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Abstract: This paper presents a two-stage transcription framework for a specific piano, which
combines deep learning and spectrogram factorization techniques. In the first stage, two convolutional
neural networks (CNNs) are adopted to recognize the notes of the piano preliminarily, and note
verification for the specific individual is conducted in the second stage. The note recognition stage is
independent of piano individual, in which one CNN is used to detect onsets and another is used to
estimate the probabilities of pitches at each detected onset. Hence, candidate pitches at candidate
onsets are obtained in the first stage. During the note verification, templates for the specific piano
are generated to model the attack of note per pitch. Then, the spectrogram of the segment around
candidate onset is factorized using attack templates of candidate pitches. In this way, not only the
pitches are picked up by note activations, but the onsets are revised. Experiments show that CNN
outperforms other types of neural networks in both onset detection and pitch estimation, and the
combination of two CNNs yields better performance than a single CNN in note recognition. We also
observe that note verification further improves the performance of transcription. In the transcription
of a specific piano, the proposed system achieves 82% on note-wise F-measure, which outperforms
the state-of-the-art.

Keywords: music information retrieval; piano transcription; note recognition; note verification;
onset detection; multi-pitch estimation

1. Introduction

Automatic music transcription (AMT) is a process of transcribing a musical audio signal into
a symbolic representation, such as a piano roll or music score. It has many applications in music
information retrieval, composition, music education, and music visualization.

AMT has been researched for four decades (since 1977) [1,2], and it is still a challenging problem.
While the transcription of monophonic music is considered solved, polyphonic AMT remains open
because the signal is more complex. In polyphonic music, many notes overlap in the time domain and
interact in the frequency domain. Additionally, the complexity of polyphony increases with the number
of sound sources. For example, the concurrent notes in orchestral music come from instruments of
different timbral properties, and the corresponding AMT performance is poor.

Note is the basic unit of music, and the main problem of transcription is to extract the information
of every note in the music [3]. For each note, a set of information includes: pitch, onset, offset,
loudness, and timbre. Pitch is a major attribute of auditory sensation, which can be reliably related
to the fundamental frequency (F0). Onset refers to the beginning time of a note, and offset refers to

Appl. Sci. 2017, 7, 901; doi:10.3390/app7090901 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app7090901
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 901 2 of 19

the ending time. Loudness is the characteristic related to the amplitude of a sound. Timbre is that
perceptual attribute in which a listener can judge that two sounds having the same loudness and pitch
are dissimilar. In general, we only focus on which notes are played and when they appear in the music.
Therefore, the pitch and onset time are necessary in the results of AMT.

The approaches to polyphonic transcription can be divided into frame-based methods and
note-based methods [4]. The frame-based approaches estimate pitches in each time frame and form
frame-level results in a post-processing stage. The most straightforward solution is to analyze the
time–frequency representation of audio and compute the fundamental frequencies [5]. Short-time
Fourier transform (STFT) [6,7] and constant Q transform (CQT) [8] are two widely used time–frequency
analysis methods. Zhou proposed resonator time–frequency image (RTFI), in which a first-order
complex resonator filter bank is adopted to the analysis of music [9]. Dressler used multi-resolution
STFT, and the pitch was estimated by detecting peaks in the weighted spectrum [10]. Spectrogram
factorization techniques are also very popular in AMT, such as non-negative matrix factorization
(NMF) [11]. Probabilistic latent component analysis (PLCA) is another factorization technique, which
aims to fit a latent variable probabilistic model to normalised spectrograms [12,13]. Apart from the
discriminative approaches, deep neural networks have been used to identify pitches recently. Nam
superimposed a support vector machine (SVM) on top of a deep belief network (DBN) to learn feature
representations [14]. Sigtia compared the performance of neural networks and proposed a recurrent
neural network (RNN) language model for music transcription [15]. Kelz utilized both a ConvNet and
an AUNet in transcription, and investigated the glass ceiling effect of deep neural networks [16].

