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Abstract: The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of
the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules,
clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than
a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of
a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light
Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant
multi-disciplinary effort has since been devoted to work on the technical challenges of SPI such as
radiation damage, beam characterization, beamline instrumentation and optics, sample preparation
and delivery and algorithm development at multiple institutions involved in the SPI initiative.
Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage
PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and
Optical (AMO) instrument of LCLS. Meanwhile, diffraction patterns with signal above noise up
to the corner of the detector with a resolution of ~6 Ångström (Å) were also recorded with hard
X-rays at the Coherent X-ray Imaging (CXI) instrument, also at LCLS. Achieving atomic resolution is
truly a grand challenge and there is still a long way to go in light of recent developments in electron
microscopy. However, the potential for studying dynamics at physiological conditions and capturing
ultrafast biological, chemical and physical processes represents a tremendous potential application,
attracting continued interest in pursuing further method development. In this paper, we give a brief
introduction of SPI developments and look ahead to further method development.

Keywords: X-ray free-electron lasers; XFEL; coherent diffraction imaging; single particle imaging;
resolution

1. Coherent Diffraction Imaging Using Synchrotron Light Source

High-resolution structure determination of macromolecular and biological particles is an
important tool for the life science and biological community [1–4]. Apart from X-ray crystallography
and spectroscopy, microscopy is the most widely used technique for structure determination in physical,
material and biological sciences. Multiple imaging methods, such as optical microscopy (including
general optical microscopy, laser confocal microscopy and super-resolution microscopy) [5–9], electron
microscopy [10–13] and X-ray microscopy [14–16] have been employed by researchers. Nevertheless,
the resolution of an optical microscope is always limited by the wavelength of the radiation used
(~200 nm for visible light). For super-resolution microscopy, the sample has to be labeled, which will
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limit the applications of photoactivated localization microscopy (PALM) [17], stochastic optical
reconstruction microscopy (STROM) [18] and stimulated emission depletion (STED) [19]. For scanning
electron microscopy (SEM), it can only provide surface information [20]. Regarding transmission
electron microscopy (TEM) [21], the penetration ability of electrons is a critical issue. The sample
thickness has to be less than 50 nm [22], otherwise contrast is reduced due to multiple scattering of
the electrons. To obtain structural information below the surface for thick samples, the sample has
to be sliced, introducing artifacts in the final images. Compared to electrons, X-rays have a larger
penetration depth, making them an ideal probe for most applications in structure determination.
However, the scattering cross-section of X-rays is smaller than that of electrons [23]. The scattering
efficiency is worse than that of electrons. Actually, neither X-rays nor electrons can achieve atomic
resolution due to the limitation of radiation damage [24]. Only when the X-ray or electron pulse is
shorter than the atomic motion timescale, such as in the order of 10 fs, could the valid snapshot be
captured [25]. Under the same conditions, X-rays are better for thick samples without slicing and
electrons are better for weak scattering samples with cryogenic cooling. Classical X-ray imaging
methods, such as transmission X-ray microscopy (TXM), scanning transmission X-ray microscopy
(STXM) and X-ray fluorescence imaging are based on X-ray optics [26] which will limit the highest
obtainable resolution. At the moment, the achievable resolution of focusing optics has broken the
10 nm barrier [27,28]. For X-ray crystallography, the samples have to be crystallized typically to
a certain minimum size to obtain high resolution [29]. In addition to crystal growth and phasing,
radiation damage is an extra challenge, especially when radiation sensitive samples such membrane or
metal containing proteins.

In 1952, D. Sayre underlined in a half-page paper that by measuring the diffraction intensity
between the Bragg peaks, the phase problem of non-crystalline samples might be resolved [30].
Since then, oversampling theory [31,32] and different types of phase retrieval algorithms [33–41] have
developed rapidly. In 1999, J. Miao and colleagues performed the first successful coherent diffraction
imaging experiment [42]. This newly developed coherent diffraction imaging method is a form of
lensless microscopy rather than relying on X-ray optics. The theoretical resolution is only limited by
the incident light wavelength and the maximum diffraction angle recorded by the detector. The past
18 years have witnessed a great success of coherent diffraction imaging, especially under the use of
high flux X-ray light source facilities, such as advanced 3rd generation synchrotron facility Super
Photon ring-8 GeV (Spring-8, Hyogo, Japan), European Synchrotron Radiation Facility (ESRF, Grenoble,
France) and Advanced Photon Source (APS, Lemont, IL, USA). With developing X-ray instrumentation
and phase retrieval algorithms, coherent X-ray diffraction microscopy has been extended to
nanoparticles [43–48], mineral materials [49,50], biological cells, bacteria and viruses [51–63].
Meanwhile, different CDI methods also developed quickly, such as Bragg-CDI [43,44,46,48],
Fresnel-CDI [64], Keyhole-CDI [65], Reflective-CDI [66] and Ptychography [67,68]. These methods
greatly increased the diversity and breadth of applications. Some technologies were incorporated
from Cyro-EM, for example, Cryo-CDI [55,56] and wet-CDI [60]. These borrowed technologies make
high-resolution imaging without obvious radiation damage possible.

In order to summarize the areas of attention for coherent X-ray diffraction microscopy,
~200 published papers were analyzed. Fifty of them [24,31,32,38,42–87] were selected to generate the
word cloud of Figure 1 which shows that reconstruction, diffraction, sample, resolution, structure and
coherent are the most used terms during the last 18 years of synchrotron-based CDI papers. Besides,
exposure, photons and radiation are also frequently used words. These suggest that published efforts
have focused intensely on phase retrieval. It seems the reconstructed real space image was the main
aspect of a publication a decade ago. Furthermore, the type of samples and the achieved resolution
are also some of the most important parts of the selected papers. For biological specimen, radiation
damage has also been a concern. From M. Howells’s summarizing information [24], it can be found
that one should be able to image a frozen-hydrated biological sample with CDI at a 10 nm resolution.
To our knowledge, the currently published results showed that the best 3D image of biological samples’
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resolution is ~30 nm [61], which is a little far away from the 10 nm resolution under the maximum
radiation dose tolerance using a third-generation synchrotron light source. This lags behind the atomic
resolution achieved by electron microscopy. For the similar samples, such as human chromosome,
the resolution of 3D structures with CDI and Cryo-EM is ~120 nm [57] and ~50 nm [88], respectively.
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Figure 1. Word cloud of synchrotron-based coherent diffraction imaging published research papers.
About 50 widely-read published papers were downloaded. These papers are published during the last
18 years since the first coherent diffraction imaging experiment was conducted successfully in 1999.
The main text of the papers was analyzed by open python codes. The frequency of each meaningful
word was calculated and then demonstrated by different size and colors. The bigger the size means the
larger the frequency. The image shows that reconstruction, sample, phase and resolution are the most
used terms for the past 18 years of coherent diffraction imaging research. At the same time, structure,
intensity and radiation have also been key topics for biological imaging since 1999. (Original datas
were collected from References [24,31,32,38,42–87]. Figure was generated under the help of Github
open codes [89].).

