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Abstract: We report on the model-based development of a monkey robot that is capable of performing
continuous brachiation locomotion on swingable rod, as the intermediate step toward studying
brachiation on the soft rope or on horizontal ropes with both ends fixed. The work is different from
other previous works where the model or the robot swings on fixed bars. The model, which is
composed of two rigid links, was inspired by the dynamic motion of primates. The model further
served as the design guideline for a robot that has five degree of freedoms: two on each arm for rod
changing and one on the waist to initiate a swing motion. The model was quantitatively formulated,
and its dynamic behavior was analyzed in simulation. Further, a two-stage controller was developed
within the simulation environment, where the first stage used the natural dynamics of a two-link
pendulum-like model, and the second stage used the angular velocity feedback to regulate the waist
motion. Finally, the robot was empirically built and evaluated. The experimental results confirm that
the robot can perform model-like swing behavior and continuous brachiation locomotion on rods.
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1. Introduction

While most legged animals move on the ground by using their legs when walking [1],
running [2,3], leaping [4], or crawling [5], a special subset of legged animals includes primates who
have a different kind of locomotion mechanism owing to the characteristics of the habitat. Monkeys live
in trees, which can be regarded as a special kind of terrain that is scattered and randomly distributed
in all directions. Thus, using arms for locomotion, or so called brachiation, has naturally evolved in
primates such as gibbons and siamangs. Their brachiation mechanism has been studied [6,7], and
the influence of their size and proportion on biomechanic characteristics have been reported as well [8].
Brachiation locomotion acts as a unique class of limbed locomotion that can negotiate some types of
special terrain, where other methods may not be functional.

Continuous brachiation locomotion in general is composed of a swing motion with respect
to a fixed point and the change of fixed points for forward motion. Because the fixed point is
usually above the system, the swing motion is similar to that of a pendulum [9,10]. The dynamics
of a multi-link pendulum with respect to a fixed position have been well studied, especially for
the two-link [11–15] and the three-link [16,17] systems, as acrobatic motion performed by gymnasts
can also be modeled in this manner [18]. The research topics have included the pendulum focus
on energy transformation mechanism, control strategy, and parameter identification. Most studies
have been conducted in a simulation environment, and some have produced experimental
results [13,16]. In addition to the study of pendulum dynamics, some research has focused
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on the change in fixed positions in the performance of complete brachiation locomotion.
Similarly, two-link [19–26] and three-link [27–30] systems have been widely adopted. In these studies,
different controllers were applied and simulated to stabilize the behavior and to reject disturbances,
and some studies included comparisons between simulations and experimental results [21,24,29].
The empirical robots in this category needed to have extra degrees-of-freedom (DOFs) to grasp/release
or switch the fixed positions, and a distance sensor was used to detect the distance and height of
the bars for brachiating adjustment [31]. Later, the simulation studies used models with link numbers
up to seven to simulate the complex dynamics of primates [32–36].

In our study, we report on the simulation and experimental results of a monkey robot in
brachiation locomotion. Unlike other studies where the models/robots grasp the fixed bar, we intend
to investigate the behavior while the robot grasps a swingable rod, as the intermediate step toward
studying brachiation on the soft rope. The system, which is composed of the robot and the rope/rod,
has a more concentrated mass/size distribution and a larger distance to the fixed end (i.e., the top of
the rope/rod) than the system composed of the robot and a fixed bar, as reported in other literature.
Thus, the mechanical property of the rope/rod changes the overall system dynamics, and the passive
rope/rod enlarges the swing amplitude of the robot as well as increases the possibility of catching.
Following this setup, the two-step control strategy is developed, so the system can initiate the swing
motion from rest as well as maintain the swing with a large amplitude. The system is modeled and
the empirical robot is built and experimentally evaluated.

The remainder of the paper is organized as follows. Note that the motivation of this work is neither
the development of a sophisticated control strategy of the two-link pendulum nor the development of
a complex robot to mimic the monkey itself. Instead, we focus on how to design a simple robot and
to simultaneously find a corresponding simple model (i.e., template vs. anchor [37]), so the complex
brachiating behavior of the monkey can be abstractly reconstructed. Following this logic, we intend to
firstly describe the bio-inspiration process in Section 2, starting from our interest in understanding how
a monkey (or Tarzan, a famous fictional character in Disney movies) brachiates between ropes and
ending at the conclusion that a two-link model is sufficient to abstract this behavior. Then, in Section 3
we try to design a robot that has limited DOFs but is capable of reconstructing the brachiating motion
(i.e., including switching ropes/rods). Next, the dynamic behaviors of the model and the robot are
analyzed and reported in Section 4, and Section 5 describes the strategy and behavior of the robot
brachiating between the ropes/rods. Finally, Section 6 concludes the work.

