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1. An Overview of the Topic and Its Ramifications

1.1. Introduction

Guided waves represent a vast class of phenomena in which the propagation of collective
excitations in various media is steered in required directions by fixed (or, sometimes, reconfigurable)
conduits. Arguably, the most well-known and practically important waveguides are single-mode and
multi-mode optical fibers [1,2], including their more sophisticated version in the form of photonic
crystal fibers [3] and hollow metallic structures transmitting microwave radiation [4]. Light pipes,
in the form of hollow tubes with reflecting inner surfaces, are used in illumination techniques. On the
other hand, medical stethoscopes offer a commonly known example of a practically important acoustic
waveguide. New directions of studies in photonics are focused on waveguides for plasmonic waves
on metallic surfaces [5–7] (which provide the possibility of using wavelengths much smaller than
those corresponding to the traditional optical range, and thus offer opportunities to build much more
compact photonic devices) and on the other hand, on the guided transmission of terahertz waves,
which also have a great potential for applications [8].

Outside of the realm of photonics (optics and plasmonics) and acoustics, wave propagation plays
a profoundly important role in many other areas; accordingly, waveguiding settings have drawn
a great deal of interest in those areas as well. In particular, as concerns hydrodynamics, natural
waveguides—which may be very long—exist for internal waves propagating in stratified liquids
(e.g., in the ocean) [9]. Various settings in the form of waveguides for matter waves are well known
in studies of Bose–Einstein condensates in ultracold bosonic gases [10,11]. In solid-state physics,
guided propagation regimes for magnon waves in ferromagnetic media are a subject of theoretical and
experimental studies [12]. In superconductivity, long Josephson junctions are waveguides for plasma
waves [8,13]. The significance of waveguiding in plasma physics is also well-known; e.g., Ref [14–16].

Below, a very brief overview of basic theoretical models and experimental realizations of various
physical implementations of the waveguiding phenomenology is given. The text is structured
according to the character of the guided wave propagation: linear or nonlinear and conservative
or dissipative, as well as according to the materials used in the underlying settings, natural or artificial.

This presentation definitely does not aim to include an exhaustive bibliography on this vast
research area. References are given chiefly to review articles and books summarizing the known
results, rather than to original papers where the results were first published. However, in some cases
original papers are also cited if it is necessary in the context of the presentation.

1.2. Linear Waveguides

The basic waveguiding structure is a single-mode conduit, designed with a sufficiently
small transverse size and boundary conditions at the boundary between the guiding core and
surrounding cladding, which admits the propagation of a single transverse mode, while all
higher-order modes get imaginary propagation constants (i.e., they cannot actually propagate).
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A commonly known—and arguably the most important—example is provided by single-mode
optical fibers (although, strictly speaking, all such fibers are bimodal if the polarization of light is
taken into consideration) [17,18]. Single-mode waveguides are crucially important components of
telecommunication systems, while other applications (e.g., the delivery of powerful laser beams for
material processing and the creation of complex spatiotemporal patterns) are best served by multimode
conduits [19,20].

Parallel to waveguiding fibers, planar waveguides are a subject of many studies in optics.
In the corresponding models, as well as in their fiber-optics counterparts, the evolution variable is the
propagation distance, z; see Equation (2) below (this is a common feature of all guided-wave-propagation
settings, not only in optics, but in other physical realizations of waveguides as well). Meanwhile,
the transverse coordinate, x, in the spatial domain plays the same role as the reduced-time variable,

τ ≡ t−V−1
gr z, (1)

where t is the time proper, and Vgr is the group velocity of the carrier wave in the temporal domain in
fiber optics. The waveguiding structure in the planar waveguide is represented (roughly speaking) by
a stripe with a locally increased effective refractive index.

Effective equations which model the temporal-domain propagation of optical waves in fibers
and the spatial-domain propagation in planar waveguides are similar to each other, taking the form of
the linear Schrödinger equation for local amplitude u of the electromagnetic wave, which is written
here in terms of the spatial-domain propagation, and in the scaled form:

i
∂u
∂z

+
1
2

∂2u
∂x2 −U(x)u = 0. (2)

In particular, the aforementioned stripe waveguiding channel is represented by trapping potential
U(x) in Equation (2), while the second derivative in Equation (2) represents the paraxial (weak)
transverse diffraction in the planar waveguide. A ubiquitous form of the potential is

U(x) = −ε sech2(x/l), (3)

where ε > 0 determines the effective depth of the potential well, and l determines its width.
In the temporal domain, the transverse coordinate, x, is replaced by the above-mentioned temporal
variable (1). and the diffraction term in Equation (2) is replaced by −(β/2)∂2u/∂τ2, where β is the
coefficient of the group-velocity dispersion (β > 0 and β < 0 correspond to the normal and anomalous
dispersion, respectively).

