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Abstract: This paper investigates the characteristics of surface waves propagating on a grounded 
anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields 
of surface wave uniformly distribute along the transverse direction of the infinitely large grounded 
slab, our method takes into account the field variations along the transverse direction of a finite-
width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse 
magnetic (TM) or transverse electric (TE) mode exists if the fields are non-uniformly distributed 
along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM 
and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid 
modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab 
width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different 
methods are employed to compare the analyses, as well as to validate our derivations. The proposed 
method is very suitable for practical engineering applications. 
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1. Introduction 

Over recent decades, surface waves have attracted extensive attention due to their unique 
characteristics of existing at the interface of two different media with the field exponentially decaying 
away from the interface. For example, Dyakonov surface waves have been investigated thoroughly 
in several literatures [1–3]. The characteristics of the surface waves propagating at the interfaces 
between isotropic-to-isotropic, isotropic-to-anisotropic, and isotropic-to-indefinite media have been 
rigorously studied in [4–8]. Moreover, surface waves have also been found in many structures, such 
as dielectric rod [9], uniaxial and biaxial slab waveguides [10,11], plasma slab [12], chiral material [13], 
and photonic crystal [14], to name only a few. 

Among all of the geometries of supporting surface waves, one of the best-known structures is 
the grounded dielectric slab. It is known that the infinitely large grounded dielectric slab can support 
pure transverse magnetic (TM) and transverse electric (TE) surface wave modes, and their 
propagating constants on isotropic slab were analyzed in [4], the corresponding fields and power of 
the surface waves were studied in [15]. In addition to the case of isotropic grounded slab, the guidance 
conditions of TM and TE surface waves in grounded anisotropic slab were considered in [16]. The solution 
of suppressing surface waves on grounded anisotropic slab was explored in [17]. Furthermore, 
investigations were also focused on the radiation conditions of surface wave on grounded dielectric slabs, 
which have been employed for designing wideband, low-profile, as well as high gain antennas [18–20]. 

Although a lot of studies have been carried out to characterize surface waves propagating along 
a grounded dielectric slab, the analyses only focus on structures that are of infinite length and width, 
and assume that there is no field variation along the direction orthogonal to the propagation direction 
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of surface waves. To the best of our knowledge, no detailed analysis has been introduced for the case 
that the fields are non-uniformly distributed along the direction transverse to the propagation 
direction, which is a more practical concern for most engineers. In addition, most substrates used in 
real applications exhibit nonnegligible anisotropic properties due to either the intrinsic anisotropy of 
the material or the manufacturing process [21]. The effect of the anisotropy of the material on the 
propagation characteristics of surface waves is another concern for practical engineering. 

This paper investigates the characteristics of surface waves propagating on a grounded anisotropic 
dielectric slab, especially focuses on the slab with finite width. By assuming that the surface waves 
are propagating along the longitudinal direction of the slab, the field variations along the transverse 
direction are considered. Different methods are compared to analyze the propagation characteristics, 
as well as to validate our derivations. The main contributions of our work are as follows. (i) It is 
revealed that no pure TM or TE mode exists on the grounded infinitely large slab if the field is non-
uniformly distributed along the direction orthogonal to the propagation direction; (ii) Closed-form 
analytical expressions are derived to theoretically study the characteristics of quasi-TM and quasi-TE 
surface modes on the finite-width grounded anisotropic grounded slab. It is found that surface waves 
propagate away from the longitudinal direction of the finite-width slab with some certain angle, and 
the angle decreases as the slab width increases; (iii) Different from the existing analyses of surface 
waves whose fields distribute uniformly along the transverse direction of the infinitely large slab, our 
method takes into account the variations of the fields distributed on the transverse direction of the 
grounded anisotropic slab, which has a more practical relevance and can provide a more accurate 
solution for engineering applications such as designing wideband and high gain antennas based on 
grounded dielectric slabs [9,18–20]. It is worth mentioning that our method is also suitable for 
grounded isotropic dielectric slab. 