The advent of a fourth-generation source, diffraction-limit storage ring (DLSR), opens a promising
pathway for CDI [90–92]. The low transverse emittance and beam divergence improve the coherent
fraction of the X-ray beam, especially for hard X-rays. The direct result is that the coherent photon
of DLSR will be higher than that of current synchrotron light source. The obtainable resolution for
CDI scales directly with the spatial coherence (as long as damage can be avoided). At the moment,
many facilities around the world intend to update or build DLSR facilities [93], such as ESRF Upgrade
Phase II [94], Spring-8 [95], MAX-IV [96], Sirius [97], etc. Looking forward, the investment X-ray
facilities are putting into DLSR operations will yield new science possibilities for CDI.

2. Coherent Diffraction Imaging with X-ray Lasers

During the rapid development of CDI, the X-ray light source technologies have also made
great progress. Thanks to the advent of ultra-intense and ultrafast X-ray free-electron lasers [98,99],
the femtosecond pulses can outrun main radiation damage processes [100] using the so-called
“diffraction-before-destruction” strategy [101]. Under proper conditions, XFELs can limit radiation
damage and provide clear images of molecules that can otherwise be damaged using a continuous
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illumination. The state-of-the-art serial femtosecond crystallography (SFX) [102] and single particle
imaging (SPI) methods [103] have proven to be promising ideas for native structure determination,
with the additional benefit of time-resolution for making movies of reactions. Due to noise, detector
limitation and demand of large amount dataset for atomic resolution, big data and automatic data
analysis are needed to achieve the challenging goal.

Owing to the ultra-intense and ultrafast X-ray pulses generated by FLASH (Hamburg,
Germany) [104,105], LCLS (Menlo Park, CA, USA) [106,107], SACLA (Hyogo, Japan) [108,109] and FERMI
(Trieste, Italy) [110,111], many exciting CDI results have been obtained. It is worthwhile mentioning that the
European-XFEL [112] and PAL-XFEL [113] have recently been commissioned, and that Swiss-FEL [114] is
under construction and soon to be commissioned. The Shanghai Soft XFEL [115,116] is under construction,
and a hard XFEL facility has also been proposed [117]. We believe that the newly-built facilities will continue
to be a great impetus to ultra-small and ultrafast research.

Coherent diffractive imaging experiments with X-ray free-electron lasers (XFEL-CDI) have
studied a wide range of samples including man-made objects, nano-materials, clusters, and aerosol
particles in the gas phase [101,118–132]. Many of these were used to test the validity of XFEL-CDI
and included measurements of the morphology of complex structures, functional imaging method
development, and dynamic changes under a stimulus (pump-probe). On the biological side, viruses,
bacteria, organelles and associated biological components have been imaged at various resolution
levels [133–142] and have helped further develop high throughput imaging methods.

Figure 2 shows typical results from non-biological particles using XFEL-CDI. The first experiment
demonstrating the “diffraction-before-destruction” principle using the FLASH soft X-ray free-electron
laser by H. Chapman and colleagues [101] is shown on Figure 2a. An intense pulse with 1012 photons
at 32 nm wavelength was transported to a nanostructured non-periodic object. A speckled pattern was
obtained before the beam completely destroyed the nanostructure. The diffraction pattern and the
reconstructed real-space image showed no measurable effect from radiation damage. The final imaging
resolution was estimated to be 62 nm, where the phase retrieval transfer function (PRTF) drops to
a value of 1/e. After this successful demonstration of the principle, pump-probe methodologies were
applied to XFEL-CDI. Figure 2b,c [120,128] show time-resolved imaging of transforming materials
under a visible light stimulus at FLASH and LCLS, respectively. Dynamic changes in man-made
structures (Figure 2b) and nanoparticles (Figure 2c) were observed. Such measurements represent
examples of the truly unique power of XFELs to study dynamic systems.

Other methods can also be combined with XFEL-CDI to yield further information. Figure 2d [126]
shows the functional imaging of multiple nanoparticles. Time-of-flight mass spectrometry was used
simultaneously with imaging, which allowed the morphology and chemical content to be captured
at the same time by a single shot. Other methods such as fluorescence and emission spectroscopies
can also be applied to reveal specific chemical information and correlate it to the structure revealed
by imaging.

Three-dimensional imaging is typically not only desired but also necessary to fully understand
a system being studied. However, focused XFEL pulses are too intense and destroy the sample
typically in one pulse, limiting the information available to two-dimensions in one pulse. Without
attenuation, the ultra-intense pulses will destroy almost all particles interacting with the X-ray
laser [143]. Three-dimensional images typically cannot be obtained by rotating samples using an X-ray
FEL which makes computed tomography (CT) and transmission X-ray microscopy (TXM) regularly
performed at synchrotron light sources not particularly suitable for XFELs. Three-dimensional
information is obtained using an XFEL by using re-producible particles delivered to the X-ray laser
pulses one at a time. In this manner, thousands to hundreds of thousands of diffraction patterns with
random orientations are recorded by large pixel array detectors. Using methods such as diffusion maps
or threshold methods, valid hits and single-particle hits can be selected and their relative orientation
can be determined. After phase retrieval, high-resolution real-space images can be obtained.
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Worthy of noted, J. Miao and colleagues developed a single-shot 3D imaging method for
high-symmetry objects and demonstrated the idea on gold nanoparticles with X-ray lasers [131].
Figure 2e shows a 3D image of a nanoparticle from SACLA. By using the symmetry of gold
nanoparticles, 48 diffraction patterns were generated. The 3D image was obtained after the finding of
common arcs and phase retrieval. The final resolution was determined to be ~5.5 nm.Appl. Sci. 2018, 8, 132 5 of 27 
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imaging with XFEL. Figure 3c [136] demonstrates the combination of synchrotron XFEL together for 
one sample where one facility could not solve all challenges. This combined experiment illustrates 
the differences between facilities. Figure 3d [141] shows the successful demonstration of living cell 