The note-based transcription approaches directly estimate notes, including pitches and onsets.
One solution is combining the estimation of pitches and onsets into a single framework [17,18].
Kameoka [19] used harmonic temporal structured clustering to estimate the attributes of notes
simultaneously. In [20], Böck used an RNN with bidirectional long short-term memory (LSTM)
units. Similarly, Sigtia utilized three kinds of neural networks to transfer the input audio to a list
of notes, along with the corresponding pitches and onset times [21]. Another solution is employing
a separate onset detection stage and an additional pitch estimation stage. The approaches in this
category often estimate the pitches using the segments between two successive onsets, and an accurate
onset detection benefits the transcription. Marolt proposed a connectionist approach which contains
a neural network of onset detection [22]. Costantini detected the onsets and estimated the pitches
at the note attack using SVM [23]. However, little deep-learning-based research has been done in
this category, to our knowledge.

Modeling the instrument being transcribed and learning the corresponding timbral properties is
an efficient way to improve the AMT performance. Instrument-specific transcription research restricts
the employed instrument models to a specific type. Depending on the timbral properties of different
instruments, different sets of constraints are adopted in instrument-specific AMT systems [24–26].
As a typical multi-pitch instrument, the piano has been widely studied in AMT because its polyphony
is challenging. The task of piano transcription has existed in MIREX (Music Information Retrieval
Evaluation eXchange) since 2007, and it is competitive every year [27]. Figure 1 gives MIREX’s annual
best results for the note tracking of piano subset based on onset only over the past 10 years. The current
state-of-the-art system won 82% on F-measure in MIREX 2016, which is employed as a baseline system
to evaluate the performance of our proposed method [28].
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Figure 1. The 2007–2016 annual best results for piano transcription in MIREX (Music Information
Retrieval Evaluation eXchange).

Individual-specific transcription is a new direction of AMT, which can make use of more
characteristics of the individual piano. Cogliati and Duan modeled the temporal evolution of piano
notes, and the spectrogram was factorized using the templates [29]. In the same context-dependent
setting, they also employed convolutional sparse coding to transcribe the music from a specific piano
in the specific environment [30]. In the supervised NMF, templates were usually formed by the isolated
notes of the specific piano to be transcribed. Ewert employed spectro-temporal patterns to model
the temporal evolution in NMF [31]. Cheng proposed a method to model the attack and decay of
notes, and all the templates were trained by a Disklavier piano [32]. In the same transcription task,
Gao combined the convolutional NMF with a differential spectrogram [33].

In this paper, we focus on the note-based polyphonic transcription for a specific piano. Deep
learning technique is adopted to recognize notes preliminarily, and then the candidate notes are
verified for the specific piano. In the stage of note recognition, a convolutional neural network (CNN)
is used to detect onsets, and another CNN is used to estimate the probabilities of pitches at each
detected onset. During the note verification, the spectrogram is factorized using attack templates of
notes. Compared to existing AMT approaches, the proposed method has the following advantages:

(1) The note recognition stage yields a note-level transcription by estimating the pitch at each onset.
Compared to existing deep-learning-based methods which use a single network, two consecutive
CNNs yield better performance.

(2) An extra stage of note verification is conducted for the specific piano, in which the spectrogram
factorization improves the precision of transcription. Compared with the traditional NMF, the
proposed note verification stage could save computing time and storage space to a great extent.

(3) The proposed method achieves better performance in specific piano transcription compared to
the state-of-the-art approach.

The outline of this paper is as follows. The proposed framework is described in Section 2. The
transcription and comparison experiments are presented in Section 3. Finally, conclusions are drawn
in Section 4.

2. Proposed Framework

The proposed transcription framework is shown in Figure 2, which comprises a note recognition
module and a note verification module. In this section, we describe the two stages.
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Figure 2. Diagram for the proposed framework. CNN: convolutional neural network; NMF:
non-negative matrix factorization.

2.1. Note Recognition

Recently, convolutional learning has achieved great success in music signal processing, such as
genre classification [34], artist classification [35], and chord detection [36]. In the task of AMT, CNNs
have also been evaluated for onset detection and frame-based transcription, respectively. In the
experiments of onset detection, Schlüter used CNNs of different architectures [37]. The results
shows that a CNN with linear rectifier outperformed the state-of-the-art while requiring less manual
preprocessing. Sigtia utilized a CNN to transcribe polyphonic piano music frame-by-frame, and the
output was estimated pitches at each frame [21]. Although CNN yields the best performance on the
frame-based metrics, an NMF method outperforms CNN on note-based metrics. So, it is promising for
CNN to make use of the note onset and generate a note-based transcription. Here we train a CNN to
detect onset and another CNN to estimate pitches at each detected onset.