2. Characteristics of Surface Waves Propagating on Grounded Anisotropic Slab  

2.1. Infinitely Large Anisotropic Grounded Slab 

Figure 1 shows the geometry of the anisotropic slab backed by a perfect electric conductor. We 
assume that the grounded slab is infinite in both x and y directions, the surface waves propagate 
along the longitudinal +x direction with an  propagation factor. The thickness of the slab is t. 
The slab is considered as anisotropic as a general discussion, and the relative permittivity  ̿ and 
permeability ̿ 	of the anisotropic slab are expressed as: 

= 0 00 00 0 , = 0 00 00 0 , (1) 

where the diagonal elements represent the eigenvalues of  and 	, respectively, and their directions 
constitute the principle axes of the anisotropic slab. In order to analyze the characteristics of surface 
waves propagating along the grounded anisotropic dielectric slab, we separately consider the fields 
in anisotropic and air regions, then solve Maxwell’s equations and apply boundary conditions across 
the interface. For the considered structure, the E-field and H-field along the x direction for both 
regions are expressed as: 

Region I = ( ) sin( ), (2) = ( ) cos( ), (3) 

Region II = ( ) e , (4) = ( ) e , (5) 

where AI, AII, BI, and BII are the amplitude coefficients of the corresponding fields in each region. βx 
is the phase constant of surface waves along the x direction. kz is the wavenumber in the anisotropic 
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medium in the z direction. The sine function of  and cosine function of  in the anisotropic 
medium are selected due to the vanishing electric field and maximum magnetic field on the perfect 
electric conductor (PEC) ground plane, respectively. Due to the fields of surface waves decaying 
exponentially away in air from the interface, the z component of fields in air region is expressed as e , with k0z real and positive. In addition, fe(y) and fh(y) represent the y components of E-field and 
H-field, respectively. For the infinitely large slab, we assume that the propagation constant in the y 
direction is Ry, fe(y) and fh(y), then satisfy the following form: ( ) = ( ) = ( ) = ( ≥ 0)( ≤ 0) . (6) 

If Ry = 0, then ∂f(y)/∂y = 0, which indicates that the field has no variation in the y direction. On 
the other hand, if Ry ≠ 0, the field of surface wave is non-uniformly distributed along the y direction. 

By solving Maxwell’s equations based on Equations (2)–(5), the E- and H-fields in both anisotropic 
slab and air regions in y and z directions are found as: 

Region I = sin( z)( − ) [ ( ) − ( )], (7) 

= cos( z)( − ) [ ( ) − ( )], (8) 

= cos( z)( − ) [ ( ) − ( )], (9) 

= sin( z)( − ) [− ( ) + ( )]. (10) 

Region II 	 = 	( − ) [ ( ) − ( )], (11) 

	 = 	( − ) [ ( ) + ( )], (12) 

= 	( − ) [− ( ) − ( )], (13) 

= 	( − ) [− ( ) + ( )]. (14) 

Based on the field distributions and boundary conditions, the characteristics of the surface waves 
can be analyzed, as follows. 

Perfect electric conductor

t
Surface waves

x

z

Region I: Anisotropic slab 

 Region II:  Air  

 
Figure 1. Surface waves on the interface of air region and grounded anisotropic slab with infinite length in 
x and y directions. 
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2.1.1. TM Mode Surface Wave 

For the pure TM surface wave, it is known that BI = BII = 0, the continuity conditions of Ex and Ey 
at the interface z = t give sin( ) = , (15) ( ) sin( )− = ( ) − , (16) 

which lead to = 1, (17) 

or ( ) = 0. (18) 

It is obvious that Equation (17) is not satisfied since the dielectric slab cannot be air for our 
discussion. Therefore, Equation (18) is the only solution, indicating that for pure TM surface wave 
propagating along the x direction of the grounded anisotropic slab, the field distribution along the y 
direction must be uniform.  

2.1.2. TE Mode Surface Wave 

For the pure TE surface wave, it is obvious that AI = AII = 0. Similarly, according to the boundary 
conditions of Hx and Hy at the interface z = t, Equation (18) is also satisfied. 

2.1.3. Hybrid Mode Surface Wave 

Based on the above discussions, it is concluded that if the pure TM or TE surface wave exists on 
the grounded dielectric slab, the field distribution along the y direction must be uniform. In other 
words, if ∂f(y)/∂y ≠ 0 or Ry ≠ 0, hybrid mode surface waves that consist of quasi-TM mode with small 
Hx and quasi-TE mode with small Ex propagate along the slab. In this case, the continuity of tangential 
fields across the interface z = t leads to: 	 1 − 1 −  = ( − ) + − tan( ) ( − )− – cot( ) . (19) 

By applying Maxwell’s equation, the dispersion relations in both regions are: 
Region I ( 1 − − 1 − ) = − ( + − − − )(+ − − − ). (20) 

Region II − − = . (21) 