Figure 2. Coherent diffraction imaging of materials with or without pump-probe using X-ray
free-electron lasers. (a) The first demonstration of coherent diffraction imaging with X-ray lasers
at FLASH in 2006. The concept of “diffraction-before-destruction” was demonstrated at the limited
resolution available; (b) Time-resolved diffractive imaging of a man-made sample. Laser-pump
X-ray-probe was applied at different time delays. In this case, the sample is seen to get destroyed under
the high pump laser intensity and the features are disappearing after 15 ps; (c) Bragg coherent diffraction
imaging of gold nanoparticles with hard X-ray lasers was employed at the Linac Coherent Light Source
(LCLS). For different time delays, the changes in the diffraction patterns can be used to image phonon
dynamics; (d) Morphology and chemical components of aerosol particles were captured by coherent
diffraction imaging combined with time-of-flight mass spectrometry at LCLS; (e) Three-dimensional
imaging of nanoparticle from SACLA. By using the symmetry of gold nanoparticles, 48 diffraction
patterns were generated. The 3D image was obtained after the finding of common arcs and phase
retrieval. The resolution as determined by Fourier shell correlation (FSC) is ~5.5 nm. (Figure 2a
was reproduced with permission from [101]. Copyright Springer Nature, 2006. Figure 2b was
reproduced with permission from [120]. Copyright Springer Nature, 2008. Figure 2c was reproduced
with permission from [128]. Copyright The American Association for the Advancement of Science, 2013.
Figure 2d was reproduced with permission from [126]. Copyright Springer Nature, 2012. Figure 2e
was reproduced with permission from [131]. Copyright Springer Nature, 2014.).

Compared to non-bioparticles, the coherent scattering cross-section of bioparticles is typically
much smaller as they are composed of low atomic number elements primarily carbon, oxygen, nitrogen
and hydrogen. In other words, the scattering signal of bioparticles is less than other particles when the
particle size and photon parameters are the same. For example, the coherent scattering cross-section
of gold (19.32 g/cm3) and DNA (C10H11N4O6P, 1.70 g/cm3) are 6.5 cm2/g and 0.4 cm2/g under
7 keV. However, the scattering ability of gold is over 100 times stronger than that of DNA. The weak
scattering and low signal-to-noise-ratio (SNR) make high-resolution imaging of biological samples
more challenging. Figure 3a [135] shows the first coherent diffraction imaging of biological samples at
LCLS. High-quality diffraction data were obtained with a single X-ray laser pulse from a mimivirus.
The reconstructed exit wavefront (image) shows a full-period resolution of 32 nm. Single cell, virus or
bacteria imaging is of potential great importance to disease detection and drug design. It enables the
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collections of separate cell images from individual cells and high-throughput imaging over populations
of cells can sample unique occurrences. In this big data era, images from populations of genetically
identical cells often reveal heterogeneous phenotypes, which can be helpful to group behavior research.
Figure 3b [137] shows the high-throughput imaging of heterogeneous cell organelles with 120 Hz X-ray
laser pulses from LCLS. Morphology and inner electron density were reconstructed by phase retrieval
automatically. This result could pave the way for further biological functional imaging with XFEL.
Figure 3c [136] demonstrates the combination of synchrotron XFEL together for one sample where one
facility could not solve all challenges. This combined experiment illustrates the differences between
facilities. Figure 3d [141] shows the successful demonstration of living cell imaging of cyanobacteria.
Living cyanobacteria were injected into the X-ray beam using an aerosol injector. During the short
delivery time from solution to the vacuum of the experimental chamber, the cyanobacteria remain in
a living state and they were then imaged by coherent diffraction. This demonstrates the capability
for the real structure determination of biological samples under near native state. Figure 3e shows
the first 3D imaging of biological samples using an XFEL [139]. Hundreds of diffraction patterns
with different SNR and random orientations were recorded. After hit finding, pattern classifications,
orientation determination and phasing, a 3D real-space volume with a full-period resolution of 120 nm
was generated. This demonstration paves the way for 3D single-particle imaging, with the ultimate
goal of achieving atomic resolution requiring further effort.
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Figure 3. Coherent diffractive imaging of biological samples with X-ray free-electron lasers. (a) First
coherent diffraction imaging of biological samples with hard X-ray lasers at LCLS. The sample,
mimivirus, is one of the largest known viruses. The total diameter of the particle, including fibrils,
is about 750 nm. The full-period resolution of this first demonstration is ~32 nm; (b) High-throughput
imaging of heterogeneous cell organelles. Around 70,000 low-noise diffraction patterns were collected
within 12 min at LCLS at a frequency of 120 Hz. Real space images with different organelles’ size
and shape were phased automatically; (c) Structure determination of RNAi microsponge combining
single-shot X-ray free-electron laser (XFEL) diffraction with synchrotron-based coherent diffraction
imaging; (d) Living cell imaging of cyanobacteria with XFEL. Living cyanobacteria were injected to
the X-ray laser using an aerosol particle injector; (e) The first demonstration of three-dimensional
imaging of biological samples. Mimivirus was delivered to the X-ray laser beam, hundreds of
random orientation diffraction patterns were collected. After hit finding, single-shot classification and
orientation determination, a three-dimensional diffraction volume was obtained. The spatial resolution
was estimated to ~125 nm. (Figure 3a was reproduced with permission from [135]. Copyright Springer
Nature, 2011. Figure 3b was reproduced with permission from [137]. Copyright Springer Nature, 2014.
Figure 3c was reproduced with permission from [136]. Copyright Springer Nature, 2014. Figure 3d was
reproduced with permission from [141]. Copyright Springer Nature, 2015. Figure 3e was reproduced
with permission from [139]. Copyright American Physical Society, 2015).
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3. Single-Particle Imaging with X-ray Lasers

As mentioned above, coherent diffraction imaging with X-ray lasers has undergone a fast
development and many high-profile results have been achieved. However, the published resolution
has been limited, and there is a huge gap between the current resolution and atomic-scale resolution.
In order to deeply investigate the limitations and move forward, start-to-end considerations have to
be taken. The light source, such as the photon energy, pulse duration and pulse energy need to be
optimized. X-ray instruments, such as optics, focusing mirrors, front-end slits and apertures before
the sample, also need to be optimized for the measurement. Sample delivery systems, such as aerosol
injectors, liquid-jet injectors and fixed targets, need development, optimization and suitable design
for different experiments. Data acquisition system, such as high quantum efficiency (QE) and high
dynamic range detectors, online data monitoring and analysis software, phase retrieval algorithms,
will greatly affect the efficiency and validity of final images.

To speed up the progress and take full advantage of the scientific community around the
world, LCLS launched an international cooperation team in December 2014, the Single-Particle
Imaging initiative, which includes more than 100 scientists from 21 institutions over eight countries.
A step-by-step roadmap was published where a host of challenges was outlined to guide the required
developments. A series of experiments has been dedicated to systematically address the challenges
of SPI.