CNNs are neural networks characterized by a convolutional structure. The convolutional layers
are designed to preserve the spatial structure of the input. In each convolutional layer, a set of weights
act on a fixed-size local region of the input. These weights are then repeatedly applied to the entire
input to produce a feature map. After the convolution of input with shared weights, the output of
the convolutional layer is obtained by adding a bias term and then applying a non-linear function.
Each unit of out feature map in the convolutional layer can be computed as:

qj,m = f (
I

∑
i

N

∑
n

oi,n+m−1wi,j,n + bj) (1)

where oi,m is the mth unit of the ith input feature map, qj,m is the mth unit of the jth output feature
map, wi,j,n is the nth element of the weight vector, bj is the bias term added to the jth feature map,
f (·) is the activation function. I is the number of input feature maps, and N is the size of weight
filter. A convolutional layer is often followed by a pooling layer, which subsamples each feature map.
For example, the most common max pooling only retains the maximum value in non-overlapping
cells. When the max pooling function is used, the pooling layer is defined as:

pj,m =
K

max
k=1

qj,(m−1)×s+k (2)

where K is the pooling size and s is the shift size of pooling windows. Here, pj,m is the mth unit of
the jth output feature map. qj,m is the mth unit of the jth input feature map in this pooling layer,
and it is also the corresponding unit of the output feature map in the last convolutional layer. Finally,
the CNN ends in fully-connected layers that integrate the information of layers below. In audio signal
processing, the input to the CNN is a window of feature frames centering around time t, whereas the
output contains posterior probabilities of different categories at time t.

There are several motivations for applying CNNs to music transcription. Firstly, aggregating over
several frames achieves better performance than processing a single frame. For example, the attack
stage of notes can be modeled by applying a context window around the onset so that the onset will be



Appl. Sci. 2017, 7, 901 5 of 19

detected more accurately. Secondly, the architecture of the CNN can learn features along both the time
and frequency axes. CNN is proper for processing the harmonic structure in a spectrogram because of
its shift invariance. Compared with deep neural network (DNN) and RNN, the weight sharing and
pooling architecture leads to a reduction of parameters.

In the proposed note recognition stage, two CNNs are trained using a constant Q transform (CQT)
of the music signal. The spectrogram of CQT is suited as time–frequency representation for music
since its frequency bins are evenly spaced on a logarithmic axis. Additionally, the inter-harmonic
spacings are constant for different pitches so that the CNN can learn pitch-invariant information.
We trained a CNN of one output unit as an onset detector, giving binary labels to distinguish onsets
from non-onsets. The architecture of this CNN is shown in Figure 3. The CNN takes a spectrogram
slice of several frames as a single input, and each spectrogram excerpt centers on the frame to be
detected. All of the spectrograms are extracted along the music signal, with a hop size of one frame.
Feeding the spectrograms of the test signal to the network, we can obtain an onset activation function
over time. The frame whose activation function is greater than the threshold is set to be the candidate
onset.

The onset detector is followed by another CNN for multi-pitch estimation (MPE), which has the
same architecture except for the output layer. Its input is a spectrogram slice centered at the onset
frame. The CNN has 88 units in the output layer, corresponding the 88 pitches of piano. To make
sure the multiple pitches can be estimated at the same time, all the outputs are transformed by a
sigmoid function. For each training sample, the onset time is annotated accurately in advance. In the
testing procedure, the input is a spectrogram slice centered at the candidate onset, which is detected
by the previous CNN. A set of probabilities of 88 pitches is estimated through the network. Finally,
the candidate pitches at candidate onsets are obtained by applying a threshold to the output.

Figure 3. CNN architecture for onset detection.