From Equations (19)–(21), it is seen that three equations with four unknowns βx, Ry, kz, and koz 
are obtained, which implies that there is no unique solution for βx, unless Ry is determined. It is worth 
mentioning that for pure TM and TE surface waves, βx, kz, and koz can be solved for given k0, slab thickness 
t, and relative permittivity ̿ and permeability ̿ 	by substituting Ry = 0 into Equations (19)–(21). The 
above analyses can also be applied to the grounded isotropic slab, in which case we can use the 
relative permittivity εr = εx = εy = εz and permeability μr = μx = μy = μz, instead of  ̿ and ̿. 
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2.2. Finite-Width Anisotropic Grounded Slab 

Figure 2 shows the grounded anisotropic slab with a finite width 2a and thickness t. By applying 
the boundary conditions at the interfaces y = ±a, the propagation constant in the y direction Ry can 
then be determined. For analysis, the cross-section of the grounded slab is sub-divided into six 
regions, as shown in Figure 2b. Region I is the anisotropic slab, while the others are air regions. Since 
the fields in two corner Regions V and VI are very small, which are assumed to be negligible [22],  
we only take into account Regions I, II, III, and IV for analysis. 

 
Figure 2. Surface waves on the interface of air region and grounded anisotropic slab with finite width: 
(a) Perspective view; and, (b) Cross-section view. 

The E-field and H-field along the x direction for Regions I and II have the same expressions as 
Equations (2)–(5). However, due to the discontinuity at y = ±a, reflected waves exist along the y 
direction. Therefore, the y components fe(y) and fh(y) of the E-Field and H-field are expressed as: ( ) = + , (22) ( ) = + , (23) 

where r1 and r2 represent the magnitude ratios of  and  for fe(y) and fh(y), respectively.  
The fields in both Regions I and II in y and z directions can be obtained by substituting Equations (22) 
and (23) into Equations (7)–(14).  

In Regions III and IV, the fields are decaying away from the interfaces y = ±a along the y direction. 
Therefore, the y components of fields can be expressed as e  and e , respectively. Based on 
the continuity conditions of the tangent fields at the interface, the E-field and H-field along the x 
direction for Regions III and IV are given as follows: 

Region III = e sin( ), (24) = e cos( ), (25) 

Region IV = e sin( ), (26) 	 = e cos( ), (27) 

where AIII, BIII, AIV, and BIV are corresponding amplitude coefficients. The E-field and H-field in the y 
and z directions can then be found as: 

Region III = e sin( z)( − ) [− − ], (28) 

= ( )( ) [− − ], (29) = ( )( ) [ + ], (30) 

= e sin( z)( − ) − − . (31) 
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Region IV = e sin( z)( − ) [ − ], (32) 

= ( )( ) [ − ], (33) 

= e cos( z)( − ) [ − ], (34) 

= e sin( z)( − ) [− + ]. (35) 

The boundary condition across the interface z = t provides the same result as Equation (19), while 
the field continuities at the interfaces y = ±a give 	 1 − − 1− 1 − − 1−  

= − − + − −+ − −+ − +− , (36) 

and = − = 1 −−1 −  (37) 

In addition, the dispersion relation of both Regions III and IV can be found as  − + = . (38) 

Therefore, from Equations (19)–(21) and (36)–(38), it is seen that six equations with six unknowns 
βx, Ry, Roy, kz, koz, and r1 are derived, so that the propagation characteristics of the quasi-TM and  
quasi-TE surface waves can be determined.  

3. Numerical Analysis 

3.1. Comparion of Different Methods 

In this section, three different methods are employed to compare the propagation characteristics 
of surface waves on an anisotropic grounded dielectric slab. In the first method, it is assumed that 
the slab is infinitely large in both x and y directions, and there is no field variation along the y 
direction. This method has been utilized in most open literature, but it can only provide approximate 
results for real engineering applications, in which finite-width slabs are usually employed, and the 
field distributions along the y direction are non-uniform. The propagation characteristics are 
summarized in Equations (A1)–(A6) in Appendix A. The second method is based on Marcatili’s 
method [22]. This method considers the field variations along the y direction of the finite-width slab. 
However, the analysis assumes that Hz = 0 and Hy = 0 for quasi-TM and quasi-TE modes, respectively. 
Based on this approximate method, we derived the closed-form expressions for propagation 
characteristics of quasi-TM and quasi-TE modes for the considered structure, which can be obtained 
using Equations (B2)–(B6) and (B8)–(B12), respectively, as summarized in Appendix B. The third one 
is based on our derivations by using Equations (19)–(21) and (36)–(38). In our method, hybrid surface 
wave modes on grounded dielectric slab with finite width are analyzed, which addresses the main 
concern and provides a more accurate solution for practical applications. 