3.1. The Road Map

To achieve atomic-scale resolution, such as 3 Å, the SPI initiative analyzed all the factors that
could limit the resolution from the start to the end of the experiment. To initiate this work, workshops
and brainstorming sessions were arranged to clarify the steps to undertake. Following the published
roadmap [103], the following key challenges were identified:

(1) Radiation damage;
(2) Start-to-end simulation pipeline;
(3) Samples issues;
(4) Sample delivery system;
(5) Characterization of parasitic scattering and noise;
(6) Beam diagnostics and characterization;
(7) Data analysis and phase retrieval algorithms development.

3.2. Setup and the Experiment Procedure

Many aspects are required to be specified prior to conducting an SPI experiment. First, the proposed
resolution, sample type and size should be defined. Special diagnostics required for the experiment,
such as the ion/e− TOF, high speed camera, fluorescence detector and pumping laser system and the
space they require should also be taken into consideration. Secondly, the ideal sample-to-detector-distance,
photon energy, pulse duration, and pulse energy should be determined. Then, careful alignment of all
optics, slits, KB mirrors and large-panel pixel array detectors must carefully be accomplished at the
start of the beamtime. Simultaneously, beam characterization, such as the beam profile, the focused
beam spot size, beam intensity and position fluctuations, wavefront or arrival time should be diagnosed
for further reference. The high harmonic content of the beam should also ideally be tested. Finally,
selection of a proper sample delivery method will be of great importance to the background and hit
rate. The simple flow chart of the experiment and data process is shown in Figure 4. After alignment
of the instrumentation, samples are delivered into the X-ray laser beam path. The forward scattering
exit wavefront will propagate downstream and then to be recorded by the detector and this pattern
must be oversampled properly. Data processing involves center determination, background subtraction,
analog-to-digital units (ADU) to photons conversion, hit finding, pattern classification, and orientation
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determination. Finally, phasing can produce a real-space 3D image. By using PRTF, FSC or other criteria,
the spatial resolution could be determined.

3.3. Current Status

Eight experiments have been performed since the start of the SPI initiative. Different samples,
such as FIB Au nanostructures, rice dwarf virus (RDV), coliphage PR772 viruses and bacteriophage MS2
virus, were used for the various experiments. The reasons for the sample selection will be discussed
in the sample selection section. The main purpose of each experiment was different. For example,
amo86615 aimed primarily to collect a lot of diffraction patterns of RDV and PR772. However, the main
target for experiment amo11416 was to test sample delivery and collect diffraction data from MS2.
To reduce the background from sample delivery, different sample methods were tested.Appl. Sci. 2018, 8, 132 8 of 27 
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Figure 4. Schematic layout of a single-particle imaging measurement using femtosecond XFEL pulses.
Nanoparticles and viruses are injected to the XFEL focus by a particle injector or a fixed target system
using thin membranes such as Si3N4 and graphene. High dynamic range, high quantum efficiency
and large panel detectors are employed to record patterns. In general, five main steps are required for
a single-particle imaging experiment. After sample selection and preparation, they are delivered to
the XFEL focus and the patterns are collected by the detector. This produces large data sets requiring
advanced automatic processing. Hit finding, background subtraction and detector calibrations have to
be applied to reduce the data. By using threshold analysis or diffusion maps, single-shot patterns are
selected. After orientation determination and phase retrieval, a real-space three-dimensional image can
in principle be achieved.

3.4. Light Source and Instruments

There are seven X-ray instruments at the LCLS. The Coherent X-ray Imaging (CXI) instrument
and the Atomic, Molecular & Optical Science (AMO) instrument are the instruments suitable for SPI.
The CXI instrument is located in the Far Experimental Hall of LCLS. The hutch is located 440 m far
away from the source. The instrument makes use of hard X-ray pulses to perform coherent X-ray
imaging and serial femtosecond crystallography experiments. The primary operating photon energy
range is 5~11 keV, with some capability for higher harmonics up to 25 keV. Three sample chambers
exist with foci of ~5 µm, 1 µm, and 0.1 µm being possible. The AMO instrument is located in the Near
Experimental Hall of LCLS and the photon energy range is 280~2000 eV. The focusing optics for the
AMO instrument are bendable Kirkpatrick-Baez (KB) mirrors and the focused beam size is estimated
to be 1.5~5 µm. In both the CXI and AMO cases, a high-power laser synchronized with the X-ray laser
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is available. Figure 5 shows a simple layout of AMO and CXI instruments. More detailed information
can be found from reference [144–146] and from the LCLS facility website [147,148].

As mentioned in the setup and experiment procedure section, photon parameters should be
determined before the experiment. The selection of the photon energy is very important to single
particle imaging. As shown by momentum transfer q = 4π sin θ/λ (2θ is the scattering angle),
to obtain higher resolution, higher photon energy is needed. On the contrary, for higher photon energy,
the wavelength is shorter and the coherent scattering cross-section is weaker. In order to estimate the
scattering intensity per shot, a sphere model with uniform electron density can be used [149],

I(q) = I0r2
e ∆Ω|∆ρ|2(4π

sin(Rq)− Rq cos(Rq)
q3 )2 (1)

where I0 is the incident intensity, re is the classical electron radius, ∆ρ is the difference of the complex
electron density of the sphere to the medium and R is the sphere radius. If we take the complex
refractive index into the above equation, we can get the maximum ring intensity [150],

Imax(q) = I0r2
e ∆Ω|∆ρ|216π2R2q−4 (2)

The intensity for high q will decrease rapidly. For the same sample size and scattering angle,
shorter wavelength will contribute to higher resolution but lower intensity. Therefore, the optimized
photon energy should be chosen depends on proposed resolution and sample types.
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Figure 5. Overview of Atomic, Molecular & Optical Science (AMO) and Coherent X-ray Imaging (CXI)
instrument layout. Distances are indicated in meters from the interaction region (IR) for AMO, 1 µm
sample chamber (SC) and in parentheses from the 100 nm SC for CXI. The X-ray beam enters the hutch
and passes through the diagnostics (D) and slits (S) and is then focused by KB mirrors. (a) An optical
laser in-coupling (L-IN) is located 0.4m upstream of the IR. Two pairs of pnCCD detectors are located in
different positions downstream of the IR; (b) For the CXI instrument, each chamber is colored to match
its designed KB mirrors. A timing tool (TT) is designed to obtain the fine time between X-ray laser and
pump laser. (Figures were reproduced from Reference [145,146] with permission from International
Union of Crystallography/IUCr).
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Another principle for the photon energy selection is the optimized X-ray energy range for specified
experiment instruments. For different X-ray instruments at LCLS or different beamlines at SACLA,
the optimized photon energy varies. The commonly used photon energy for SPI is 1700 eV that just
below the Si K-edge at AMO, 7 keV at CXI that below the Fe edge of 7.1 keV, LCLS. Also, the photon
count ability of detectors has also been considered during the photon energy selection. Other photon
energies, such as 1250 eV, 1800 eV, 5 keV and 10 keV have also been used and tested, with varying
degrees of success. A balance has to be struck between the resolution and scattering efficiency, and the
ability for the various detectors to count photons with a reasonable signal to noise ratio.