2. The Reduced-Order Two-Link Dynamic Model of the Monkey Robot

A monkey swinging in a tree, as shown in Figure 1a, is a spatial and complex dynamic
motion. To effectively understand the essential dynamic characteristics of the system, we construct
a reduced-order model of the system by considering the following issues: (i) The motion of
the monkey is only considered in the sagittal plane, and any dynamics outside this plane are ignored;
(ii) The “simplest actuation scheme” is adopted, where a fore/aft swing motion is generated by
only one active and rotational degree-of-freedom (DOF) with torque τ. This DOF is located around
the geometric center of the body, so the relative configuration of the “upper body” and the “lower
body” can be actively controlled. This joint is referred to as “joint 2”; (iii) The upper and lower bodies
are assumed to be rigid bodies with mass (m1 and m2) and inertia (I1 and I2); (iv) The mass of the rope
is ignored. In this case, during the monkey swing motion, the rope can be treated as a massless rigid
rod that connects to the fixed end by a passive revolute joint (referred to as “joint 1”), as shown in
Figure 1b. The viscous damper with the damping coefficient c is added at this joint to represent
the energy loss of the model; (v) During the monkey swing motion, the relative configuration between
the hand of the monkey and the rope is fixed. Together with the issue described in (iv), the “rope” and
the upper body of the monkey can be modeled together as a rigid-body link with length l1 and its
center-of-mass (COM) is located close to the active joint (l1c from the revolute joint); (vi) The motion
and dynamic effects of the other arm are not considered because we intend to keep the reduced-order
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model (or template) simple to extract the essential dynamics of the system. On the robot side, the robot
is designed to have less inertia in the arms to fulfill the assumption of the template. After taking these
considerations into account, the original complex system can be simplified as a two-link model, as
shown in Figure 1b.
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Figure 1. (a) A monkey swings in a tree and (b) the simplified two-link model.

The equations of motion (EOMs) of the reduced-order two-link model shown in Figure 1b was
developed based on Lagrangian mechanics. The origin of the Cartesian coordinate system is located
at joint 1. The angles θ1 and θ2 represent the configuration of the upper and lower links, respectively.
The model can be regarded as a compound pendulum, and its behavior can be parameterized by two
variables, θ1 and θ2.

The quantitative formulation of the model is described as follows. First, the positions (
⇀
P1 and

⇀
P2)

of the masses (m1 and m2) can be expressed as
⇀
P1 = l1ccosθ1 î + l1csinθ1 ĵ
⇀
P2 = [l1cosθ1 + l2ccos(θ1 + θ2)]î + [l1sinθ1 + l2csin(θ1 + θ2)] ĵ,

(1)

and their velocities (
⇀
V1 and

⇀
V2) can be derived as

⇀
V1 = l1c

.
θ1(−sinθ1 î + cosθ1 ĵ)

⇀
V2 = l1

.
θ1(−sinθ1 î + cosθ1 ĵ) + l2c(

.
θ1 +

.
θ2)[(−sin(θ1 + θ2) î + cos(θ1 + θ2) ĵ),

(2)

The kinetic energy (T) and potential energy (V) of the model can be expressed as

T =
1
2

m1
⇀
V1·

⇀
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2 +
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m2
⇀
V2·
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2

I2(
.
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θ2)

2

V = −m1gl1csinθ1 −m2g[l1sinθ1 + l2csin(θ1 + θ2)],
(3)



Appl. Sci. 2017, 7, 947 4 of 15

where g represents the gravity constant. Following this definition, the equations of motion can be
expressed as

d
dt

(
∂L

∂
.

θ1

)
− ∂L

∂θ1
= −c

.
θ1

d
dt

(
∂L

∂
.