As an example, we use an anisotropic PTFE substrate in [21] with εx = 2.95, εy = 2.89, εz = 2.45, 
and μx = μy = μz = 1 to analyze the propagation constants of surface waves, and the results at f = 16 
GHz are shown in Figure 3a. In addition, the corresponding results of isotropic slab with εx = εy = εz 
= 2.45 and μx = μy = μz = 1 are also shown in Figure 3b for comparison. In our calculation, we are 
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looking for solutions that surface waves propagate along the x direction and decay in the z direction 
away from the interface, so that βx and k0z should be positive real numbers. For the first method, the 
slab width is assumed to be infinite with Ry = 0, while for the other two methods, the slab width is set 
as 2a = 37.5 mm, with Ry ≠ 0. Figure 3a,b both indicate that the results of finite-width slab obtained by 
Macatili’s method and our method are very close. However, it is interesting to note that for a fixed 
slab thickness, the propagation constant βx obtained from the finite-width slab (Ry ≠ 0) is smaller than 
that from the infinite one (Ry = 0). In other words, in order to excite the same order of surface waves 
with an equal βk, the finite-width slab should be thicker than the infinite one. In addition, it is seen 
that as the thicknesses of finite- and infinite-width slabs decease, the finite one can reach the condition 
βk/k0 = 1 with a larger t. Under this condition, the surface waves will transform into leaky waves. 
Furthermore, comparing the case of anisotropic with isotropic slabs, it is seen that the anisotropic 
property of the slab has significant effects on both quasi-TM and quasi-TE modes, which will be 
discussed in detail in the next section. 

quasi-TM0
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quasi-TE2

(a)
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(b)  
Figure 3. Comparison of βx/k0 as a function of slab thickness t/λ0 for grounded dielectric slab, (a) anisotropic 
slab with εx = 2.95, εy = 2.89, εz = 2.45	and μx = μy = μz = 1; (b) isotropic slab with εx = εy = εz = 2.45, μx = 
μy = μz = 1. (a = ∞ for Ry = 0, 2a = 37.5 mm for Ry ≠ 0). 

As shown in Figure 4a, the values of βx/k0 as a function of t/λ0 with different slab widths are 
compared. In this study, our method based on Equations (19)–(21) and (36)–(38) is employed for the 
case of finite-width slab, while for the case of a = ∞, the first method is utilized. It is seen that when 
the slab width increases, the values of βx/k0 increase, and they are closer to the case of a = ∞ with Ry = 0. 
This phenomenon also validates our derivations in a way. Furthermore, it is worth pointing out that 
the propagation constant in the y direction Ry is revealed to be a pure imaginary number in our 
calculation, which indicates that the surface waves propagate along the y direction in addition to the 
x direction, so that the propagating direction deviates from the x direction with some certain angle. 
The values of |βx/Ry| as a function of t/λ0 with different slab widths are plotted in Figure 4b.  
The results indicate that |βx/Ry| is very sensitive to the slab width. When the slab width increases, 
then the value of |βx/Ry| increases significantly, meaning that the propagation direction is closer to 
the x direction. 

3.2. Effects of Permittivity Tensor on Propagation Characteristics of Surface Waves 

The effects of the relative permittivity tensor on propagation characteristics of surface waves are 
investigated. Based on Equations (19)–(21) and (36)–(38), the corresponding values of βx/k0 and |βx/Ry| 
as a function of slab thickness are calculated. As an instance, the calculated frequency is set as f = 16 GHz, 
and the slab width is 2a = 56.25 mm. 



Appl. Sci. 2018, 8, 102 8 of 13 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
 2a = 2λ0

 2a = 3λ0

 2a = 5λ0

 a = ∞  Ry = 0  

 

βx
 / 

k0

t / λ0

quasi-TM0

quasi-TE1

quasi-TM1

quasi-TE2

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4

6

8

10

12

14

16
 2a = 2λ
 2a = 3λ
 2a = 5λ

|β
x 
/ R

y|

t / λ0

quasi-TM0

quasi-TE1

quasi-TM1

quasi-TE2

(b)  
Figure 4. Effects of slab width on (a) βx/k0 and (b) |βx/Ry| as a function of slab thickness for grounded 
anisotropic slab. (εx = 2.95, εy = 2.89, εz = 2.45, μx = μy = μz = 1). 

