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Abstract: Convolutional Neural Networks (CNN) have been applied to diverse machine learning
tasks for different modalities of raw data in an end-to-end fashion. In the audio domain,
a raw waveform-based approach has been explored to directly learn hierarchical characteristics
of audio. However, the majority of previous studies have limited their model capacity by taking
a frame-level structure similar to short-time Fourier transforms. We previously proposed a CNN
architecture which learns representations using sample-level filters beyond typical frame-level
input representations. The architecture showed comparable performance to the spectrogram-based
CNN model in music auto-tagging. In this paper, we extend the previous work in three
ways. First, considering the sample-level model requires much longer training time, we progressively
downsample the input signals and examine how it affects the performance. Second, we extend the
model using multi-level and multi-scale feature aggregation technique and subsequently conduct
transfer learning for several music classification tasks. Finally, we visualize filters learned by the
sample-level CNN in each layer to identify hierarchically learned features and show that they are
sensitive to log-scaled frequency.

Keywords: convolutional neural networks; music classification; raw waveforms; sample-level filters;
downsampling; filter visualization; transfer learning

1. Introduction

Convolutional Neural Networks (CNN) have been applied to diverse machine learning
tasks. The benefit of using CNN is that the model can learn hierarchical levels of features from
high-dimensional raw data. This end-to-end hierarchical learning has been mainly explored in the
image domain since the break-through in image classification [1]. However, the approach has been
recently attempted in other domains as well.

In the text domain, a language model is typically built in two steps, first by embedding
words into low-dimensional vectors and then by learning a model on top of the word-level vectors.
While the word-level embedding plays a vital role in language processing [2], it has limitations in
that the embedding space is learned separately from the word-level model. To handle this problem,
character-level language models that learn from the bottom-level raw data (e.g., alphabet characters) were
proposed and showed that they can yield comparable results to the word-level learning models [3,4].

In the audio domain, raw waveforms are typically converted to time-frequency representations
that better capture patterns in complex sound sources. For example, spectrogram and more concise
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representations such as mel-filterbank are widely used. These spectral representations have served
a similar role to the word embedding in the language model in that the mid-level representation
are computed separately from the learning model and they are not particularly optimized for the
target task. This issue has been addressed by taking raw waveforms directly as input in different
audio tasks, for example, speech recognition [5–7], music classification [8–10] and acoustic scene
classification [11,12].

However, the majority of previous work have focused on replacing the frame-level time-frequency
transforms with a convolutional layer, expecting that the layer can learn parameters comparable to
the filter banks. The limitation of this approach was pointed out by Dieleman and Schrauwen [8].
They conducted an experiment of music classification using a simple CNN that takes raw waveforms or
mel-spectrogram. Unexpectedly, their CNN models with the raw waveform as input did not produce
better results than those with the spectral data as input. The authors attributed this unexpected
outcome to three possible causes. First, their CNN models were too simple (e.g., a small number of
layers and filters) to learn the complex structure of polyphonic music. Second, the end-to-end models
need an appropriate non-linearity function that can replace the log-based amplitude compression in
the spectrogram. Third, the first 1D convolutional layer takes raw waveforms in a frame-level which is
typically several hundred samples long. The filters in the first 1D convolutional layer should learn all
possible phase variations of periodic waveforms within the length. In spectrogram, the phase variation
is removed.

We recently tackled the issues by stacking 1D convolutional layers using very small filters instead
of a 1D convolutional layer with the frame-level filters, inspired by the VGG networks in image
classification that is built with deep stack of 3×3 convolutional layers [13,14]. The sample-level CNN
model has filters with very small granularity (e.g., 3 samples) in time for all convolutional layers.
The results were comparable to those using mel-spectrogram in music auto-tagging. In this paper,
we term the sample-level CNN architecture as SampleCNN and extend the previous work in three ways.
First, we should note that SampleCNN takes four times longer training time than a comparable CNN
model that takes mel-spectrogram. In order to reduce the training time, we progressively downsample
the waveforms and report the effect on performance. By reducing the band-width of music audio
this way, we will be able to find the cut-off frequency where the performance starts to become
degraded. Second, we extended SampleCNN using multi-level and multi-scale feature aggregation [15].
The technique proved to be highly effective in music classification tasks. We additionally evaluate the
extended model in transfer learning settings where the features extracted from SampleCNN can be
used for three different datasets in music genre classification and music auto-tagging. We show that
the proposed model achieves state-of-the-art results. Third, we visualize learned intermediate layers
of SampleCNN to observe how the filters with small granularity process music signals in a hierarchical
manner. In particular, we visualize them for each of sampling rates.