θ2

)
− ∂L

∂θ2
= τ, (4)

where L = T − V is the Lagrangian of the model and c is the damping coefficient. Together with
Equations (1)–(3), the EOMs of the model can be derived as
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sinθ2]} −m1gl1ccosθ1 −m2g[l1cosθ1 + l2ccos(θ1 + θ2)] = −c
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..
θ1 +

..
θ2) + m2l2

2c(
..
θ1 +
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2
sinθ2 +

..
θ1cosθ2)−m2l2cgcos(θ1 + θ2) = τ,

(5)

The derived EOMs are programmed in Matlab® to study the dynamic behavior of the model.
The equations are rewritten in state-space with variables (θ1,

.
θ1, θ2,

.
θ2 ) and solved by function ode45.

When the active joint 2 (θ2 ) is not force controlled but position controlled, the state θ2 and
.

θ2 are
regarded as priori. In this case, only the states of θ1 and

.
θ1 need to be solved.

3. The Design of the MonkeyBot

The design of the monkey robot (hereafter referred to as the MonkeyBot) basically aligns with
the configuration of the two-link model described in Section 2, so the latter (the “template”) can
correctly serve as the reduced-order model of the former (the “anchor”) [37]. In addition to this
constraint, the design of the robot is also based on several considerations that will be described
separately as follows.

The computer-aided drafting (CAD) drawing of the robot is shown in Figure 2a. The robot
has two arms, which are designed to grab/release the rope (i.e., the swing rods). By programming
the arms to grab/release the rope/rod alternatively, the robot is capable of swinging among different
ropes/rods as a monkey does. Thus, the upper body of the model described in Section 2, in reality, is
composed of the main upper robot body, two arms, and the rope/rod. In contrast, though a monkey
has two legs and a tail, the lower robot body is designed as a rigid box, which allows us to directly
map that to the lower body of the model. The rigid box is designed to have several mounting holes
and a small basket, as shown in the figure, so the length and mass of the lower body can be easily
adjusted. Because of these adjustable designs, we can alter the variable l2 and m2 in Section 2, which
can enhance the robot’s moment of inertia and make the movement optimal.

The MonkeyBot has five actuators in total, as shown in Figure 2a. One of them is to control
the relative configuration of the upper and lower robot bodies and is equivalent to the control of joint
2 (θ2) of the model. Each arm has two actuators: One of them controls the open/close of the hand,
so the hand can grasp/release the rope/rod. The other actuator changes the rotational configuration
of the arm relative to the upper robot body (i.e., the shoulder joint). When the MonkeyBot swings,
the arm that grasps the rope/rod poses vertically. In the meantime, the other arm poses horizontally
toward the front side, in preparation for grasping the next rope/rod.

Each arm/hand is composed of dual 4-bar linkage structures, as shown in Figure 2b. The robot
hand, or the simple 2-finger gripper, is composed of two linkages, one from each 4-bar linkage
structure. By using one actuator to drive these two 4-bar linkages simultaneously, the hand can
perform the open/close motion. The use of the 4-bar linkages to drive the hand motion has several
advantages: First, the actuator, which is relatively heavier than other components on the arm/hand, can
be installed close to the shoulder joint, so the arm/hand inertia can be reduced. This helps to increase
the dynamic response of the arm motion. Second, when the hand grasps the rope/rod, the arm and
body weight can be supported by the linkage structure, but not by the actuator torque. The shoulder
joint also has to carry the body weight. Thus, instead of relying on the actuator motor shaft and
aluminum horn, a ring bearing is installed to support the force in the axial and radial directions of
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the joint. Third, the motion range can be amplified. The open/close angle of the gripper is increased to
80◦ from its original 40◦ on the actuator side. The actuator (55 g) is the heaviest component on the arm,
so it is placed close to the shoulder joint to reduce its inertia effect as shown in Figure 2b. Thus, motion
of the arm that is not grasping the rope/rod does not have a significant effect on the dynamics of
the robot’s overall motion.
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the right hand-arm.

When the hand closes, the enclosed inner area is in a rectangular shape, which matches the cross
section of the rigid rod, as shown in the blow-up subfigure in Figure 2a. Thus, when the hand of
the robot grasps the rod, the yaw and roll disturbance of the robot can be constrained, so the robot
can have motion only in the sagittal plane as the model requires. In addition, a small piece of rubber
is mounted on the inner surface of the hand to increase the friction force between the hand and
the rigid rod.

