)

The derivation of Equation (16) is given in Appendix B. Using the derived results of
Equations (15) and (16), the RMS-index RMSEpred is calculated using Equation (14).

3.2. Filter Design Method

The optimal filter gains is obtained by minimization of RMSEpred. Therefore, using
Equations (14)–(16), the evaluating function for the design filter gains is defined as

µ(α, β, cRD, ΓD) ≡ σ2
r /σ2

w + (Lrp)
2Γ2

D

=
2α2 + 2β + αβ− β2cRD

α(4− β− 2α)− cRD(4β(α− 1) + β2(2cRD + 1))
+

[
1
β
−
(

1
2
+

α

β

)
cRD

]2
Γ2

D. (17)

The optimal gains are calculated by solving the following optimization problem:

arg min
α,β

µ(α, β, cRD, ΓD)

subject to βcRD < α and 0 < β and β < 4− 2α− 2βcRD, (18)

for which the constraints are the stability conditions of the LFM α-β filter [9].
Different from the conventional methods, the proposed method directly determines α and β by

searching the minimum value of µ without using the gain relations derived from the Kalman filter
equations, for example, Equation (7). Moreover, the Kalman filter equations are also not used in
deriving µ. This means that the proposed method does not require the assumption of the process noise
that limits the gain relation of the α-β filter. In addition, the proposed method minimizes not the errors
in estimation (rs,k) but those in prediction (rp,k), which is different from the Kalman filter. Therefore,
the proposed method determines optimal filter gains with respect to the steady-state range prediction.
Table 1 summarizes the features of the conventional and proposed design methods.

Table 1. Summary of the conventional and proposed design methods.

Design Methods Preset Parameter Evaluating Function Process Noise

Tracking index-based method of [8] Γ Not used Random acceleration
Tracking index-based method of [9] Γ Not used Arbitrary random parameter

Maximum root mean square error (RMSE) [10] ΓD Equations (10)–(12) Random acceleration
Proposed method ΓD Equation (17) Not assumed

4. Performance Evaluation

We next investigate the performance of the LFM α-β filter with the proposed gain design method
using theoretical steady-state analyses and numerical simulations assuming radar tracking of a
maneuvering target. Both the proposed and the conventional maximum RMSE-based methods [10]
are compared.
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4.1. Theoretical Analysis

RMSEpred values calculated using Equations (14)–(17) of the conventional and proposed methods
are compared for various ΓD and cRD. We assume that σw and T are normalized to 1.

Figure 1 shows the relationship between ΓD and RMSEpred for cRD = ±0.25 and ±0.5.
For all instances, RMSEpred of the proposed method is smaller than that of the conventional method.
For cRD > 0, although the performance of the proposed method is slightly better than that of the
conventional method for relatively small ΓD, the performance difference becomes large for large ΓD.
For cRD < 0, the performance difference between the conventional and proposed methods for relatively
small ΓD is large compared with instances with cRD > 0.
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Figure 1. Relationship between ΓD and RMSEpred for cRD =0.25 (a); 0.5 (b); −0.25 (c); and −0.5 (d).

Figure 2 shows the relationship between cRD and RMSEpred for ΓD = 0.1 and 1. For tracking with
LFM waveforms, range estimation accuracy deteriorates considerably for small (negative) cRD [10],
which is also a feature of results from conventional methods. However, the proposed method achieves
relatively small tracking accuracy for cRD < 0. This is because it directly minimizes the range prediction
errors without assuming the Kalman filter equations. The gain relation is limited to Equation (7) when
we assume the random acceleration process noises in the Kalman filter equation of the conventional
method. However, the optimal gains with respect to the range prediction calculated with the proposed
method are not acquired from Equation (7). Moreover, Figure 2b shows that the tracking accuracy
of the conventional method for ΓD = 1 also deteriorates around cRD = 1. The reason is that the
optimal gains for the conventional methods are not effectively obtained as a consequence of the limited
gain relation, Equation (7). These results theoretically verify that the proposed method achieves
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better tracking accuracy than the conventional RMSE-based method by the direct optimization of the
range-tracking RMSE (the RMS-index) without using the Kalman filter equations.
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4.2. LFM Radar Simulation