2. Related Work

There are a decent number of CNN models that take raw waveforms as input. The majority
of them used large-sized filters in the first convolutional layer with various size of strides to
capture frequency-selective responses which were carefully designed to handle their target problems.
We termed this approach as frame-level raw waveform model because the filter and stride sizes of the
first convolutional layer were chosen to be comparable to the window and the hop sizes of short-time
Fourier transformation, respectively [5–11].

There are a few work that used small filter and stride sizes in the first convolution layer
(8 samples-sized filter [16] and 10 samples-sized filter [17,18] at 16 kHz). However, the CNN models
have only two or three convolution layers, which are not sufficient to learn the complex structure of
the acoustic signals. In SampleCNN, we deepen the layers even more, thereby reducing the filter and
stride sizes of the first convolution layer down to two or three samples.
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3. Learning Models

Figure 1 illustrates three CNN models in music auto-tagging that we compare in our experiments.
Note that they are actually general architectures and so can be applied to any audio classification tasks.
In this section, we describe the three models in detail.

Figure 1. Comparison of (a) frame-level model using mel-spectrogram; (b) frame-level model using raw
waveforms and (c) sample-level model using raw waveforms.

3.1. Frame-Level Mel-Spectrogram Model

This is the most common CNN model used in music classification. The time-frequency
representation is usually regarded as either two-dimensional images [19,20] or one-dimensional
sequence of vectors [8,21]. We only used one-dimensional(1D) CNN model for experimental
comparisons because the performance gap between 1D and 2D models is not significant and the
1D model is directly comparable to models using raw waveforms.

3.2. Frame-Level Raw Waveform Model

In this model, a strided convolution layer is added beneath the bottom layer of the frame-level
mel-spectrogram model. The strided convolution layer is expected to learn a filter-bank that returns
a time-frequency representation. In this model, once the first strided convolution layer slides over
the raw waveforms, the output feature map has the same dimensions as the mel-spectrogram.
This is because the stride size, filter size, and the number of filters in the first convolution layer
correspond to the hop size, window size, and the number of mel-bands in the mel-spectrogram,
respectively. This configuration was used for the music auto-tagging task in [8,9] and thus we used it
as a baseline model.

3.3. Sample-Level Raw Waveform Model: SampleCNN

As described in Section 1, the approach using raw waveforms should be able to address log-scale
amplitude compression and phase-invariance. Simply adding a strided convolution layer is not
sufficient to overcome the issues. To improve this, we add multiple layers beneath the frame-level
such that the first convolution layer can handle much smaller size of samples. For example, if the
stride of the first convolution layer is reduced from 729 (=36) to 243 (=35), 3-size convolution layer
and max-pooling layer are added to keep the output dimensions in the subsequent convolution layers
unchanged. If we repeatedly reduce the stride of the first convolution layer this way, six convolution
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layers (five pairs of 3-size convolution and max-pooling layer following one 3-size strided convolution
layer) will be added (we assume that the temporal dimensionality reduction occurs only through
max-pooling and striding while zero-padding is used in convolution to preserve the size).

We generalized the configuration as mn-SampleCNN where m refers to the filter size
(or the pooling size) of intermediate convolution layer modules and n refers to the number of the
modules. The first convolutional layer is different from the intermediate convolutional layers in that
the stride size is equal to the filter size. An example of mn-SampleCNN is shown in Table 1 where m is
3 and n is 9. Note that the network is composed of convolution layers and max-pooling only, and so
the input size is determined to be stride size of the first convolutional layer ×mn. In Table 1, as the stride
size of the first convolution layer is 3, the input size is set to be 59049 (=3 × 39).