High harmonics are an inevitable aspect of XFEL sources. Radiation at the fundamental wavelength
dominates but appreciable levels of high harmonics also present at the 1% level. These harmonics may
extend the capability of instruments but also may contribute background to experiments. The Soft
X-ray Offset Mirror System (SOMS) and Hard X-ray Offset Mirror System (HOMS) located in the Front
End Enclosure of LCLS have harmonic cutoffs at ~2.5 and ~25 keV respectively. The SOMS operate
in the FEL energy range from 0.20 keV to 2.0 keV and the reflectivity is above 90% [151]. The system
reflectivity above 2.48 keV is below 20%, which contributes to suppressing the third harmonic FEL
peak [152]. The fundamental operation energy range for HOMS is 2.0~12.0 keV, and be able to deliver
2~25 keV photons up to the third harmonic. From former measurement, it is known that the second
harmonic content in normal operation at soft X-ray region (near 1keV) is 0.04~0.1%, and the third
harmonic is as high as 2.0~2.5% [153]. The third harmonic for hard X-ray wavelength (6~8 keV) is
0.2~2%. The reflectivity for the second and third harmonics are different for the downstream KB mirrors
located at the experiment station, which provide some level of harmonic rejection. The third harmonic
can produce undesired noise, for example via fluorescence by crossing above an absorption edge such
as iron, a material making up most of the vacuum chamber. It is also less efficiently block by apertures
and slits and can again increase the background noise.

Knowing and optimizing the focused beam size and the wavefront is another key aspect of SPI
experiments [154]. The position and angles of KB mirrors should ideally be aligned for every SPI
experiments. Imprint methods have been employed for the AMO and CXI instruments to find the
best focusing position [155,156]. This is a time-consuming procedure for the current experiments.
Two to three hours are usually required. According to the nature of SASE mode, the beam position and
intensity fluctuates shot-to-shot. The SPI initiative has also taken the phenomenon into consideration.
A backscattering position and intensity monitor was used for diagnostic for the CXI instruments [157].

The parasitic scattering of particle injectors is the primary source of scatter, the team is still
working on this problem. Apart from particle injector scattering, the left stray scattering comes from
the upstream components of the beamline. For the AMO instrument, the parasitic scattering comes
from the roughness of KB mirrors. For the CXI instrument, the stray scattering comes from the
diamond window that is located downstream of the KB mirrors to protect the mirrors from particles.
The detailed information will come out soon by the SPI team. For SPI experiments, the alignment of
apertures is also of great importance. Ge, Si, Si3N4 and B4C apertures are typically used depending
on the instrument and photon energy. Background levels from apertures of different materials have
been investigated with varying performance depending on the material and thickness. For example,
cleaved and etched Ge was found to be a good choice for hard X-rays around 7 keV.

The typical LCLS pulse energy for SPI is 2~5 mJ, equals to 7.80× 1012~1.95× 1013 photons/pulse@1.6 keV
and 1.78~4.46× 1012 photons/pulse@7.0 keV. The calculation of photon number per pulse was based on
the 100% efficiency assumption of optical system. Actually, the efficiency is closer to 50%. More photons
typically mean higher SNR with stability being desirable. A single diffraction pattern is just one slice
from the 3D diffraction volume. The number of photons interacting with the sample is different due to
the intensity fluctuations shot-to-shot. The side effects of intensity fluctuations to the SPI 3D diffraction
volume also need further study. Figure 6 shows the pulse intensity fluctuation with shots (time),
the common fluctuation of intensity is ~10%. Also, the focused beam position fluctuates. The relative
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positions between X-ray laser beam and the sample are also different shot to shot. This leads to different
incident photons onto samples and means that for SPI, is not so easy to normalize every frame.

Appl. Sci. 2018, 8, 132 10 of 27 

edge such as iron, a material making up most of the vacuum chamber. It is also less efficiently block 
by apertures and slits and can again increase the background noise. 

Knowing and optimizing the focused beam size and the wavefront is another key aspect of SPI 
experiments [154]. The position and angles of KB mirrors should ideally be aligned for every SPI 
experiments. Imprint methods have been employed for the AMO and CXI instruments to find the 
best focusing position [155,156]. This is a time-consuming procedure for the current experiments. 
Two to three hours are usually required. According to the nature of SASE mode, the beam position 
and intensity fluctuates shot-to-shot. The SPI initiative has also taken the phenomenon into 
consideration. A backscattering position and intensity monitor was used for diagnostic for the CXI 
instruments [157]. 

The parasitic scattering of particle injectors is the primary source of scatter, the team is still 
working on this problem. Apart from particle injector scattering, the left stray scattering comes from 
the upstream components of the beamline. For the AMO instrument, the parasitic scattering comes 
from the roughness of KB mirrors. For the CXI instrument, the stray scattering comes from the 
diamond window that is located downstream of the KB mirrors to protect the mirrors from particles. 
The detailed information will come out soon by the SPI team. For SPI experiments, the alignment of 
apertures is also of great importance. Ge, Si, Si3N4 and B4C apertures are typically used depending on 
the instrument and photon energy. Background levels from apertures of different materials have been 
investigated with varying performance depending on the material and thickness. For example, 
cleaved and etched Ge was found to be a good choice for hard X-rays around 7 keV. 

The typical LCLS pulse energy for SPI is 2~5 mJ, equals to 7.80 × 1012~1.95 × 1013 photons/ 
pulse@1.6 keV and 1.78~4.46 × 1012 photons/pulse@7.0 keV. The calculation of photon number per 
pulse was based on the 100% efficiency assumption of optical system. Actually, the efficiency is closer 
to 50%. More photons typically mean higher SNR with stability being desirable. A single diffraction 
pattern is just one slice from the 3D diffraction volume. The number of photons interacting with the 
sample is different due to the intensity fluctuations shot-to-shot. The side effects of intensity 
fluctuations to the SPI 3D diffraction volume also need further study. Figure 6 shows the pulse 
intensity fluctuation with shots (time), the common fluctuation of intensity is ~10%. Also, the focused 
beam position fluctuates. The relative positions between X-ray laser beam and the sample are also 
different shot to shot. This leads to different incident photons onto samples and means that for SPI, 
is not so easy to normalize every frame. 

 
Figure 6. Pulse energy fluctuation with time. The intensity and position fluctuations come from the 
origin of SASE. The common fluctuations are typically 10% but sometimes as high as 30%. 