2.2. Note Verification

Note verification for the specific piano is implemented through an NMF. As a frame-based
approach, the traditional NMF factorises a spectrogram of a piano signal into 88 spectral bases and
sparsity activations. Here the NMF only takes the candidate onsets and pitches into consideration
and provides a note-wise representation. In the proposed framework, the sound to be transcribed
is reconstructed by:

Rt+T
t−T =

K

∑
k=1

Wk Ht+T
t−T (3)

where Rt+T
t−T is the reconstructed spectrogram of 2T + 1 frames and t is the frame of candidate onset.

W is the attack template for the specific piano, k ∈ [1, K] is the index of candidate pitches, and Ht+T
t−T

is the note activations. For the piano to be transcribed, 88 individual notes are pre-recorded and
each template is obtained by computing the average spectrum over time frames. The attack template
was calculated using the attack stage of each note rather than the whole duration. Note activations
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Ht+T
t−T can be estimated by minimising the difference between the reconstruction Rt+T

t−T and the original
spectrogram Xt+T

t−T . The spectrogram Xt+T
t−T is also the input being fed to the pitch estimation CNN.

Finally, we verified the candidate notes from activations. Only the candidate pitches whose peaks in
the activations exceed a threshold will be identified. Meanwhile, the time when activations exceed the
threshold will be set as the onset. Compared with the traditional NMF, the proposed method can save
computing time and storage space to a great extent.

An illustration of note verification is shown in Figure 4. Figure 4a is a spectrogram excerpt
used for traditional NMF, in which a C4 note starts at 0.14 s and ends at 0.96 s. Additionally, a C#4
note fades away before the C4 note appears, and a A3 note is played at last. Here, we only present
the factorization of note C4. The templates and activations are shown in Figure 4b,c, respectively.
Compared with the traditional template (solid line), the attack template (dashed line) concentrates on
the percussive stage of the note and shows a different characteristic. For example, both the high-order
harmonics and components between harmonics have higher amplitude in the spectrum of the attack
template. In Figure 4c, the solid line is the frame-wise activations for traditional NMF, and the dashed
line corresponds to the attack activations for note verification. Both curves rise rapidly at the onset time,
and a note C4 can be detected using a threshold of 3.0. However, another peak appears in the curve of
traditional activations at the end of note C4, and a false positive will be detected using the threshold.
Therefore, the NMF using attack templates are more suitable to be applied in note verification.
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Figure 4. An illustration of note verification: (a) a spectrogram excerpt used for NMF; (b) the attack
templates and traditional templates; (c) the attack activations and traditional activations in NMF.

In the stage of note verification, the effect of the dynamic level of templates is important. Even for
a specific piano, the spectrograms of same pitch vary depending on different dynamics. Figure 5 shows
the attack templates of note C4, played at three common dynamics: forte, mezzo-forte, and piano.
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As shown in Figure 5, there are differences between the templates of three dynamics—especially for
the higher partials. In the high-frequency range, the notes of louder dynamic have richer spectral
content compared to notes of softer dynamics. This indicates that the louder dynamics excite more
modes in the vibration of strings than softer dynamics, which is consistent with the assumption of [30].
If we factorize a forte note using piano templates, false positives may happen because the forte note
contains some spectral content which is not present in the corresponding piano template. This error
will not occur when we transcribe a note using attack templates of louder dynamics.
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Figure 5. Attack templates of note C4 played at three dynamics: forte, mezzo-forte, and piano.

3. Experiments

In this section, we describe the dataset used in our experiments. Then, the experimental
preprocessing, parameters, and metrics are introduced. Finally, we present the results from the
different experiments and analyze the performance of the proposed approach.

3.1. Dataset

The transcription experiments were conducted on the MIDI aligned piano sounds (MAPS) dataset
[38]. The MAPS dataset provides piano recordings, the related aligned MIDI files, and annotated
text files. The overall size of MAPS is about 60 h of audio, and it is the largest database for piano
transcription. There are nine categories of recordings corresponding to different piano types and
recording conditions. Seven categories of audio are produced by software piano synthesizers, while
two categories of recordings are obtained from a real Yamaha Disklavier upright piano. The dataset
consists of isolated notes, chords, and 30 pieces of music in each category. For music pieces, the number
of concurrent notes ranges from one to nine. Each music piece lasts more than 30 s, and all 270 pieces
contain 18 h of audio signal.