Figure 5a,d show the effects of εx on βx/k0 and |βx/Ry| as a function of slab thickness. It is seen 
that when both εy and εz remain to be 2.45 and the value of εx varies from 2.45 to 3.15, βx/k0, and |βx/Ry| 
are almost stable for quasi-TE modes. However, the corresponding values of quasi-TM modes slightly 
change with the increase of εx. Similarly, the effects of εy and εz on the propagation characteristics of 
surface waves are also investigated. Figure 5b,e illustrate that slightly increasing εy results in a 
significant increase of βx/k0 and |βx/Ry| for quasi-TE modes, while the quasi-TM modes are nearly 
unaffected. In contrast, as shown in Figure 5c,f, the value of εz can significantly affect the propagation 
characteristics of quasi-TM modes, but hardly contributes to the quasi-TE modes. Since most of the 
substrates exhibit a nonnegligible amount of anisotropy during the process of fabrication, these 
effects should be seriously taken into account for engineering applications. It should be mentioned 
that although the relative permittivity tensor can affect the propagation constants along both x and y 
directions, the slab width plays a major role in affecting the value of |βx/Ry|, as displayed in Figure 4b.  
In addition, we also employ the other two methods discussed above to analyze these effects as well 
as to validate our derivation further. The phenomena are in good agreement by using different 
methods, and these discussions are omitted here for the sake of brevity. 

3.3. Field Distributions of Surface Waves 

The field distributions of surface waves propagating on a finite-width grounded dielectric slab 
are examined in this section. For instance, we use an anisotropic slab with εx = 2.95, εy = 2.89, εz = 2.45, 
and μx = μy = μz = 1. The slab width is = 400 mm. The height of the slab is t = 5 mm (0.27λ0 at calculated 
frequency f = 16 GHz). By substituting the values βx, Ry, Roy, kz, koz, and r1 obtained from Equations 
(19)–(21) and (36)–(38) into Equations (7)–(14) and (24)–(35), the field distributions in all of the regions 
can be obtained. Based on Figure 3, it is known that when the slab thickness is 0.27λ0, quasi-TM0, and 
quasi-TE1 surface wave modes are excited. Figure 6 shows the distributions of E- and H-field components 
of the quasi-TM0 mode on the y-z cut-plane at x = 0 mm in Regions I and II. It should be mentioned 
that the magnitude of E-field component along the x direction |Ex| is normalized, and the magnitudes 
of other components are then obtained accordingly. Based on the field distributions of the quasi-TM0 
mode, the following phenomena are observed: (1) Most fields are trapped inside the slab and bound 
onto the interface at z = 5 mm. When it is away from the interface, the field decay rapidly; (2) Due to 
the finite width of the slab, the fields non-uniformly distribute along the y direction; (3) Figure 6a 
shows that for the E-field components, |Ex| and |Ez| are much larger than |Ey|; Figure 6b indicates 
that for the H-field components, |Hx| and |Hz| are very small compared to |Hy|; (4) On the ground 
plane at t = 0, the tangential E-fields |Ex| and |Ey| are zero, while the normal component |Ez| is 
strong. On the other hand, for the H-fields, |Hx| and |Hy| are maximum, while |Hz| is zero when t = 0. 
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Figure 5. Effects of (a); (d) εx; (b); (e) εy; and (c,f) εz on βx/k0 and |βx/Ry| as a function of slab thickness 
for grounded anisotropic slab with slab width of 2a = 56.25 mm. 
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Figure 6. Distributions of (a) E-field and (b) H-field components of quasi-TM0 mode when surface 
wave is propagation on the finite-width grounded anisotropic slab. (y-z cut-plane at x = 0 mm, t = 5 mm,  
2a = 400 mm, εx = 2.95, εy = 2.89, εz = 2.45, μx = μy = μz = 1, f = 16 GHz). 
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In addition, the field distributions of quasi-TE1 mode on the y-z cut-plane at x = 0 mm are plotted 
in Figure 7. Several similar phenomena are observed when compared to Figure 6. However, contrary 
to the quasi-TM0 mode, it is seen from Figure 7a that the E-field components of quasi-TE1 mode |Ex| 
and |Ez| are small as compared to |Ey|. While for the H-field distributions in Figure 7b, |Hx| and 
|Hz| are much larger than |Hy|. These reasonable observations further prove the reliability of our 
proposed method. It is also expected that the proposed method is very promising for analyzing other 
higher-order surface wave modes for a thicker slab. 
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Figure 7. Distributions of (a) E-field and (b) H-field components of quasi-TE1 mode when surface 
wave is propagation on the finite-width grounded anisotropic slab. (y-z cut-plane at x = 0 mm, t = 5 
mm, 2a = 400 mm, εx = 2.95, εy = 2.89, εz = 2.45, μx = μy = μz = 1, f = 16 GHz). 