The mechatronic system of the MonkeyBot is briefly described as follows. It has an embedded
system (MyRIO-1900, National Instruments, Austin, TX, USA), which has a real-time processor
operating at a 50 Hz loop rate and an integrated field programmable gate array (FPGA). The former
is utilized to deploy the main control algorithm, and the latter is for high-speed computation and
input/output (I/O) signal exchange. The servomotors (MG995, Tower Pro, Taipei, Taiwan) are
used to control the arm motion and hand motion. The high-speed servomotor (PL-8509, PowerStar,
New Taipei City, Taiwan) is used to control the configuration between the upper and lower bodies,
and it works at a speed of 2.32 rad/s, which is much faster than the natural frequency of the system.
Because it can achieve a swing frequency that is higher than the natural frequency of the system,
the motion control is feasible. The inertia measurement unit (IMU) (ADIS-16364, Analog Device,
Norwood, MA, USA) is installed close to the COM of the upper body. A limit switch is mounted on
each hand to detect the grasp condition between the hand and the rigid rod. Figure 3 shows a photo of
the robot. The physical parameters of the robot are listed in Table 1.
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Table 1. Physical parameters of the robot.

m1 0.995 kg
m2 0.19 kg
I1 1.26× 10−3 kg·m2

I2 0 kg·m2

l1 0.495 m
l1c 0.410 m
l2 0.217 m
l2c 0.217 m
c 0.0185

The swing angle of joint 1 (θ1) is an important index to evaluate the swing performance of
the robot. Because the relative configuration of the rod and the arm, the upper robot body remains
the same during the swing motion, θ1 equals the body pitch, and this information can be estimated
by utilizing the inertia sensor mounted on the body. The inertia sensor provides the 3-axis linear
acceleration

(
ax, ay, az

)
and 3-axis angular velocity

(
ωx, ωy, ωz

)
of the body. The body pitch can be

estimated by the following method. The aim is to integrate the angular velocity to yield body pitch.
The computed body pitch would suffer from the notorious drifting error if the integration time were
large. Because the robot swings periodically as the angular velocity alternatively and periodically
exhibits positive and negative values, the integration can be “reset” to zero when the robot reaches its
highest position (

.
θ1 = 0). Assuming the swing motion is symmetric, the integrated angle represents

an angle that is twice as large as the swing amplitude (∆θ1).
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4. Swing Dynamics of the Model and the MonkeyBot

The reduced-order two-link model described in Section 2 is designed to simulate and predict
the dynamic behavior of the MonkeyBot described in Section 3, which helps to ease the process
of developing the control law and investigating the effect of the parameters of the model/robot.
The behavior of the empirical robot is much more complex than that of the model; for example, energy
loss is one of the important issues. We do understand a discrepancy between the model and the robot
definitely exists, but this is a typical synergy of “template vs. anchor” [37] and it is tolerable as long
as the model (i.e., template) is good enough to provide the correct behavioral trend of the robot
(i.e., anchor). On the model side, in addition to the use of the active joint θ2 to represent the actuator
effect of the robot, the model has to include the energy loss term to simulate the energy loss of the robot.
Here, to make the reduced-order model as simple as possible, we intend to use just one viscous
damping dashpot mounted at the swing joint (i.e., at joint θ1) to represent the overall energy loss of
the robot. While the physical specifications of the MonkeyBot, such as the mass, inertia, and lengths,
can be directly mapped to the model parameters, the only parameter that needs to be determined is
the damping coefficient c of the “resultant” viscous damping at the swing joint.