Table 1. SampleCNN configuration. In the first column (Layer), “conv 3-128” indicates that the filter
size is 3 and the number of filters is 128.

39-SampleCNN Model

59,049 Samples (2678 ms) as Input

Layer Stride Output # of Params

conv 3-128 3 19,683 × 128 512

conv 3-128
maxpool 3

1
3

19,683 ×128
6561× 128 49,280

conv 3-128
maxpool 3

1
3

6561× 128
2187× 128 49,280

conv 3-256
maxpool 3

1
3

2187× 256
729× 256 98,560

conv 3-256
maxpool 3

1
3

729× 256
243× 256 196,864

conv 3-256
maxpool 3

1
3

243× 256
81× 256 196,864

conv 3-256
maxpool 3

1
3

81× 256
27× 256 196,864

conv 3-256
maxpool 3

1
3

27× 256
9× 256 196,864

conv 3-512
maxpool 3

1
3

9× 512
3× 512 393,728

conv 3-512
maxpool 3

1
3

3× 512
1× 512 786,944

conv 1-512
dropout 0.5

1
−

1× 512
1× 512 262,656

sigmoid − 50 25,650

Total params 2.46× 106

4. Extension of SampleCNN

4.1. Multi-Level and Multi-Scale Feature Aggregation

Music classification tasks, particularly music auto-tagging among others, have a wide variety
of labels in terms of genre, mood, instruments and other song characteristics. Especially, they are
positioned in different hierarchical levels and time-scales. For example, some words related to
instrument ones, such as guitar and saxophone, describe objective sound sources which are usually
local and repetitive within a song, whereas other labels related to genre or mood, such as rock and
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happy, are dependent on a larger context of music and are more complicated. In order to address this
issue, we recently proposed multi-level and multi-scale feature aggregation technique [15].

The technique is conducted by combining multiple CNN models. This assumes that the hidden
layers of each CNN model represent different levels of features and the models with different input
sizes provide even richer feature representations by capturing both local and global characteristics of
the music. In [15], they showed that different level and time-scale features have different performance
sensitivity to individual tags and thus combining them all together is the best strategy to improve
performance. In this work, we replace the simple CNN architectures that take mel-spectrogram as
input in [15] with SampleCNNs, taking different input sizes (e.g., 700 ms to 3.5 s). Once we train the
SampleCNNs as supervised feature extractors, we slide each of them over a song clip (e.g., about 30 s)
and obtain features from the last three hidden layers. We then summarize them by a combination of
max-pooling and average-pooling. Finally, we concatenate the multi-level and multi-scale features and
feed them to a simple neural networks with two fully-connected layers to make a final prediction.

4.2. Transfer Learning

The multi-level and multi-scale feature aggregation approach can be used in a transfer learning
setting by using different datasets or target tasks for the final classification after training the
SampleCNNs. Especially, when the target dataset size is comparably small to the model capacity,
transferred parameters can yield better performance on the target task rather than parameters trained
from the innate target dataset. The applicability of transfer learning using a frame-level raw waveform
model has been explored in the speech domain [17]. Here, we examine it using the sample-level raw
waveform model for music genre classification and music auto-tagging with different datasets.

5. Experimental Setup

5.1. Datasets

We validate the effectiveness of the proposed method on different sizes of datasets for music
genre classification and auto-tagging. All dataset splits are available on the link [22]. The details of
each dataset are as follows. The numbers in the parenthesis indicate the split of training, validation
and test sets.

• GTZAN [23]: 930 songs (443/197/290) (This is a fault-filtered split designed to avoid the repetition
of artists across the training, validation and test sets [24]), genre classification (10 genres).