Further, the similarity between the wave-propagation Equation (2) in optics and the Schrödinger
equation in quantum mechanics suggests a similarity between the guided transmission of waves
in the guiding channel and propagation of real quantum particles in holding channel potentials [21].
The consideration of the transport of quantum particles in such channels gives rise to many intriguing
peculiarities, such as the consideration of curved guiding channels. In this context, it is relevant
to mention a well-known result which demonstrates a strong effect of the confinement imposed by
a pipe-shaped potential on the character of the effectively one-dimensional mutual scattering of two
quantum particles, which amounts to full reflection of the colliding particles [22]. This theoretical
prediction had suggested the experimental realization of the concept of the Tonks–Girardeau gas;
i.e., a gas composed of hard-core bosons, which bounce back from each other when they collide [23,24].

A natural generalization of single-channel waveguides is provided by a coupler, which may
be considered as a set of two parallel waveguiding cores, coupled in the transverse direction by
tunneling of guided wave fields steered by each tunnel in the longitudinal direction. The respective
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system of coupled equations for amplitudes u and v of electromagnetic waves in the two cores is [25]
(cf. Equation (2)):

i
∂u
∂z

+
1
2

∂2u
∂x2 + κv−U(x)u = 0.

(4)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu−U(x)v = 0,

where κ is the coefficient of the linear inter-core coupling.
The next step is to consider arrayed systems, composed of many parallel guiding cores, which are

also coupled in the transverse direction(s) by the tunneling of longitudinally guided wave fields (planar
and bulk arrays have, respectively, one or two transverse coordinates). The simplest model of such
a guiding medium is provided by the two- or three-dimensional scaled Schrödinger equation with
a periodic transverse potential, which represents the (idealized) structure of the multi-core bundle:

i
∂u
∂z

+
1
2

(
∂2u
∂x2 +

∂2u
∂y2

)
− ε

[
cos

(
2πx

l

)
+ cos

(
2πy

l

)]
u = 0. (5)

Here l is the array’s period (defined in scaled units, in which Equation (5) is written), and 2ε

is the scaled depth of the effective trapping potential. In particular, in optics bulk arrays have
been created as permanent structures by burning (also by means of an optical technology) a large
number of parallel guiding cores in a bulk piece of silica [26]. As concerns planar guiding arrays,
an interesting ramification of the topic is the propagation of optical waves in such arrays made
with a curved shape [27]. On the other hand, a technology for the creation of reconfigurable virtual
conduit patterns in the form of photonic lattices was elaborated for photorefractive materials [28].
The latter technology makes use of the fundamental property of the photorefractive materials,
in which the propagation conditions for light with ordinary and extraordinary polarizations are
linear and nonlinear, respectively. To create a photonic lattice, the experimentalist first illuminates the
sample by counterpropagating pairs of mutually coherent laser beams in the ordinary polarization,
which create a classical interference pattern in the photorefractive crystal, which is an effectively linear
medium for these beams. Next, a probe beam is launched, with the extraordinary polarization in the
transverse direction. Due to its inherent nonlinearity, the probe beam is affected by the originally
created photonic lattice, as if it is a material structure that creates a spatially periodic modulation of
the local refractive index in the transverse directions; i.e., essentially, another version of the multi-core
guiding structure.

The propagation of light or waves of a different physical nature in arrays with weak coupling
between guiding cores may be naturally approximated by the discrete Schrödinger equation. The basic
realization of such a medium is represented by planar arrays of parallel optical waveguides coupled
by evanescent waves penetrating dielectric barriers separating individual cores, the basic model being
a scaled discrete version of Equation (2):

i
dun

dz
+

1
2
(un+1 + un−1 − 2un)−Unun = 0, (6)

where the discrete coordinate, n, which replaces x, is the number of the guiding core in the array.
The study of light propagation in various multi-core systems—which may be approximated by lattice
models similar to Equation (6)—is a vast area known as discrete optics [29].