The free swing test of the model/robot was conducted to determine the damping coefficient c of
the model. The experimental environment was set up to record the robot’s motion for quantitative
analysis. Five markers were mounted in the setup: two on the top of two rods (i.e., two joint 1s),
one on the COM, one on the arm, and one on the lower body. When the robot swung or brachiated
on the rod, its sagittal-plane motion was recorded by a stationary high-definition (HD) camcorder
(HDR-SR11, Sony, Tokyo, Japan). While the qualitative motion of the robot can be easily observed
by the video, the quantitative motion of the robot can be computed based on the markers’ positions
in the sequential snapshots taken by the camcorder. In the experiments, the MonkeyBot was posed
at two different initial heights (θ1 = 100◦, 115◦, corresponding to 90◦ ± 10◦ and 90◦ ± 25◦ swings)
and released. The robot started to swing, and the swing amplitude gradually decreased, owing to
the energy loss. The profile θ1 versus time t was recorded for data analysis. On the model side, models
with various damping coefficients c were simulated to generate the corresponding θ1 versus t profiles.
Next, the root mean squared (RMS) errors between the peak value of trajectories in the first five periods
of the robot’s swing motion, and the models with various c values were computed. The damping
coefficient c = 0.0185 was selected because this model has the smallest RMS error. Figure 4 plots
the trajectories θ1 versus t of the robot and the model with this damping coefficient, and the subplots
(a) and (b) correspond to the initial condition θ1 = 100◦ and θ1 = 115◦, respectively. Both plots
show a decent trajectory match between the robot and the model, and the RMS errors are 0.42◦ and
0.44◦, accordingly.

The frequencies shown in Figure 4 represent the natural frequency of the model and the robot.
According to a paper [38], the stride frequencies of different-sized animals have a certain relation to
their body mass, and those frequencies also match the natural frequencies if the animals are modeled as
the spring-mass systems (i.e., resonance region) because the brachiating motion of the robot is basically
a pendulum motion that has a certain natural frequency. To actuate the waist of the robot/model at
a frequency similar to the natural frequency is similar to driving the legs of the animals at a frequency
similar to the natural frequency. The model has a natural swing frequency of around ωn = 0.714 Hz
when θ1 = 90◦. If the model starts with the at rest configuration and the joint 2 is actuated with
a swing signal at the same frequency, the model can gradually increase its swing magnitude (θ1), as
shown in Figure 5a. This control scheme is hereafter referred to as the “open-loop” method. Figure 5a
also reveals that the open-loop method can quickly build up energy to increase the swing amplitude
θ1 to 90◦ ± 50◦ within 15 s. Because the double pendulum is a nonlinear system and the natural
frequency changes when the configuration changes, its swing motion does not gradually converge to
a certain amplitude, but exhibits amplitude variations. In addition, the model has less capability for
disturbance rejection.
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Figure 5. A simulation of the two-link model with (a) open-loop and (b) closed-loop control methods.

The closed-loop strategy is developed to compensate for the drawbacks of the open-loop strategy.
When joint 2 is actuated with the same rotation direction as joint 1 (θ1), the energy generated from
joint 2 can be injected into the model. Figure 6 demonstrates this phenomenon. It can be assumed that
the model initially swings toward the left (

.
θ1 > 0) and joint 2 is fixed at a positive angle (θ2 > 0), as

shown in Figure 6a. After the model reaches its highest left position, as shown in Figure 6b, and starts
to change motion direction (

.
θ1 < 0), if joint 2 is actuated to have a negative angular velocity (

.
θ2 < 0),

as shown in Figure 6c, the swing motion of joint 1 (
.

θ1 < 0) can be maintained to overcome the damping
loss or even increased to enlarge the swing amplitude. When the model reaches its highest right
position, as shown in Figure 6d, joint 2 has a negative value (θ2 < 0) and is ready for the next actuation
(

.
θ2 > 0) after the model starts to change motion direction (

.
θ1 > 0). This configuration is identical to

the one shown in Figure 6a; thus, the swing motion can be periodically generated. Figure 5b plots
the trajectories of the joint 1 angles of the model versus time when the model is actuated with this
control scheme. This scheme is hereafter referred to as the “closed-loop” method. The model can
successfully build up the swing amplitude θ1 to 90◦ ± 10◦ within 4 s; however, the amplitude seems
not to increase until the end of simulation (15 s). Moreover, this method was not functional on the robot
when it started at a rest condition θ1 = 90◦ for two reasons: First, the joint angle measurement (θ1) of
the robot has noise, and this may lead to a wrong actuation initiation, especially when θ1 is close to 90◦.
Second, empirically, the actuation of joint 2 (θ2) needs time to finish its configuration change. When θ1