• MagnaTAgaTune (MTAT) [25]: 21,105 songs (15,244/1529/4332), auto-tagging (50 tags)
• Million Song Dataset with Tagtraum genre annotations (TAGTRAUM): 189,189 songs

(141,372/10,000/37,817) (This is a stratified split with 80% training data of the CD2C version [26]),
genre classification (15 genres)

• Million Song Dataset with Last.FM tag annotations (MSD) [27]: 241,889 songs (201,680/11,774/28,435),
auto-tagging (50 tags)

We primarily examined the proposed model on MTAT and then verified the effectiveness of our
model on MSD which is much larger than MTAT (MTAT contains 170 h long audio and MSD contains
1955 h long audio in total). We filtered out the tags and used most frequently labeled 50 tags in both
datasets, following the previous work [8,19,20]. Also, all songs in the two datasets were trimmed to
29.1 s long. For transfer learning experiments, the model is first trained with the largest dataset, MSD,
and the pre-trained networks are transferred to other three datasets. The evaluation is conducted with
area under receiver operating characteristic (AUC) for auto-tagging datasets and accuracy for genre
classification datasets.
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5.2. Training Details

We used sigmoid activation for the output layer and binary cross entropy loss as the objective
function to optimize. For every convolution layer, we used batch normalization [28] and ReLU
activation. We should note that, in our experiments, batch normalization plays a vital role in training the
deep models that take raw waveforms. We applied dropout of 0.5 to the output of the last convolution
layer and minimized the objective function using stochastic gradient descent with 0.9 Nesterov
momentum. The learning rate was initially set to 0.01 and decreased by a factor of 5 when the
validation loss did not decrease more than 3 epochs. A total decrease of 4 times, the learning rate of
the last training was 0.000016. Also, we used batch size of 23 for MTAT and 50 for MSD, respectively.

5.3. Mel-Spectrogram and Raw Waveforms

In the mel-spectrogram experiments, window sizes of 36, 35 and 34 are used to match up to the
filter sizes in the first convolution layer of the raw waveform model as shown in Table 2. FFT size
was set to 729 (=36) in all experiments. When the window is less than the FFT size, we zero-padded
the windowed frame. The linear frequency in the magnitude spectrum is mapped to 128 mel-bands
and the magnitude compression is applied with a nonlinear curve, log(1 + C|A|) where A is the
magnitude and C is set to 10. Also, we conducted the input normalization simply by dividing the
standard deviation after subtracting mean value of entire input data. On the other hand, we did not
perform the input normalization for raw waveforms.

Table 2. Comparison of three CNN models with different window size (filter size) and hop size
(stride size). n represents the number of intermediate convolution and max-pooling layer modules,
thus 3n times hop (stride) size of each model is equal to the number of input samples.

3n Models,
59,049 Samples

as Input
n Window Size

(Filter Size)
Hop Size

(Stride Size) AUC

Frame-level
(mel-spectrogram)

4 729 729 0.9000
5 729 243 0.9005
5 243 243 0.9047
6 243 81 0.9059
6 81 81 0.9025

Frame-level
(raw waveforms)

4 729 729 0.8655
5 729 243 0.8742
5 243 243 0.8823
6 243 81 0.8906
6 81 81 0.8936

Sample-level
(raw waveforms)

7 27 27 0.9002
8 9 9 0.9030
9 3 3 0.9055

As described in Section 3.3, m refers to the filter size (which can be compared to a window size
of FFT in the spectrogram) or pooling size (which also can be compared to a hop size of FFT in the
spectrogram) of the intermediate convolution layer modules, and n refers to the number of the modules.
In our previous work, we adjusted m from 2 to 5 and increased n according to the configuration of
mn-SampleCNN [13]. Among them, 39-SampleCNN model with 59049 samples as input worked best
and thus we fix our baseline model to it. In this configuration, we can increase the filter size and stride
size in the first layer by decreasing the layer depth to conduct comparison experiments between the
frame-level models and the sample-level model. For example, if the hop size or the stride size of the
first convolutional layer is 729 in either the frame-level mel-spectrogram model or the frame-level
raw waveform model, 4 convolutional modules with 3-sized filters are added when the input size is
59,049 samples.
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5.4. Downsampling

The downsampling experiments are performed using the MTAT dataset. 39-SampleCNN model
is used with audio input sampled at 22,050 Hz. For other sampling rate experiments, we slightly
modified the model configuration so that the models used for different sampling rate can have
similar architecture and similar input seconds to those used in 22,050 Hz. In our previous work [13],
we found that the filter size did not significantly affect performance once it reaches the sample-level
(e.g., 2 to 5 samples), while the input size of the network and total layer depth are important.
Thus, we configured the models as described in Table 3. For example, if the sampling rate is 2000 Hz,
the first four modules use 3-sized filters and the rest 6 modules use 2-sized filters to make the total
layer depth similar to the 39-SampleCNN. Also, 3-sized filters are used for the first four modules in all
models for fairly visualizing learned filters.