1.3. Nonlinear Waveguides

In many situations, tightly confined guided waves propagating in conduits with a small effective
cross-sectional area acquire high amplitudes, which is a source of a great many fascinating nonlinear
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effects. In particular, waveguides often provide a combination of the nonlinearity, group-velocity
dispersion, and low (or sometimes completely negligible) losses which are necessary ingredients for
the creation of solitons (robust self-trapped solitary waves). The simplest and ubiquitous model of
the nonlinear wave propagation is based on the nonlinear Schrödinger equation (NLSE), which in
the simplest case includes a cubic term. In optics, this term represents the Kerr effect; i.e., nonlinear
self-focusing (or, sometimes, self-defocusing) of light in the dielectric medium. The accordingly
amended linear Schrödinger Equation (2) becomes the NLSE:

i
∂u
∂z

+
1
2

∂2u
∂x2 −U(x)u + σ|u|2u = 0, (7)

where σ = +1 and −1 corresponds, respectively, to the self-focusing and defocusing nonlinearity;
i.e., self-attraction and self-repulsion of light in the nonlinear medium. Equations (4) and (5) each
acquire the same cubic terms as in Equation (7). In particular, the nonlinear version of Equation (4),

i
∂u
∂z

+
1
2

∂2u
∂x2 + κv−U(x)u + σ|u|2u = 0,

(8)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu−U(x)v + σ|v|2v = 0,

is the basic model of nonlinear couplers, their remarkable property being spontaneous symmetry breaking
in the case of self-focusing in the parallel-coupled cores, σ = +1 [25,30,31].

A remarkable property of the one-dimensional NLSE in the absence of the potential (U = 0
in Equation (7)) is that it is an integrable equation for which a very large number of exact
solutions—including multi-soliton states—can be produced by means of a mathematical technique
based on the inverse scattering transform [32–34]. These are bright and dark solitons in the cases of
self-focusing and defocusing, respectively. In particular, the exact bright-soliton solution to Equation (7)
with σ = +1 and U = 0 is

u(x, z) = η exp
(

i
2

(
η2 − c2

)
z + icx

)
sech (η(x− cz) , (9)

where η and c are, respectively, the arbitrary amplitude and velocity of the soliton (in fact, in the spatial
domain—in terms of which Equation (7) is written—the soliton represents a self-trapped light beam,
and accordingly c is not a velocity, but rather a parameter which determines the tilt of the beam in the
(x, z) plane).

The discrete Schrödinger Equation (6) also has its natural nonlinear counterpart in the form of
discrete NLSE:

i
dun

dz
+

1
2
(un+1 + un−1 − 2un)−Unun + σ|un|2un = 0; (10)

i.e., a discrete version of NLSE (7). The discrete NLSE gives rise to discrete solitons and their bound
states, which cannot be found in an exact form, but may be efficiently produced by numerical and
approximate analytical methods [35]. The propagation of nonlinear waves in discrete waveguiding
arrays was the subject of numerous theoretical and experimental works [29,36].

The multidimensional extension of the NLSE also has direct realizations in optics, as well as
in the mean-field model of atomic Bose–Einstein condensates (BECs) [37,38], and in many other
areas. In particular, the spatial-domain light propagation in bulk media is modelled by the effectively
two-dimensional version of Equation (7), with two transverse coordinates (x, y):

i
∂u
∂z

+
1
2

(
∂2u
∂x2 +

∂2u
∂y2

)
−U(x, y)u + σ|u|2u = 0. (11)
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Unlike its one-dimensional counterpart (7), Equation (11) in the free space (U (x, y) = 0) is not
integrable. It admits formal soliton solutions, looked for as

u (x, y; z) = exp (ikz + iSθ)US(r), (12)

in terms of the polar coordinates (r, θ) in the (x, y) plane, where k > 0 is a real propagation constant,
S = 0,±1,±2 , ..., is an integer vorticity that may be embedded in the two-dimensional soliton (shaping
it as a vortex ring), and US(r) is a real radial amplitude function satisfying boundary conditions
US(r) ∼ exp

(
−
√

2kr
)

at r → ∞, and U(r) ∼ r|S| at r → 0. Solitons (12) with S = 0 are often called
Townes solitons [39]. However, the Townes solitons—as well as their vortex counterparts, with S 6= 0
in Equation (12)—are completely unstable, being vulnerable to destruction by the critical collapse
(formation of a singularity after a finite propagation distance) in the case of S = 0, and by a still
stronger instability which splits vortex rings with S 6= 0 [39].