is close to 90◦, the control algorithm may quickly switch the motion direction of joint 2, and in this case,
the robot cannot correctly initiate its periodic motion pattern. Therefore, the hybrid control scheme
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is utilized: The model/robot firstly uses an open-loop control strategy. After the swing amplitude
approaches the maximum value, the control algorithm switches to a closed-loop to increase the motion
control stability. The overall control flow chart is shown in Figure 7.
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While the size and mass of the upper body is, in general, fixed and determined by
the characteristics of the components, the size and mass of the lower body has some freedom to
be adjusted for better dynamic performance of the robot itself. The evaluation process was done
in simulation, where the link length l2 and mass m2 of the model were varied, and the model was
set to swing six periods from its rest position (θ1 = 90◦ and θ2 = 0◦) with the open-loop control
strategy. Because the model with a different size and mass has different natural frequencies, different
models use different frequency settings. The performance was judged by the final swing amplitude
of the model. Figure 8 shows the simulation result. The figure reveals that as the mass and length
of the lower body increases, the swing amplitude increases. Though the longer length and larger
weight are preferred, the actuator power is constrained to a certain value because the size and mass
of the upper body are given. Thus, the link length l2 and mass m2 are maximized to the value that
the motor can sustain. The selected length and mass of the lower body are marked in the figure.
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Figure 8. A simulation of the two-link model with different lengths and mass values.

The robot brachiating on the swingable rope/rod has a more concentrated mass/size distribution
and a larger distance than that brachiating on a fixed point. The added rope/rod changes the overall
system dynamics, and the passive rope/rod enlarges the swing amplitude of the robot, which increases
the possibility of grasping the next rope/rod. Figure 9 compares the difference in behavior between
the two systems, where the lengths of l1 have different values. One includes the length of rope/rod,
and the other does not. As shown in the figure, though the latter has a faster response, the former has
a larger swing amplitude.
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Figure 9. The swing amplitudes of the robot grasping the fixed point and the rod.

After the development of the control strategy and optimization of the size and mass, the model
and robot are ready for performance evaluation. Figure 10 shows several snapshots of the robot
during the experiments, and it confirms that the robot can successfully swing by using the proposed
control strategy. Figure 11a shows the simulation results of the model with a hybrid control strategy,
and Figure 11b shows the corresponding experimental result of the robot with this hybrid control
strategy. We found that the swing frequency of the robot is similar to that of the simulation, but
the swing amplitude of the robot is about 2/3 of the simulation. The root mean squared error of
the peak amplitude between the model and the robot is 25.7◦. We believe that the discrepancy mainly
comes from the empirically tested non-rigid grasp of the hand to the rod. Though the hand grasps
the rod with a certain contact area, as shown in Figure 2a, the grasping cannot generate enough
resistance moment to hold the rod tightly. As a result, when joint 2 of the robot rotates, the arm
and the rod are not able to keep their relative configuration as a rigid link, as the model assumes.
This phenomenon can also be observed in Figure 10. This less than ideal situation results in two
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behaviors: (i) The swing energy generated by joint 2 has a certain loss, so the achievable amplitude
decreases; (ii) Because the robot COM lies in different sagittal planes than the arms/rods, when
the robot swings, the non-rigid grasping causes the robot to have other dynamic behaviors, such as
a yaw swing motion. Thus, some of the swing energy generated by joint 2 is consumed by these
unwanted dynamics. Except for the discrepancy in swing amplitude, the swing frequency of the robot
can be predicted by the simple two-link model. The dynamic behavior of the robot with both open-loop
and closed-loop controllers can also be predicted by the model. Therefore, though the model is quite
simple, it can serve as a template of the robot.
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Figure 10. Snapshots of the robot (left) and the two-link model (right) starting from the at rest
condition. The robot/model uses the open-loop control method (a–d) and then the closed-loop control
method (e,f).
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Figure 11. A simulation of the (a) two-link model and the experimental result of the (b) MonkeyBot
with the hybrid control strategy.