We aim at the transcription of the Disklavier piano, which is in category “ENSTDkCl” of the
MAPS dataset. For the real piano, the recording room was a studio with dimensions equal to about
4× 5 m. The distance between the piano and the microphones was about 50 cm. MIDI files were
created beforehand and were sent to the MIDI input of the Disklavier. Then, the audio was recorded
using two omnidirectional microphones.

To build a universal model independent of the real individual, we trained the CNNs using
210 music pieces of synthesized pianos in the MAPS dataset. The training set contains 460,988 notes
and the overall size is about 14 h. The proposed system was evaluated on the music pieces of the
Disklavier piano. In the testing set, there are 30 music pieces, and only the first 30 s of each piece was
used for transcription. The testing set contains 7345 notes in total. The setting is realistic because
the training set and testing set are disjoint on piano types. During the note verification, the attack
templates were obtained from the isolated notes produced by the same piano.

3.2. Experimental Settings

The proposed framework takes the spectrograms of CQT as input. The audio signal was segmented
with a frame length of 100 ms and a hop-size of 10 ms. The CQTs cover 88 notes of piano, and there
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are 36 bins per octave. Hence, a 267-dimensional CQT vector is extracted for each frame. A context
window of nine frames was applied to the CQTs so that we could obtain a spectrogram slice.

In the note recognition, architectures of these two CNNs were similar (as shown in Figure 3):
two convolutional layers, two pooling layers, and two fully-connected layers. These two CNNs
have the same structure, except for the final fully-connected layer. For the spectrogram slices of
267 dimensions by 9 frames, the first convolutional layer with 10 filters of size 16× 2 computes 10
feature maps of size 252× 8. The next layer performs max-pooling of 2× 2, reducing the size of maps
to 126× 4. The second convolutional layer contains 20 filters of size 11× 3, which generates 20 feature
maps of 116× 2. The max-pooling size of the second pooling layer was also set to 2× 2, resulting
in 20 maps of 58× 1. The first fully-connected layer contains 256 units, and the number of units in
the final layer changes with the task. In the CNN for onset detection, the final fully-connected layer
has a single output unit. In the CNN for MPE, the final fully-connected layer has 88 output units.
The two convolutional layers and the first fully-connected layer use the rectified linear unit (ReLU)
activation function, and the final fully-connected layers use the sigmoid function. Appendix A shows
more details about the CNNs.

The CNNs were trained using mini-batch gradient descent, and the size of a mini-batch was 256.
The Adam algorithm [39] was also used in the training. An initial learning rate of 0.01 was decreased to
0 over 100 epochs. To prevent over-fitting, a dropout of 0.5 was applied to each network. We also used
the method of early stopping, in which training was stopped if the cost (cross entropy) did not decrease
for 20 epochs. The training of two CNNs was independent, whereas the CNNs were concatenated in
the testing procedure. For the testing data, the first CNN estimates the candidate onset and the input
of the second CNN is a spectrogram slice centered at the candidate onset.

During the note verification, we trained one attack template per pitch using the forte notes. The
attack template was obtained by calculating the average of first 5-frame spectrogram followed by
the onset. Each spectrum to be factorised is 267 dimension by 9 frames, and the central frame is the
candidate onset detected by the first CNN.

Note-based metrics were employed to assess the performance of the proposed system [40]. A note
event is regarded as right if its pitch is correct and its onset is within a ±50 ms range of the ground
truth onset. These measures are defined as:

P =
NTP

NTP + NFP
(4)

R =
NTP

NTP + NFN
(5)

F =
2× P× R

P + R
(6)

where P, R, F correspond to precision, recall, and F-measure, respectively, and NTP, NFP, and NFN are
the numbers of true positives, false positives, false negatives respectively.

3.3. Results

To evaluate the performance of proposed approach comprehensively, we present the results of
each step. Firstly, we analyze the performance of two CNNs, which were trained for onset detection
and pitch estimation, respectively. Additionally, the performance of the proposed note recognition
module was evaluated on piano transcription. At last, we compared the proposed approach with a
state-of-the-art method on individual-specific transcription.