Table 3. Models, input sizes and number of parameters used in the downsampling experiment.
In the third column (Models), each digit from left to right stands for the filter size (or the pooling size)
of the convolutional module of SampleCNN from bottom to top. Thus, the number of digits represents
the layer depth of each model.

Sampling Rate Input (in Milliseconds) Models # of Parameters

2000 Hz 5184 samples (2592 ms) 3-3-3-3-2-2-2-2-2-2 1.80× 106

4000 Hz 10,368 samples (2592 ms) 3-3-3-3-2-2-2-4-2-2 1.93× 106

8000 Hz 20,736 samples (2592 ms) 3-3-3-3-2-2-4-4-2-2 2.06× 106

12,000 Hz 31,104 samples (2592 ms) 3-3-3-3-3-2-4-4-2-2 2.13× 106

16,000 Hz 43,740 samples (2733 ms) 3-3-3-3-3-3-3-5-2-2 2.19× 106

20,000 Hz 52,488 samples (2624 ms) 3-3-3-3-3-3-3-3-4-2 2.32× 106

22,050 Hz 59,049 samples (2678 ms) 3-3-3-3-3-3-3-3-3-3 2.46× 106

5.5. Combining Multi-Level and Multi-Scale Features

For the multi-level and multi-scale experiments described in Table 4, we used total 8 models
including 213, 214, 38, 39, 46, 47, 55 and 56-SampleCNNs. Also, two fully connected layers with
4096 neurons in each layer are used as classifier.

Table 4. Comparison of various multi-scale feature combinations. Only the MTAT dataset was used.

Features from SampleCNNs
Last 3 Layers

(Pre-trained with MTAT)
MTAT

39 model 0.9046
38 and 39 models 0.9061

213, 214, 38 and 39 models 0.9061
213, 214, 38, 39, 46, 47, 55 and 56 models 0.9064

5.6. Transfer Learning

The source task for the transfer learning is fixed to music auto-tagging using MSD because the
dataset contains the largest set of music. In this experiment, 39-SampleCNN was used. We examined the
proposed model on three target datasets for genre classification and auto-tagging. We also examined
the performance differences when using features from multiple levels of the pre-trained CNNs and
also their combinations.
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6. Results and Discussion

6.1. Mel-Spectrogram and Raw Waveforms

Table 2 shows that the sample-level raw waveform model achieves results comparable to
the frame-level mel-spectrogram model. Specifically, we found that using a smaller hop size
(81 samples ≈ 4 ms) worked better than those of conventional approaches (about 20 ms) in the
frame-level mel-spectrogram model. However, if the hop size is less than 4 ms, the performance
degraded. An interesting finding from the result of the frame-level raw waveform model is that when
the filter length is larger than the stride, the accuracy is slightly lower than the models with the same
filter length and stride. We interpret that this result is due to the learning ability of the phase variance.
As the filter size decreases, the extent of phase variance that the filters should learn is reduced.

6.2. Effect of Downsampling

During the experiments, we observed that the training time of the proposed SampleCNN is
about four times longer than the frame-level mel-spectrogram model because the proposed model has
more network parameters with deeper layers. In order to reduce the training time, we downsampled
the audio with a set of lower sampling rates including 2000, 4000, 8000, 12,000, 16,000, 20,000 Hz.
This can be regarded as a time-domain counterpart of in linear-to-mel mapping in that both reduce
the dimensionality of input and preserve low-frequency content. The results in Table 5 show that
the performance is maintained down to 8000 Hz but it starts to be degraded from 4000 Hz. This may
indicate that the relevant information to the task is concentrated below 4000 Hz (the Nyquist frequency
of 8000 Hz). Also, we report the training time ratio of the models taking re-sampled audio to the model
using 22,050 Hz signal as input. At the expence of the accuracy, the training time can be reduced to
about half.