4. Conclusions 

In conclusion, we have proposed a method to analyze the surface waves propagating on grounded 
anisotropic slab. Different from most open literatures, which generally assume that the fields of surface 
waves uniformly distribute along the transverse direction of the infinitely large grounded slab, we 
have thoroughly considered the field variations in the direction transverse to the wave propagation 
direction, and the corresponding propagation characteristics of surface waves have been derived on 
the basis of boundary conditions and Maxwell’s equations. Three different methods have been 
employed to analyze the surface waves on grounded anisotropic slab as well as to validate our 
derivations. The effects of the relative permittivity tensor on the propagation characteristics of surface 
waves have been also numerically studied. In addition, the field distributions of surface waves have 
been examined with the aid of the proposed method. More importantly, our method takes into 
account the finite-width grounded slab with the fields non-uniformly distributing along the 
transverse direction of the slab, which is more suitable for practical engineering. 

Author Contributions: Zhuozhu Chen derived the formula, analyzed the data, and wrote the paper. Zhongxiang 
Shen conceived the idea, provided the suggestions, and revised the manuscript.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Derivation of Surface Waves Uniformly Distributed on Grounded Anisotropic Slab 

For the grounded slab with infinite width as shown in Figure 1, pure TM or TE mode can be 
supported if the field distribution of surface wave along the transversal direction of the slab is 
assumed to be uniform (Ry = 0), as analyzed in Section 2.1. 

For TM surface wave, substituting BI = BII = 0 into Equations (7)–(14) and applying continuity 
conditions of all the tangential fields across the interface lead to: 
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tan( ) = . (A1)

By solving Maxwell’s equation, the dispersion relations in Regions I and II can be derived as: 
Region I + = . (A2)

Region II − = . (A3)

For TE surface wave, AI = AII = 0. Similarly, the boundary conditions and the dispersion relations 
in the anisotropic medium and air regions lead to: cot( ) = − , (A4)+ = , (A5)− = . (A6)

Appendix B. Derivation of Surface Wave Modes Based on Marcatili’s Method 

In [22], Marcatili introduced an approximate method to describe how the guided waves propagate 
through rectangular dielectric optical waveguides. Based on his method, the surface waves are divided 
into  and 	modes. For  mode, the field component Ez is strong, while Hz is assumed to be zero, 
which represents the quasi-TM mode in our discussion. Similarly, the  mode represents quasi-TE 
mode in our discussion, in which case the field Ey is strong and Hy is assumed to be zero.  
In addition, the fields in Regions V and VI as shown in Figure 2b are assumed to be negligible. Based 
on these assumptions, the quasi-TM and quasi-TE modes can be analyzed separately. 

For quasi-TM mode,  and  of Regions I, II, III, and IV can be expressed as: = = = = 0, (B1)= ( + ) cos( ), (B2)= ( + ) e , (B3)= cos( ), (B4)= cos( ). (B5)

Based on the fields Hz and Hy, all field distributions and dispersion relations in four regions can 
then be derived by solving Maxwell’s equations.  

The continuity conditions of Ex and Hy at z = t give tan( ) = . (B6)

In addition, Ez and Hx are continuous at y = ±a, which leads to: − +− = ( − ). (B7)

The dispersion relations in four regions are derived as: 	 − + = , (B8)− − = , (B9)	 − + = . (B10)

It is seen that βx, Ry, Roy, kz, and koz can be solved for given k0, t, ,̿ ̿ 	based on Equations (B6)–(B10). 
For quasi-TE mode, Hy and Hz in Regions I, II, III, and IV can be expressed as: 
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= = = = 0, (B11)= ( + ) sin( ), (B12)= ( + ) e , (B13)= sin( ), (B14)= sin( ). (B15)

Similarly, based on Maxwell’s equations and boundary conditions, five equations with five 
unknowns βx, Ry, Roy, kz, and koz can be derived, and they are summarized below: − cot( ) = , (B16)( + ) −+ = + , (B17)− + = , (B18)− − = , (B19)− + = . (B20)
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