3.3.1. Onset Detection

For comparative purposes, the DNN and RNN were used for onset detection. In the training of
DNN and RNN, we performed a grid search over sets of parameters to find an architecture with the
best performance. The uncertain parameters of neural networks are: number of layers L ∈ {1, 2, 3, 4},
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number of hidden units H ∈ {32, 64, 128, 256, 512}. The hidden unit activation is a ReLU function and
the output unit activation is sigmoid. In the architecture of RNN, LSTM [41] units are used, and the
length of sequence was set to 10. The other parameters and methods in training are same as them in
the CNN, such as dropout and early stopping.

All the results of onset detection are presented in Table 1. As shown in Table 1, the CNN performs
best and the RNN outperforms DNN on all evaluation metrics. For example, the CNN yields a relative
improvement of 2.84% over the RNN, and the RNN outperforms the DNN by 4.48% on F-measure.
Both the CNN and RNN take a sequence of spectrums as input, which utilize the context information
over time. Additionally, the spatial structure of the spectrogram is preserved by the CNN, which is
useful for onset detection.

Table 1. Performance on onset detection using different neural networks. DNN: deep neural network;
RNN: recurrent neural network.

Method Recall Precision F-Measure

CNN 0.9731 0.9590 0.9660
DNN 0.9319 0.8683 0.8990
RNN 0.9530 0.9259 0.9393

Figure 6 shows the outputs of neural networks for a music excerpt along with the corresponding
ground truth. The excerpt is the first 10 s of track MAPS_MUS-bk_xmas5_ENSTDkCl. It is a typical
example for transcription, and it is analyzed in each of the following experiments. In the ground truth
(Figure 6d), there are two values: zero represents non-onset, and one stands for onset. We can also
observe that the onset is sparse in the excerpt’s first 8.8 s, and it is dense in the last 1.2 s. As shown in
Figure 6, the DNN’s output is far away from the ground truth, which cannot detect the dense onset
and bring many false positives. This example explains why the DNN yields low recall and precision in
Table 1. RNN and CNN are more suitable for onset detection than DNN. This is largely due to the
context information over time. The evolution of a note can be modeled using the sequence information,
so the false positives will not be detected in the sustain or decay stage of the note. Compared to RNN,
CNN’s output is closer to the ground truth—especially for the dense onset. When two adjacent onsets
have small time difference, their detection is difficult through change along the time axis. In this case,
we can identify the onset using the pitch information. CNN is such a method, which learns a feature
along both the time and frequency axes through its convolutional layers.
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Figure 6. Results of onset detection: (a–c) the output of CNN, DNN, and RNN, respectively; (d) the
corresponding ground truth.

3.3.2. Multi-Pitch Estimation

The DNN and RNN were also used as comparative methods for pitch estimation. The architecture
and training parameters are the same as that in onset detection, except for the final layer. Each net has
88 units in the output layer, and the output unit activation is sigmoid. In the training and evaluation,
all onset time was determined accurately in advance, and the pitch estimation was carried out at each
onset.

The results of MPE are shown in Table 2. As shown in Table 2, the CNN outperformed other nets
on all evaluation metrics. For example, the CNN yielded a relative improvement of 24.61% over the
DNN and outperformed RNN by 15.91% on note-based F-measure. This is largely because the CNN
can learn pitch-invariant features from the frames around the onset. We can also observe that the RNN
outperformed the DNN on precision and F-measure, which indicates that the context information is
helpful in pitch estimation. Therefore, the advantage of CNN is significant in the subtask of onset
detection and MPE.

Table 2. Performance on pitch estimation using different neural networks.