Table 5. Effect of downsampling on the performance and training time. MTAT is used in the
experiments. We matched the depth of the models taking different sampling rate to the 39-SampleCNN.
For example, if the sampling rate is 2000 Hz, the first four convolutional modules use 3-sized filters
and the rest 6 modules use 2-sized filters to make the total layer depth similar to the 39-SampleCNN.

Sampling Rate Training Time (Ratio to 22,050 Hz) AUC

2000 Hz 0.23 0.8700
4000 Hz 0.41 0.8838
8000 Hz 0.55 0.9031

12,000 Hz 0.69 0.9033
16,000 Hz 0.79 0.9033
20,000 Hz 0.86 0.9055
22,050 Hz 1.00 0.9055

6.3. Effect of Multi-Level and Multi-Scale Features

To measure the effect of multi-level and multi-scale feature combination, we experimented with
several settings in Table 4. The SampleCNN models are first trained on MTAT dataset, then this
pre-trained networks are used as feature extractors for the MTAT dataset again. The results show that
as more features are fusioned, the performance increases. This can be viewed similar to an ensemble
method, however our approach is distinguished from it in that the feature aggregation is performed
on activations of the hidden layers, not on the prediction values.

6.4. Transfer Learning and Comparison to State-of-the-Arts

In Table 6, we show the performance of the SampleCNN model and the transfer learning
experiments (the bottom four lines). The results achieved state-of-the-art results on three datasets
except for MSD. However, when considering that the model used in [15] utilized both multi-level
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and multi-scale features, the AUC score (0.8842) obtained from multi-level features only seems to be
reasonable. Also, we can see that the multi-level and multi-scale aggregation technique generally
improves the performance, particularly in GTZAN.

Table 6. Comparison with previous work. We report SampleCNN results on MagnaTAgaTune (MTAT)
and Million Song Dataset (MSD). Furthermore, the result acquired from multi-level and multi-scale
feature aggregation technique is also reported at the bottom 4 lines. “-n LAYER” indicates features of n
layers below from the output are used for the transfer learning setting.

MODEL GTZAN
(Acc.)

MTAT
(AUC)

TAGTRUM
(Acc.)

MSD
(AUC)

Bag of multi-scaled features [29] - 0.898 - -
End-to-end [8] - 0.8815 - -

Transfer learning [30] - 0.8800 - -
Persistent CNN [31] - 0.9013 - -

Time-frequency CNN [32] - 0.9007 - -
Timbre CNN [33] - 0.8930 - -

2-D CNN [19] - 0.8940 - 0.851
CRNN [20] - - - 0.862

2-D CNN [24] 0.632 - - -
Temporal features [34] 0.659 - - -

CNN using artist-labels [35] 0.7821 0.8888 - -
multi-level and multi-scale features

(pre-trained with MSD) [15] 0.720 0.9021 0.766 0.8878

SampleCNN (39 model) [13] - 0.9055 - 0.8812

−3 layer (pre-trained with MSD) 0.778 0.8988 0.760 0.8831
−2 layer (pre-trained with MSD) 0.811 0.8998 0.768 0.8838
−1 layer (pre-trained with MSD) 0.821 0.8976 0.768 0.8842

last 3 layers (pre-trained with MSD) 0.805 0.9018 0.768 0.8842

7. Visualization

In this section, we investigate two visualization techniques that can broaden our understanding
of the learned hierarchical features in SampleCNN.