The pulse duration is another main factor for XFEL experiments. Short pulse duration is always 
required to outrun radiation damage. However, since shorter pulses usually come with a reduced 
number of photons, a balance is needed between pulse duration and pulse energy, a balance between 
damage and signal. For biological samples and molecules, Auger decay is predominant in carbon, 
nitrogen and oxygen [158]. The photoelectric effects will lead to a removal of two electrons from these 
elements. The energy and lifetime of these two electrons are different [159–161]. To figure out the 

Figure 6. Pulse energy fluctuation with time. The intensity and position fluctuations come from the
origin of SASE. The common fluctuations are typically 10% but sometimes as high as 30%.

The pulse duration is another main factor for XFEL experiments. Short pulse duration is always
required to outrun radiation damage. However, since shorter pulses usually come with a reduced
number of photons, a balance is needed between pulse duration and pulse energy, a balance between
damage and signal. For biological samples and molecules, Auger decay is predominant in carbon,
nitrogen and oxygen [158]. The photoelectric effects will lead to a removal of two electrons from these
elements. The energy and lifetime of these two electrons are different [159–161]. To figure out the
exact Auger emission time scale and non-elastic scattering for specified samples is complex. However,
the classic simulation and crystalline experiments have demonstrated that the radiation damage could
be reduced or eliminated by using shorter pulses, such as <10 fs [100]. For SPI, to guarantee enough
photons per pulse, the commonly used pulse duration is 30~70 fs. At the current limited resolution,
these pulse durations do not lead to noticeable damage. For higher spatial resolution, radiation damage
will be a limit for the development of SPI [25,162,163].

3.5. Sample Selection

For the development phase of SPI, the selection of samples is key. To make things easier, choosing
a high Z material is tempting, but this is not very representative of samples that are the ultimate goal
of the method with the scattering strength of high Z nanoparticles being stronger than bioparticles
and biomolecules. Nevertheless, as initial steps towards developing aspects of the SPI methods,
such artificial test samples can prove useful. Nanofabricated samples present the challenge of
producing particles with regular shapes and sizes, a key requirement for putting together a consistent
3D diffraction volume from multiple copies of an object. This is also a challenge for bioparticles but
less so.

The sample size should be smaller than the focused beam size. If the X-ray pulse only illuminates
part of a single particle, one does not get a diffraction pattern representative of the whole object and
therefore cannot merge this data reliably. As the sample quantities needed are large, the cost, mass
production capacity should also be considered. High concentration should also be easy to achieve to
improve the hit rate. Last but not least, the particles should be able to be aerosolized stably for injection
to the XFEL beam. Under these principles, gold octahedra with size range from 2 µm to 100 nm were
produced by a polyol process [164]. For bioparticles, RDV, PR772 and MS2 were selected. RDV (Rice



Appl. Sci. 2018, 8, 132 12 of 28

Dwarf Virus, Figure 7a) is an icosahedral RNA virus of about 70 nm in diameter [165]. A 3D structure
of the capsid was determined by X-ray crystallography with a resolution of 3.5 Å. The associated
PDB ID is 1UF2 [166]. PR772 (Figure 7b) is a lipid-containing bacteriophage that infects E. coli [167].
The diameter of this icosahedral virus is about 69 nm. Unfortunately, the inner arrangement and
structures of lipid layer and DNA are also not clearly known. MS2 (Figure 7c) is a bacteriophage that
infects F + E. coli. The diameter of this icosahedral virus is about 26 nm [168]. The internal arrangement
of the complex is unknown.
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The atomic structure was determined by X-ray crystallography at 3.5 Å resolution [166]; (b) Quasi-
atomic structure resolution model of bacteriophage PRD1 wild type virion. PR772 belongs to the 
PRD1 family. The dsDNA bacteriophage has a membrane inside its icosahedral capsid. The atomic 
structure was determined by combined cryo-EM and X-ray crystallography at 25 Å resolution [169]; 
(c) Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator 
fragments. MS2 is a group I RNA bacteriophage that infects Escherichia coli. The atomic structure was 
resolved by X-ray crystallography at a resolution of 2.8 Å [170]. The projections were generated by 
NSL Viewer, a WebGL based 3D viewer [171,172]. 
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(a) fix the sample by solid support, fixed target method; (b) Inject the particle streams into X-ray laser 
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Figure 7. Projections of bioparticles used for SPI experiments. (a) Biological assembly of double-
shelled rice dwarf virus (RDV). RDV is a member of the genus Phytoreovirus in the family
Reoviridae. The atomic structure was determined by X-ray crystallography at 3.5 Å resolution [166];
(b) Quasi-atomic structure resolution model of bacteriophage PRD1 wild type virion. PR772 belongs to
the PRD1 family. The dsDNA bacteriophage has a membrane inside its icosahedral capsid. The atomic
structure was determined by combined cryo-EM and X-ray crystallography at 25 Å resolution [169];
(c) Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments.
MS2 is a group I RNA bacteriophage that infects Escherichia coli. The atomic structure was resolved by
X-ray crystallography at a resolution of 2.8 Å [170]. The projections were generated by NSL Viewer,
a WebGL based 3D viewer [171,172].

3.6. Sample Delivery

Sample delivery is a key component of XFEL experiments. There are two mainly used methods:
(a) fix the sample by solid support, fixed target method; (b) Inject the particle streams into X-ray laser
beam path, injection method. For the first method, Si3N4 membrane or amorphous carbon film are
regularly used. The method has been used for many 2D crystalline samples and synchrotron-based
CDI experiments. However, the diffraction background is strong and can overwhelm the signal from
the sample if Si3N4 is used. For particle injectors, there are many injector devices commonly used by
scientists. The gas dynamic virtual nozzle (GDVN) injector [173], delivers samples inside an unbroken
liquid stream with tunable diameter by changing nozzle diameter and gas flow rate. The main general
drawback of the GDVN is that they don’t form droplets that are small enough. Also, non-volatile
components in the buffer solution trend to stick to the particle of interest, which will make valid
single particle shot more challenging. Another drawback of the GDVN is the high rate of sample
consumption. This is not a problem when the sample is easy to achieve or synthesis. But this will
be a big problem when the sample is valuable and hard to get. For SPI specifically, the liquid carrier
medium scatters X-rays much more than the sample itself and makes it unsuitable for measuring single
particle diffraction patterns of biological sampels. To solve this problem, the GDVN is always used
combine with aerodynamic lens stack or electrospray during the SPI experiments.