An important example of nonintegrable one-dimensional system modelling nonlinear light
propagation in optics is the system of coupled-mode equations which describe the fiber Bragg gratings
(i.e., nonlinear optical fibers with a periodic lattice of local defects permanently written in their cladding,
with a period equal to half the wavelength of light coupled into this waveguide). The coupled-mode
equations govern the evolution of amplitudes u and v of right- and left-traveling waves, which are
mutually converted (reflected) into each other by the Bragg grating [40,41]:

iut + iux + κv +

(
1
2
|u|2 + |v|2

)
u = 0,

(13)

ivt − ivx + κu +

(
1
2
|v|2 + |u|2

)
v = 0,

where κ is the Bragg-grating reflectivity, and the group velocity of the light waves in the fiber is scaled
to be 1. This system admits exact solutions in the form of solitons, but it is not an integrable one.
Such solitons—moving in the fiber Bragg grating as in the waveguide—have been created in the
experiment [42]. Roughly half of the soliton family is stable, and half unstable.

The use of fiber Bragg gratings operating in the linear regime has grown into a large industry
with many applications, such as sensors, dispersion compensators, optical buffers, etc. [43].

Another fundamentally important nonlinear model for the guided wave propagation is the one
with the quadratic (alias second-harmonic) nonlinearity, instead of the cubic (Kerr) term in NLSE (7).
The model is based on the propagation equations for complex amplitudes u (x, z) and v(x, z) of the
fundamental and second harmonics [44,45]:

iuz +
1
2

uxx + vu∗ = 0,

(14)

2ivz − qv +
1
2

vxx +
1
2

u2 = 0,

where q is a real mismatch parameter. Although it is a nonintegrable system, Equations (14) also give
rise to solitons, which are generically found in a numerical form. These solitons form a family which is
chiefly stable, with a small instability area [44,45].

In BEC models, Equation (7), with evolution variable z replaced by (scaled) time, t, is called the
Gross–Pitaevskii equation, in which the cubic term represents—in the mean-field approximation—an
average effect of collisions between atoms [37,38]. The natural sign of the collision-induced term
corresponds to self-repulsion (self-defocusing) (i.e., σ = −1 in Equation (7)), but for atomic species
such as 7Li, 39K, and 85Rb, the sign may be switched to self-attraction by means of the Feshbach
resonance, which is in turn controlled by a magnetic or laser field acting on the experimental setup [46].
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Theoretical and experimental work with solitons and other diverse nonlinear effects (such as
the modulational instability [47] and rogue waves [48,49], shock waves, separation of immiscible
components in binary systems, kinks, and domain walls [50], instantons [51], etc.) is a huge research
area in many branches of physics [52], including optics [47], matter waves in atomic BECs [53],
and BECs of quasi-particles (in particular, excitons-polaritons) [54], plasmas [55], ferromagnetic
media [56], long Josephson junctions in superconductivity [57], acoustics [58], etc. In many cases,
waveguiding settings offer media in which many species of solitons can be created and/or
stabilized if the solitons do not exist (or exist but are unstable) in the respective uniform media.
Characteristic examples are various methods elaborated for the stabilization of three-dimensional
spatiotemporal solitons (“light bullets” [59]), which are subject to strong instabilities in both two- and
three-dimensional uniform media [60–62]. It was demonstrated experimentally that both fundamental
spatiotemporal solitons [63] and ones with embedded vorticity [64] can be made stable (in fact,
as semi-discrete solitons) in the above-mentioned systems created as bundles of parallel waveguiding
cores in bulk silica samples [26]. In fact, the commonly known stability of temporal optical solitons
in nonlinear fibers [47] is also an example of the stabilization of a localized mode which is—strictly
speaking—a three-dimensional one, with the self-trapping in the temporal (longitudinal) direction
induced by the nonlinearity, while the transverse trapping is secured by the fiber’s guiding properties,
which are not essentially affected by the nonlinearity. Furthermore, the stability of matter–wave
solitons in cigar-shaped trapping potentials [53] is provided by a similar mechanism, in spite of
a completely different physical nature of the latter setting: the longitudinal self-trapping is induced by
the self-attraction of the condensate, due to attractive interactions between atoms, while the confining
potential prevents spreading of the condensate’s wave function in the transverse directions. Moderate
deviation from the effective one-dimensionality essentially affects the shape of the matter–wave
solitons, but still relies upon the trapping potential to prevent the collapse of the three-dimensional
self-attractive condensate [65].