Finally, numerical simulation results are presented to demonstrate the effectiveness of the
proposed method in range tracking using LFM radar. Figure 3 shows the simulation scenario.
Although a two-dimensional problem is considered, we assume range measurements taken using a
single LFM radar to demonstrate the validity of the proposed range tracking method for the target
other than the constant-acceleration target assumed in the analysis. Figure 3a shows the true moving
orbit of the target in the x− y plane and the radar position. The true motion of the target in x and
y are xt,k = −5 cos((3π(No − k))/(2No))(80 sin((πkT)/20)− k2T2 − 60) and yt,k = −5 sin((3π(No −
k))/(2No))(80 sin((πkT)/20)− k2T2 − 60), where No = 200 is the number of samples with respect
to k. In this setting, the true range in the simulation is rsim

t,k =300 + 5(kT)2 + 400 cos(πkT/20 + π/2).
The LFM radar is located at (x, y) = (0, 0) and its T is 0.1 s. Figure 3b shows the true acceleration of
the target with respect to k. Based on this target acceleration, it is assumed that the approximate target
maximum acceleration Amax = 20 m/s2 has been obtained. Figure 3c shows the true and observed
range data for cRD = ±0.5 used as ro,k. Two instances cRD = ±0.5 are considered and their standard
deviations for measurement noise are both σw = 0.2 m. These settings give ΓD = 1.0 with Equation (13).
We compared the RMS prediction errors of the conventional method of [10] and the proposed method
for cRD = ±0.5. As shown in Figure 3c, the range–offset dependence on cRD is confirmed, and their
effects on the range prediction accuracy when applying the conventional and proposed methods were
investigated. The RMS prediction error at each time kT is calculated from one thousand Monte Carlo
simulations; that is,

RMSEk =

√√√√ 1
1000

1000

∑
m=1

(rsim
t,k − rp,km)2, (19)

where rp,km is the predicted range in the m-th Monte Carlo simulation.
Figure 4 shows the simulation results for cRD = ±0.5. For both instances, the proposed method

achieves accurate tracking for steady states compared with the conventional method. In particular, the
proposed method is effective around kT = 10 s because the filter gains are optimized for the maximum
acceleration value. As shown in these results, the values of RMSEk for cRD = 0.5 is smaller than that
for cRD = −0.5. This is because that the positive cRD supports the prediction process in the tracking
filtering as fully discussed in [11]. Note that the relationship between the range prediction error and
cRD is also shown in Figure 2, and this also verifies the performance improvement when using positive
cRD. The performance difference between the conventional and proposed methods is relatively large
for cRD = −0.5. The reason is that the range prediction accuracy has been already improved through
the effect of positive cRD [11] for cRD = 0.5. Thus, the likelihood of an improvement using the proposed
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method is small. In contrast, for cRD = −0.5, the range prediction errors widen with negative cRD.
Therefore, using the proposed method seems to compensate for these errors effectively. Therefore,
the performance improvement with this method becomes relatively large for cRD = −0.5. In terms
of cRD = 0.5, although smaller RMSEk values are achieved, the difference between the conventional
and proposed methods is relatively small. However, the accuracy in steady-state tracking of the
proposed method is always better than that of the conventional method. These results show the
effectiveness of the proposed method for maneuvering targets (not only the targets with constant
acceleration). In addition, the simulation results are consistent with the theoretical analysis described
in the previous subsection.
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5. Conclusions