Another mainly used injector device is the aerosol injector. The particles can be focused by
gradient pressure in the aerodynamic lens stack. The sample delivery method of choice for SPI is
typically to transport the purified samples into the buffer solution and then aerosolized with helium gas
using a GDVN and then introduced to the X-ray laser beam path via an aerodynamic lens. The purified
samples could also be aerosolized by a gas nebulizer, such as electrospray [174], and then injected
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by the aerodynamic lens stack [175]. These unfortunately typically lead to low hit rates. For CXI
nanofocusing, the hit rate is just ~1% or lower. The number of diffraction patterns needed for high
resolution is large, requiring a lot of beamtime, beyond what is reasonably possible. This is an issue
that will need to be resolved for SPI to become a broadly useful method. Another challenge for SPI is
the scattering background from residual gas of aerosol injector. Different gases, such as He and CO2,
have been tested and there are indications that the background level is now limited by the aerosol
carrier gas.

3.7. Detector and Data Analysis

Detector systems are critical important to all scientific experiments and SPI is not an exception.
The 2017 Chemistry Nobel Prize was awarded to Cryo-EM, a powerful technology for single-particle
protein crystal structures determination [176]. The current resolution is around 3 Å, comparable with
the X-ray crystallography [177]. About 20 years ago, the first 3D reconstruction at the sub-nanometer
resolution of icosahedra virus was around 10 Å. Since then, thousands of structures have been
determined by the Cryo-EM at a resolution from 30 Å to 3 Å [3]. A breakthrough was suddenly made
around 2014. Great progress was made with the direct electron detectors and single particle analysis
methods [178]. From that moment, Cryo-EM has attracted much attention from biologists and chemists.
Compared with the Cryo-EM, there is a long way to go for SPI. The current 3D resolution of SPI is about
10 nm. The CXI nanofocusing data showed a post-sample aperture [179] limited resolution close to
5.9 Å [180]. Figure 8 shows the calculated photons number vs resolution (Q). The integrated single hit
signal is higher than the background. A real-space image could not be obtained from this data due to
the lack of enough hits. While the main limitation currently is hit rate, improved detectors with lower
noise and easier identification of single scattered photons from the noise will be required to achieve
higher resolution imaging. The SPI detector of the future will need to combine the best of dark current,
detector panel size, gain, readout noise, dynamic range and quantum efficiency, with an increased
readout speed. For LCLS, the maximum pulse repetition is 120 Hz. At the increased repetition rates of
the European-XFEL and LCLS-II, new detectors are needed. Millions or more diffraction patterns are
needed to obtain a high-resolution image. At the current hit rates of about 1%, higher repetition rate
X-ray FELs will have a profound impact. The main characteristics of detectors used or planned for
SPI related experiments at LCLS, LCLS-II, European-XFEL, SACLA and SwissFEL are listed in Table 1
for reference.
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Table 1. Main characteristics of detectors used for LCLS, LCLS-II, European-XFEL and SACLA.

AMO, LCLS CXI, LCLS TXI, LCLS-II SPB/SFX, European-XFEL BL 2, SACLA SwissFEL

Detector pnCCD CSPAD b ePi×10k AGIPD d MPCCD JUNGFRAU f

Pixel Size (µm2) 75 × 75 110 × 110 100 × 100 200 × 200 50 × 50 75 × 75
Single Photon Sensitivity Yes Yes Yes Yes Yes e Yes

Quantum Efficiency >80%@0.3~12 keV ~97%@8 keV ~85%@5 keV >80%@0.3~25 keV ~85%@5.5keV Up to 85%@1 keV
Dynamic Range 103@2 keV 3.5 × 102@8 keV ~104@8 keV >104@12.5 keV 1.2 × 103@6 keV >104@12 keV

Noise (e−) 20/2 a 300 120 265 300 100
Frame Rate (kHz) 0.12 0.12 0.48/2~4/10~20 c 4500 0.06 0.1~2.4

a For pnCCD, the readout noise is 20 e− for low gain, 2 e− for high gain [181]. b The dynamic range and ASIC noise for CSPAD under high gain mode are 350 photons@8 keV and
300 e− r.m.s. For low gain mode, they’re 2700 photons@8 keV and 1000 e− r.m.s [182]. c The current version is about 480 Hz. For digital domain multiplexing, the frame rate will be
2~4 kHz. For fast ADCs, the frame rate will be 10~20 kHz [183,184]. d See reference [185,186] for detailed information. e Keeping the single photon detection capability for X-ray photon
energy higher than 6 keV [187]. f See reference [188] for detailed information.
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Data analysis is obviously key to the final results. As XFEL beamtime is rare and precious around
the world, to optimize the experimental parameters before the formal experiment and data collection
period is of great importance to guarantee the success and save beamtime. Simulations based on
physical theories, actual light source and instrument specifications will be a great help. The SPB/SFX
instrument of the European XFEL created a start-to-end simulation (S2Esim) software (European-XFEL,
Hamburg, Germany) [189] to help researchers figure out the optimized parameters for SPI experiments
based on European XFEL accelerator and undulator data bank. Recently, a powerful program was
designed for SPI to demonstrate single particle imaging under ultra-shot X-ray pulses [190]. LCLS
is planning to leverage these developments from the European XFEL. Other open sources, such as
condor [191], provided by Uppsala University can simulate speckle patterns, reconstructed images
and evaluated resolution that based on photon energy, focusing beam spot size, sample type and
detector, etc. These will help researchers design and optimize their experiments.

The quantity of raw data of XFEL experiments makes it fall under the big data category. Raw data
files contain electron and photon beams parameters on a shoit by shot basis, instrument settings and
motor positions, diagnostics and DAQ information. How to extract useful information from the raw
data efficiently is challenging. To provide a user-friendly solution, LCLS, European-XFEL and SACLA
created their own DAQ systems [192]. At the LCLS, data analysis department developed psana module
that a python-script interfaces could be used online (real-time) offline and parallelized over many
machines [193]. This data analysis strategy makes SPI data analysis easier by using building blocks.

Online data monitoring is also an important part of SPI experiments. To give an instant feedback
from the SPI data collection, a Python-based software named Hummgbird (Uppsala University, Uppsala,
Sweden) [194] was developed. This gives the needed fast feedback for the particle injector and
instruments alignment or optimization.

Offline analysis of such big data sets is challenging. The LCLS data analysis department developed
psocake [195], a GUI program that makes SPI data analysis simple. The input of experiment name, run
number and detector ID will make diffraction data visible. Different masks, different algorithms for
hit finding and multiple types of pixel readout (gain corrected ADU, common mode corrected ADU,
pedestal corrected ADU, raw ADU and photon counts) make diffraction patterns preliminary analysis
(e.g., ADUs to photons, background subtraction, hit finding) powerful and effective.