1.4. Waveguides Built of Artificial Materials

The experimental and theoretical results outlined above were obtained in naturally existing media
(and, accordingly, theoretical models of such media), or in settings produced by straightforward
modifications of natural media, such as the aforementioned multi-core bundled guiding structures
burnt in bulk silica [26,63,64].

Still natural—but more unusual—optical materials are photonic crystals (PhCs) [66]
and quasicrystals [67,68], as well as PhC-based heterostructures and interfaces [69], and PhC
fibers [70–72]; i.e., holey fibers in which inner voids form a PhC structure in the transverse plane.
The difference between the traditional monolithic conduits (which guide light by means of the
appropriate transverse profile of the refractive index) and PhCs is that PhCs implement the
bandgap-guidance principle, steering the transmission of different optical modes according to the
spectral bandgap structure, as induced by the underlying crystalline lattice.

Related to PhC fibers are waveguides built as large-radius hollow fibers, with a specially designed
multi-layer cladding, which—by means of the Bragg-reflection mechanism (acting in the radial
direction)—support the omniguiding regime of the transmission of light in such conduits. As a result,
the omniguiding fibers (alias Bragg fibers) may provide a quasi-single regime of the propagation for
selected modes, even if the large-area fiber is a multi-mode one. This is possible because all the modes
except for the selected one will be suppressed by strong losses [73].

It is relevant to mention that another guidance mechanism is also possible which makes use
of lattice structures similar to those underlying PhCs and PhC fibers; however, differently from
them, these are nonlinear lattices [74]; i.e., spatially periodic modulations of the local nonlinearity
coefficient. Naturally, such nonlinear lattices and their combinations with the usual linear lattices [75]
are appropriate for steering nonlinear modes—first of all, solitons [74,75].
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Furthermore, a new mechanism (thus far elaborated theoretically) for guided transmission
of one- and two-dimensional spatial optical solitons, as well as their matter–wave counterparts
in BEC, makes use of a purely self-defocusing nonlinearity, growing from center to periphery in the
D-dimensional space faster than rD, where r is the radial coordinate [76]. This scheme was predicted
to stabilize a large number of diverse self-trapped (soliton-like) modes, both fundamental ones and
complex topologically-organized objects, such as three-dimensional hopfions [77] (i.e., vortex rings with
internal twist which carry two independent topological numbers: the vorticity and the twist).

PhCs and their various modifications may indeed be considered as natural materials because
such structures are found in various animals, accounting for their coloration [78]. On the other
hand, the recent progress in photonics has produced remarkable results in the form of artificially
built media, which exhibit completely novel properties that are not possible in natural media;
a very important example is provided by left-handed metamaterials, featuring negative values of
the refractive index [79,80]. This property may be used for realization of fascinating applications,
such as superlensing (which breaks the diffraction limit of imaging [81]), and optical cloaking
(lending partial invisibility to small objects [82]). Other well-known examples of purposely designed
artificial optical media with extraordinary properties include hyperbolic metamaterials, whose tensors
of the dielectric permittivity and/or magnetic permeability feature principal values of opposite
signs [83,84], planar metasurfaces [85,86], epsilon-near-zero materials, in which the refractive index
nearly vanishes [87], photonic topological insulators [88,89] (which exemplify the area of topological
photonics [90]), and others. The use of such media opens numerous possibilities to implement diverse
optical effects, including nonlinear ones [91] and guided-wave propagation, in forms that were not
known previously (for instance, in the form of the surface waveguiding in photonic topological
insulators, which is immune to scattering on defects because the scattering is suppressed by the
topology of the guiding system), and are unified under the name of metaoptics [92,93]. Another
unifying concept is nanophotonics, the name originating from the fact that many of these materials are
assembled of elements with sizes measured on the nanometer scale (which is deeply subwavelength,
in terms of optics). One of the fundamentally interesting subjects of nanophotonics is trapping and
transmitting light in nanowires. Nanowires are optical filaments (usually made of silicon) whose
diameter—measured in nanometers—is much smaller than the wavelength of light, while a typical
length may be a few millimeters; one of their important applications is in solar photovoltaic
elements [94].