This paper proposed a gain design method to achieve optimal steady-state range tracking for the
LFM α-β filter. The RMS-index, which reflects the range prediction RMS errors in steady-state, was
derived for the LFM α-β filter, and the gain design based on the minimization of the RMS-index was
presented. The theoretical analyses proved that the proposed method generates smaller RMS errors in
range tracking compared with that for the conventional method, which is based on the minimization
of the RMS estimation error and the Kalman filter equations. The relationship between range-tracking
performance and the important parameters cRD (the normalized range-Doppler coupling coefficient)
and ΓD (the design parameter called the deterministic tracking index) were also clarified. Moreover,
numerical simulations employing LFM radar tracking verified the effectiveness of the proposed
method. However, to clarify the performance of the proposed method in terms of the range prediction
considering the range-Doppler coupling and the RMS-index, only theoretical analyses and ideal
simulations were performed that did not account for various factors related to tracking accuracy,
such as the multi-pass effect, signal distortion depending on the scattering characteristics of targets,
directivity of the antenna, and multi-target cases. To apply LFM radar tracking with the proposed
method in real environments, a comprehensive experimental study considering these foregoing effects
and range-Doppler coupling is important work that remains.
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Appendix A. Derivation of Equation (15)

Because rcv
t,k is the true range of a target moving with constant velocity, this is expressed as

rcv
t,k = rcv

t,k−1 + vcv, (A1)

where vcv is the true range rate. With Equations (1) and (A1), the variance of the range prediction error
is found to be

E[(rcv
t,k − rp,k)

2] = E[(xs,k−1 − xts,k−1)
2] + 2TE[(xs,k−1 − xts,k−1)(vs,k−1 − vcv)] + T2E[(vs,k−1 − vcv)2]. (A2)

Here, E[(xs,k−1 − xts,k−1)
2], E[(xs,k−1 − xts,k−1)(vs,k−1 − vcv)], and E[(vs,k−1 − vcv)2] are s11, s21,

and s22 of [10], which are the components of a sensor-noise only covariance matrix corresponding to
the smoothed target range and range rate. Hence, Equation (A2) is rewritten as

E[(rcv
t,k − rp,k)

2] = s11 + 2Ts21 + T2s22, (A3)

where s11 is expressed as given in Equation (11), and s21 and s22 are expressed as [10]:

s21 =
β(2α− β)

α(4− β− 2α)− cRD(4β(α− 1) + β2(2cRD + 1))
σ2

w
T

, (A4)

s22 =
2β2

α(4− β− 2α)− cRD(4β(α− 1) + β2(2cRD + 1))
σ2

w
T2 . (A5)

Substituting Equations (11), (A4), and (A5) into Equation (A3), we obtain Equation (15).

www.edanzediting.com/ac
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Appendix B. Derivation of (16)

Applying a z-transform to Equations (1)–(4), we obtain

Rp(z) = Rs(z)/z + TVs(z)/z, (A6)

Vp(z) = Vs(z)/z, (A7)

Rs(z) = Rp(z) + α(Ro(z)− Rp(z)− ∆tVp(z)), (A8)

Vs(z) = Vp(z) + (β/T)(Ro(z)− Rp(z)− ∆tVp(z)). (A9)

By simplifying these equations, Rp(z) and Ro(z) are related by

Rp(z) =
(α + β)z− α

(z2 + (α + β− 2)z− α + 1)T + β(z− 1)∆t
TRo(z). (A10)

Because we have assumed that the maximum acceleration of the target Amax is constant but do
not assume measurement errors, the true and measured target positions are expressed as

Rca
t (z) = Z[Amax(kT)2/2] =

z(z + 1)
2(z− 1)3 AmaxT2, (A11)

Ro(z) = Rcv
t (z) + Z[∆tAmax(kT)] = Rcv

t (z) +
z

(z− 1)2 ∆tAmaxT, (A12)

where Z[ ] denotes the z-transform. With Equations (A10)–(A12), the predicted error in the z-domain,
Ep(z) ≡ Rca

t (z)− Rp(z), is

Ep(z) =
z((z + 1)T − (2α + β)∆t)

2(z− 1){(z2 + (α + β− 2)z− α + 1)T + β(z− 1)∆t}AmaxT2. (A13)

Applying the final value theorem to Equation (A13) yields Equation (16).
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