Apart from the shot-to-shot intensity variation, non-linear detector response, stray scattering from
optics and injectors, sample heterogeneity and conformations mentioned above, multiple particle hits
are also a challenge factor for offline data analysis. Significant progress has been made in classification
algorithms by using diffusion maps [196]. Experimental data contains only intensities with no phase
information. Diffusion map algorithms provide mathematical links to a cloud of points via the
Laplace-Beltrami operator. Each point on a diffusion map represents a diffraction pattern as shown
on Figure 9 [197]. Single hit, multiple-particle hit, water diffraction, background and defects from
the detector are captured in such mapping. Diffusion map approaches will fail in the limit of strong
background and low SNR for small particles (e.g., MS2). For that situation, the classification can be
conducted by hand. This is time-consuming and the precision will be non-reproducible for different
operators. To solve this problem, automatic and supervised machine learning methods are being
developed. The convolutional neural network is based on VGG16 net. For training, simulated data
and experiments data are both used. Further study is still needed but this represents a promising
future approach.

After classification, orientation determination and phase retrieval are needed. The commonly used
methods are generative topographic mapping (GTM) [198], expectation maximization compression
(EMC) [199,200], correlation maximization [201], manifold [202,203] and angular correlation
methods [204]. The current method of choice for orientation determination is EMC. The EMC algorithm
is implemented in Dragonfly [205], which is a powerful python-script program. Figure 10 shows a 3D
diffraction volume after orientation determination and assembly [206]. The associated 3D real-space
image is reconstructed by error-reduction (ER) method. Many other phase retrieval algorithms could
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be used, such as hybrid-input-output (HIO), Guided-hybrid-input-output (GHIO), relaxed averaged
alternating reflections (RAAR) and difference map (DM).
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Since the start of the SPI initiative, eight experiments have been completed to try to overcome 
the technical challenges in achieving atomic resolution in single particles imaging with XFELs at the 
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conformation change detection and new phase retrieval algorithm. The goals of past SPI experiments 
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Figure 9. Diffusion map analysis of all hits. Large data sets were reduced to single-particle hit patterns.
(a) Single-particle hit; (b) multiple-particle hit; (c) water diffraction that may contain contaminant
residue from samples and buffer solutions; (d) background diffraction from detector; (e) detector defect
pattern. (reproduced with permission from [197]. Copyright Springer Nature, 2017).
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Figure 10. Three-dimensional diffraction pattern and reconstructed structure obtained without
conformational analysis. (a) Diffraction pattern extracted from 37,550 2D single-particle diffraction
snapshots of the PR772 virus, obtained at LCLS; (b) Corresponding 3D reconstructed image with
a resolution of 9 nm, corresponding to scattering to the edge of the detector. (reproduced with
permission from [206]. Copyright Springer Nature, 2017).

Recently, great progress has been made in real-space image reconstruction phase retrieval
algorithms, multi-tiered iterative phasing (M-TIP) [207]. M-TIP is an extension of standard iterative
phasing algorithms, which recover the 3D internal intensity directly from fluctuation X-ray scattering
data [208]. The angular cross-correlations method makes a valuable statistical tool for structural
analysis. The approach in the case of scattering also offers a valuable opportunity for multi-particle
analysis. Figure 11 shows the recovered 3D structures of RDV and PR772 by MTIP. A non-uniform
distribution of internal structures was obtained.

4. Summary and Future Prospects

Since the start of the SPI initiative, eight experiments have been completed to try to overcome
the technical challenges in achieving atomic resolution in single particles imaging with XFELs at the
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Linac Coherent Light Source. Two data papers have been published to describing experimental details
and progress to date. Progress was also made by the SPI initiative members developing conformation
change detection and new phase retrieval algorithm. The goals of past SPI experiments mainly
focused on light source and instruments optimization, sample preparations and delivery development,
background reduction and data analysis methods. The team achieved measurement signals at ~6 Å
resolution, to the corner of the CSPAD detector used with the 100 nm-focusing system of the CXI
instrument. At the moment, the data is insufficient to reconstruct the 3D real-space image. On the other
hand, hundreds of thousands of diffraction patterns were recorded by a far-field pnCCD at the AMO
instrument using soft X-rays. Different team members have successfully reconstructed 3D real-space
images using different methods at a full-period resolution of ~10 nm. Some of the SPI beamtime have
been dedicated to the improvement of sample injection. Different injection methods, such as GDVN
and electrospray for aerosolization, have been tested to reduce the background. This is still a challenge
for further experiments. For the data analysis, classification has made rapid progress via the use of
diffusion maps and machine learning. Powerful programs, such as psana, Condor, Hummingbird, Ondata,
Dragonfly have made great contributions to SPI.
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Figure 11. Three-dimensional reconstructed images of RDV (top row) and PR772 virus (bottom row).
Two different views of the reconstructed RDV (a,b) and PR772 (d,e) particles, as well as density plots
showing nonuniformities in the internal distribution of material inside the viruses (c,f). (reproduced
with permission from [207]. Copyright American Physical Society, 2017).

For higher resolution in the near future, such as 5 Å or better, more challenges lay ahead.
The reproducibility of samples and homogeneity of internal structures are hard to guarantee. The hit
rate and sample contaminations will have a great influence on the validity of patterns and numbers
of valid frames. Higher resolution means more frames, this also requires more semi- and automatic
data analysis methods. Not only are enough frames needed for 3D reconstructions but they also need
enough photons in each frame for interpretation above noise. To totally outrun the radiation damage,
the pulse duration should be reduced from 40 fs to below 10 fs without too much loss in flux. High QE,
high dynamic range and large array pixel area detector will also be a bottleneck for higher resolution
approach using higher repetition rate machines. Fortunately, the European XFEL and LCLS-II are both
developing such detectors.

A new tendency in scientific research is to share the data, sources and codes to the public [209–211].
With data sharing, the validity and repeatability of the analysis and interpretation can be tested by
different institutes and personnel [212–216]. “Open science, data sharing, software sharing is the future
of science”, Carly Strasser says [209]. For SPI, this concept has also been accepted and will be extended
to a wider range [217–220]. At the moment, most published data has been uploaded to the Coherent
X-ray Imaging Data Bank (CXIDB) [221,222]. The community can download the raw data and try to
reproduce the results. Commonly used tools can also be obtained easily from Github [223] or facility
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websites [224]. The move to make scientific findings transparent will speed up the challenging project
and improve the scientific outcome.

Moving forward and overcoming the technical challenges can be painful, but this necessary
method development effort is improving the prospects of single particle imaging with XFEL. High
resolution X-ray based single particle imaging will make dynamic changes, light-induced phenomena,
phase transition and femtosecond chemistry & catalysis valuable possibility. This will provide a new
horizon to the scientific community to explore the ultra-small and ultrafast world. The potential
rewards are worth the effort and will only benefit from the advent of high repetition rate of
state-of-the-art X-ray FELs such as the European-XFEL and LCLS-II.
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