1.5. Dissipative and Parity-Time Symmetric Waveguides

The brief discussion of the waveguiding mechanisms given above did not address the presence
of losses and the necessity of compensating them by gain. This assumption is valid for relatively
short propagation distances, as well as in the case when the compensating gain matches the action
of losses so accurately that both factors may be simultaneously neglected in the first approximation.
In reality, losses are an inevitably existing gradient in plasmonics and metamaterials, as the respective
waveguides are based on metallic elements, which introduce the Ohmic dissipation.

Generally speaking, if the medium is essentially lossy, the above-mentioned index-guiding and
bandgap-guiding mechanisms which define the guiding channel(s), respectively, in terms of a transverse
profile of the local refractive index, or the transmission-band structure induced by the PhC or PhC
fiber may be replaced by a gain-guiding scheme in which the signal propagates in a lossy planar or bulk
medium along a narrow stripe of gain locally embedded into the medium [95–97].

A recently developed topic which is closely related to the light transmission in dissipative
waveguides deals with the parity-time (PT ) symmetry, which implies balance between symmetrically
(in space) placed gain and loss elements. A paradigmatic model (it often includes nonlinearity, although
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the PT symmetry is by itself a linear property) is represented by NLSE (7), in which the potential is
made complex, with real and imaginary parts being, respectively, spatially even and odd ones:

i
∂u
∂z

+
1
2

∂2u
∂x2 − [Ur(x) + iUi(x)] u + σ|u|2u = 0,

Ur(−x) = Ur(x), Ui(−x_ = −Ui(x). (15)

Another fundamental realization of the PT symmetry in optics and related fields is offered
by a coupler, in which one core carries uniformly distributed gain, and the parallel-coupled one is
uniformly lossy, the accordingly modified Equation (8) being

i
∂u
∂z

+
1
2

∂2u
∂x2 + κv−U(x)u + σ|u|2u = iγu,

(16)

i
∂v
∂z

+
1
2

∂2v
∂x2 + κu−U(x)v + σ|v|2v = −iγv,

where γ > 0 is the gain–loss coefficient. The PT symmetry has been experimentally realized
in photonics, and a large number of guided-wave-propagation regimes have been investigated in such
systems [98–101]. In particular, as concerns solitons, although PT -symmetric systems belong to the
class of dissipative ones, where solitons generally exist as isolated attractors, selected by the condition
of the double balance between the dispersion (or diffraction) and nonlinearity, and between the gain
and loss (the latter principle is very important for the creation of stable temporal solitons in fiber
lasers [102]), in PT -symmetric systems solitons exist in continuous families, similar to their counterparts
in conservative models [100,101]. In addition to the interest to fundamental studies, systems with
the PT symmetry offer promising applications, such as “light diodes”, admitting unidirectional
propagation of light in the waveguide, and lasers operating in the PT -symmetric regime [103].

2. Annotation of Articles Included in the Special Issue

The present Special Issue is composed of a collection of 20 contributions, which include 5 relatively
brief reviews summarizing recently obtained results in various areas of the guided-wave propagation
in photonics, and 15 original papers reporting novel findings in this broad field. The contributions may
be naturally grouped according to different forms and manifestations of the guided-wave propagation
addressed in these works. Accordingly, the list of papers published in the Special Issue (following
below) is divided into 11 topics (A)–(K), and review articles are highlighted. In all cases, subjects
addressed in the papers are sufficiently clearly defined by their titles.

(A) A batch of three papers may be classified as addressing problems arising in the fundamental
(general) theory of the guided wave transmission in conservative (i.e., lossless) nonlinear media.

(A1) J. Fujioka, A. Gómez-Rodríguez, and Á. Espinosa-Cerón, Pulse Propagation Models with
Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the
Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion. Appl. Sci.
2017, 7, 340.

(A2) Chan, H.N.; Chow, K.W. Rogue Wave Modes for the Coupled Nonlinear Schrödinger System
with Three Components: A Computational Study, Appl. Sci. 2017, 7, 559.

(A3) Govindarajan, A.; Malomed, B.A.; Mahalingam, A.; Uthayakumar, A. Modulational
Instability in Linearly Coupled Asymmetric Dual-Core Fibers. Appl. Sci. 2017, 7, 645.

(B) A related topic is the study of bright and dark soliton in various settings. This topic is
represented in the Special Issue by the following four contributions, one of them being a review article:

(B1) Mai, Z.; Xu, H.; Lin, F.; Liu, Y.; Fu, S.; Li, Y. Dark Solitons and Grey Solitons in Waveguide
Arrays with Long-Range Linear Coupling Effects. Appl. Sci. 2017, 7, 311.
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(B2) Katsimiga, G.C.; Stockhofe, J.; Kevrekidis, P.G.; Schmelcher, P. Stability and Dynamics of
Dark-Bright Soliton Bound States Away from the Integrable Limit. Appl. Sci. 2017, 7, 388.