7.1. Learned Filters

Previous work in the music domain is limited to visualizing learned filters only on the first
convolution layer [8,9,36] or visualizing responses after a filter is applied on a specific input [37,38].
The gradient ascent method has been proposed for directly seeing what is learned at a filter [39] and
this technique has provided deeper understanding of what convolutional neural networks learn from
images [40,41]. We applied the technique to our SampleCNN to observe how each filter in a layer
processes the raw waveforms. The gradient ascent method is as follows. First, we generate random
noise and back-propagate the errors in the network. The loss is set to the target filter activation.
Then, we add the bottom gradients to the input with gradient normalization. By repeating this process
several times, we can obtain the accumulated gradients-based waveform like signal at the input which
is optimized to maximize the target filter activation. Examples of learned filters at each layer are in
Figure 2. Although we can find the patterns that low-frequency filters are more visible along the layer,
the estimated filters are still noisy. To show the patterns more clearly, we visualized them as spectrum
in the frequency domain and sorted them by the frequency of the peak magnitude in Figure 3.
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Figure 2. Examples of learned filters at each layer.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 3. Spectrum of the estimated filters in the intermediate layers of SampleCNN which are sorted
by the frequency of the peak magnitude. The x-axis represents the index of the filter, and the y-axis
represents the frequency ranged from 0 to 11 kHz. The model used for visualization is 39-SampleCNN
with 59,049 samples as input. Visualization was performed using the gradient ascent method to obtain
the accumulated gradient-based input waveform like signal that maximizes the activation of a filter in
the layers. To effectively find the filter characteristics, we set the input size to 729 samples which is
close to a typical frame size.

Note that we set the input waveform estimate to 729 samples in length because, if we initialize
and back-propagate to the whole input size of the networks, the estimated filters will have large
dimensions such as 59,049 samples in computing spectrum. Thus, the results are equivalent to spectra
from a typical frame size. The layer 1 shows the three distinctive filter bands which are possible with
the filter size with 3 samples (say, a DFT size of 3). The center frequency of the filter banks increases
linearly in low frequency filter banks but, as the layer goes up, it progressively becomes steeper in high
frequency filter banks. This nonlinearity was found in learned filters with a frame-level end-to-end
learning [8] and also in perceptual pitch scales such as mel or bark.

Finally, we visualized spectrum of the learned filter for each sampling rate up to 4th layers.
In Figure 4, we can observe that all SampleCNN models focus (or zoom in) on the important
low-frequency bands. We can also find that they show similar non-linear patterns to those in Figure 3.
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Layer 1 Layer 2 Layer 3 Layer 4Layer 1 Layer 2 Layer 3 Layer 4

2000 Hz

4000 Hz

8000 Hz

12000 Hz

16000 Hz

20000 Hz

Figure 4. Spectrum visualization of learned filters for different sampling rates. The x-axis represents
the index of the filter, and the y-axis represents the frequency ranged from 0 to half the sampling rate.
3-sized filters are used for the first four modules in all models for fairly visualizing learned filters.

7.2. Song-Level Similarity Using t-SNE

We extracted features from SampleCNN and aggregated them at different hierarchical levels
of layer for each audio clip. We then embedded the song-level features into 2-D vectors using
t-Distributed Stochastic Neighbor Embedding (t-SNE). Figure 5 visualizes the 2-D embedded features
at different layer levels for selected tags to examine how multi-level feature aggregation technique
enhances the performance. Songs with genre tag (Techno) are more closely clustered in the higher
layer (−1 layer). On the other hand, songs with instrument tag (Piano) are more closely clustered in
the lower layer (−3 layer). This may indicate that the optimal layer of feature representations can be
different depending on the type of labels. Thus, combining different levels of features can improve
the performance.

Techno

Piano

(b)	-1 LAYER(a)	-3 LAYER

Figure 5. Feature visualization on songs with Piano tag and songs with Techno tag on MTAT using t-SNE.
Features are extracted from (a) -3 LAYER and (b) -1 LAYER of the 39-SampleCNN model pre-trained
with MSD.
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8. Conclusions

In this article, we extend our previously proposed SampleCNN for music classification.
Through the experiments, we found that downsampling music audio down to 8000 Hz does not
significantly degrade performance but it saves training time. Second, transfer learning experiments
with multi-level and multi-scale technique showed state-of-the-art results on most of the datasets
we tested. Finally, we visualized the spectrum of the learned filters for each sampling rate and
found that the SampleCNN model is actively focusing on (or zoom in on) important low-frequency
bands. As future work, we will analyze why the sample-level architecture works well without input
normalization and nonlinear function that compresses the amplitude, which are important when we
use spectrogram as input. Also, we will investigate different filter visualization techniques to interpret
the hierarchically-learned filters better.
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