5. Switching Rods of the MonkeyBot

Following the capability of the robot to swing, the next step is to develop the rope/rod-switching
behavior of the MonkeyBot. The overall control flow chart is shown in Figure 7. To simplify
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the problem, the relative displacement between the ropes/rods is assumed a priori. As described
in Section 3, the robot can estimate the joint angle 1 (θ1, equal to the body pitch). By using
the trigonometric relation, the robot can compute its relative displacement to the next rope/rod.
When the robot hand can reach the next rope/rod, the hand opens and grasps it. A limit switch
mounted in the hand is utilized to detect the grasping condition. When the grasping signal of the new
rod is positive, the other hand of the robot releases the previous rod, so the robot can start its new swing
motion on the new rod. Because the robot on the new rod swings from a certain initial height (i.e., not
from an at rest position), the robot does not need to use the open-loop method to swing itself up to gain
potential and kinetic energy. Instead, the closed-loop strategy is directly adopted for continuous motion,
and the robot can grasp/release the front rod and continuously swing forward. Figure 12h shows
the plane trajectories of the robot while it swings from the left rod to the right rod. The experimental
setup is described in Section 4, and the locations of the markers are depicted in the CAD drawing of
the robot and the swing rods, as shown in Figure 12g. The image shown in the upper right corner
of Figure 12a–d is the snapshot captured by the camcorder after the intensity filter, so only the positions
of the reflective markers are preserved. By collecting the positions of these markers versus time,
the motion of the robot can be quantitatively analyzed. As shown in Figure 12h, the robot uses one
of its arms to grasp the rod and swing forward (i.e., the left sections of the curves). In the meantime,
the other arm of the robot (i.e., with the marker) poses forward and prepares to grasp the right rod.
After the other arm grasps the right rod, the first arm releases its grasp to the left rod, and the robot
keeps swinging forward (i.e., the right section of the curves). The short trajectories between the left
and right trajectories represent the transition when the robot switches rods, and this exists because,
empirically, the switching is not instant but takes a short period of time for the hands to grasp or
release the bar. In short, the robot can successfully brachiate between the rods.
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Figure 12. The MonkeyBot in brachiating motion. (a–f) The snapshots of the system captured by
the camcorder before (e,f) and after (a–d) image processing; (g) The markers, whose locations are
depicted in CAD drawing, were mounted on the MonkeyBot when it swung and switched rods;
(h) The overall motion trajectories of the markers/system. The instants marked with a-d correspond
with the snapshots (a–d).
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6. Conclusions

We report on the model-based development of a monkey robot that is capable of performing
continuous brachiation locomotion on swingable rods. The two-link model was inspired by
the brachiation of primates, and its quantitative formulation was derived based on the Lagrangian
method. The dynamic behaviors of the model were simulated in MATLAB®, and the model was also
utilized for controller design. Following this, the robot was empirically built, and its dimensions were
determined based on the simulation results. In addition, the controller developed during simulation
was also implemented on the robot.

The simulation and experiment results reveal several facts and characteristics of this study:
(i) The open-loop control strategy is effective in initiating the swing motion of the robot from its at rest
configuration. However, it is hard to maintain a steady swing motion owing to the nonlinearity of
the model and the disturbance; (ii) In contrast, the closed-loop control strategy can stabilize the model
with a certain amplitude to perform a steady swing motion. However, when the initial amplitude is
small, this strategy in simulation cannot amplify the swing magnitude. Furthermore, this strategy in
the empirical robot is not functional because of the noise and latency of the sensor information and
actuation; (iii) As a result, the hybrid control strategy was adopted, and it was confirmed to be effective,
both in simulation and in experiments; (iv) The robot with the same control strategy as the model
can successfully initiate its swing motion. The swing frequency maintains a similar value as that of
the model, but the swing magnitude is about 2/3 of that of the model because of the non-rigid contact
between the hand and the rod. This causes the empirical energy loss and the initiation of unwanted
yaw dynamics in the robot. Except for the amplitude discrepancy, the robot exhibits similar dynamics
to the model. Thus, the model can serve as a template of the original complex robot; (v) The robot can
also successfully swing between the rods, performing brachiation locomotion.

We are in the process of revising the grasping mechanism of the robot hand, so the grasping can
be more precise and rigid than the current method. In addition, we are exploring the energy flow of the
robot during its swing and rod changing motions, so the control can be better fused with the natural
dynamics of the system.
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Nomenclature

m1, m2 Mass of the two-link model
I1, I2 Inertia of the two-link model
l1, l2 Link lengths of the two-link model
l1c, l2c COM positions of the links
θ1, θ2 Configurations of the links 1 and 2 in the model
⇀
P1,

⇀
P2 Positions of two masses in the model

⇀
V1,

⇀
V2 Velocities of two masses in the model

T, V Kinetic energy and potential energy of the model
L Lagrangian of the model
g Gravity constant
τ Actuation torque at joint 2
c Damping coefficient at joint 1
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