(B3) Rodriguez, P.; Jimenez, J.; Guillet, T.; Ackemann, T. Polarization Properties of Laser Solitons.
Appl. Sci. 2017, 7, 442.

(B4) Mitschke, R.F.; Mahnke, C.; Hause, A. Soliton Content of Fiber-Optic Light Pulses. Appl. Sci.
2017, 7, 635,

(C) Specific aspects of transmission in optical waveguides are considered in the following three
papers (the first two address problems of direct relevance to practical applications):

(C1) Lamy, M.; Finot, C.; Fatome, J.; Arocas, J.; Weeber, J.-.; Hammani, K. Demonstration
of High-Speed Optical Transmission at 2 µm in Titanium Dioxide Waveguides. Appl. Sci. 2017,
7, 63.

(C2) Memon, F.A.; Morichetti, F.; Melloni, A. Waveguiding Light into Silicon Oxycarbide. Appl. Sci.
2017, 7, 561.

(C3) Morales, J.D.H.; Rodríguez-Lara, B.M. Photon Propagation through Linearly Active Dimers.
Appl. Sci. 2017, 7, 587.

(D) Different aspects of the transmission of light in waveguides based on fiber Bragg gratings
is considered in two papers:

(D1) Yang, S.-C.; He, Y.-J.; Wun, Y.-J. Designing a Novel High-Performance FBG-OADM Based on
Finite Element and Eigenmode Expansion Methods. Appl. Sci. 2017, 7, 44.

(D2) Review: Liu, Y.; Fu, S.; Malomed, B.A.; Khoo, I.C.; Zhou, J. Ultrafast Optical Signal Processing
with Bragg Structures. Appl. Sci. 2017, 7, 556.

(E) A specific phenomenon of bound states existing in the continuous spectrum of a waveguide
built as an array of dielectric spheres is summarized in the following Review article:

Bulgakov, E.N.; Sadreev, A.F.; Maksimov, D.N. Light Trapping above the Light Cone
in One-Dimensional Arrays of Dielectric Spheres. Appl. Sci. 2017, 7, 147.

(F) A topic of the propagation of self-accelerating beams in the form of Airy waves is overviewed
in a Brief Review:

Zhang, Y.; Zhong, H.; Belić, M.R.; Zhang, Y. Guided Self-Accelerating Airy Beams-A Mini-Review.
Appl. Sci. 2017, 7, 34.

(G) A specific aspect of the light propagation in metamaterials is considered in:
Mazzone, V.; Gongora, J.S.T.; Fratalocchi, A. Near-Field Coupling and Mode Competition

in Multiple Anapole Systems. Appl. Sci. 2017, 7, 542.
(H) Some fundamental aspects of the light transmission in dissipative waveguides are addressed

in the following paper:
Descalzi, O.; Cartes, C. Stochastic and Higher-Order Effects on Exploding Pulses. Appl. Sci. 2017,

7, 887.
(I) Theoretical studies of the propagation of light in PT -symmetric nonlinear waveguides are

represented by an original paper,
D’Ambroise, J.; Kevrekidis, P.G. Existence, Stability and Dynamics of Nonlinear Modes in a 2D

Partially PT Symmetric Potential. Appl. Sci. 2017, 7, 223.
(J) The propagation of plasmonic waves is addressed in the following two experimental works,

with direct implications for applications:
(J1) Moon, K.; Lee, T.; Lee, Y.J.; Kwon, S. A Metal-Insulator-Metal Deep Subwavelength Cavity

Based on Cutoff Frequency Modulation. Appl. Sci. 2017, 7, 86.
(J2) Iwanaga, M. Perfect Light Absorbers Made of Tungsten-Ceramic Membranes. Appl. Sci. 2017,

7, 458.
(K) Specific aspects of the general topic of fiber lasers, which are significant to fundamental and

applied studies alike, are the subject of a Review article:
de Araújo, C.B.; Gomes, A.S.L.; Raposo, E.P. Lévy Statistics and the Glassy Behavior of Light

in Random Fiber Lasers. Appl. Sci. 2017, 7, 644.
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