Method Recall Precision F-Measure

CNN 0.7810 0.8319 0.8056
DNN 0.6223 0.6727 0.6465
RNN 0.6020 0.8221 0.6950

Figure 7 shows the graphical representation of the outputs of neural networks for the music excerpt
along with the corresponding ground truth piano roll. As shown in the ground truth (Figure 7d),
the pitch estimation of this excerpt is challenging. The polyphony at each time instant is four in
the excerpt’s first 8.8 s, and the overlapping is serious. Additionally, the notes are much shorter in
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the excerpt’s last 1.2 s. Compared to the posteriograms of CNN and RNN, DNN estimated more
pitches, where many of them were false positives. This is because DNN’s topology is simple and its
input is just the spectrum at onset. Utilizing the note sequence information in piano music, RNN
produced a higher-precision output. However, RNN’s output seemed to be a result of monophonic
pitch estimation, which yielded many false negatives and corresponded to low recall. In general,
the CNN’s output was much closer to the ground truth than DNN and RNN. Unlike RNN’s input,
the context information of CNN’s input is from several frames around each onset. CNN can model the
attack stage of each pitch through this information, such that the MPE at onset is more accurate. There
are also some octave errors which require further effort in the CNN’s posteriogram. For example,
the MIDI pitch of 46 (about 116.54 Hz) was estimated to be MIDI pitch 58 (about 233.08 Hz) at the
eighth onset.
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Figure 7. Results of multi-pitch estimation (MPE): (a–c) the output of CNN, DNN, and RNN,
respectively; (d) the corresponding ground truth piano roll representation.

3.3.3. Note Recognition

To evaluate the performance of the proposed note recognition stage which contains two CNNs,
another CNN system was used for comparison [21]. The system contained only a single CNN, which
transcribes music frame-by-frame and returns a list of notes with pitches and onset. This system will
be referred to as Sigtia. Actually, the note recognition stage can be treated as a piano transcription
system, which takes no account of the individual to be transcribed. To make a comprehensive
comparison, two state-of-the-art transcription methods were also used. Both were submitted to
MIREX and evaluated in the task of piano tracking. Benetos’s method uses a variable-Q transform
representation as input and employs probabilistic latent component analysis in transcription [42].
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Troxel’s system is based on Microsoft’s ResNet, and it has achieved the best performance in MIREX.
For Sigtia’s method, we trained a CNN using parameters he described in [21]. We have access to the
code of Benetos’s method, and the second baseline system was implemented by the code. For Troxel’s
system, the results were obtained from the transcription software named AnthemScore [43].

All of the note-based results of transcription are presented in Table 3. In general, the performance
of the proposed note recognition stage is acceptable. Among these four methods, Benetos’ approach
performed the worst on each evaluation measure. This is because Benetos’ model is trained for multiple
instruments instead of piano, and the pre-shifted templates are not helpful for piano transcription.
The proposed note recognition module outperformed Sigtia’s method on all evaluation metrics, which
indicates that two independent CNNs are superior to a single one in AMT. Troxel’s method yielded the
best performance, and it outperformed us by only 0.14% on F-measure. On the metrics of precision,
our proposed note recognition stage was inferior to Troxel’s system. Therefore, we can use a note
verification stage to reduce the false positive notes and improve the precision of transcription.

Table 3. Performance on piano transcription.

Method Recall Precision F-Measure

CNNs 0.7524 0.8593 0.8023
Sigtia 0.6786 0.8023 0.7353

Benetos 0.5857 0.6305 0.6073
Troxel 0.7477 0.8687 0.8037

Figure 8 shows the transcription of the MAPS_MUS-bk_xmas5_ENSTDkCl excerpt using the top
two systems in Table 3. The corresponding ground truth has been shown in Figure 7d. Compared with
the ground truth, the false positive notes are marked using red crosses and the false negative notes
are marked using a blue dashed line. We can observe that the onset of notes in Figure 8a are detected
more accurately than that in Figure 8b. This can be attributed to the CNN for onset detection in our
system. In the excerpt’s first 8.8 s, the transcription result of Troxel’s system is better than that of our
two consecutive CNNs. There are eight false negative errors and five false positive errors in Figure 8a.
Correspondingly, there are only three false negative notes and two false positive notes in Figure 8b.
One solution to reduce the false negative errors is to apply a small threshold to the output of the second
CNN. This will bring more false positive notes, so an additional note verification stage is necessary.
In the excerpt’s last 1.2 s, the performance of our note recognition stage was much better than Troxel’s
system. As the duration of notes here are short, the accurate onset is essential for transcribing them.
This also indicates the advantage of our CNNs on short-note transcription.
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Figure 8. Results of piano transcription: (a) the transcription produced by CNNs in our proposed
framwork; and (b) the transcription produced by Troxel’s system.

3.3.4. Transcription for Specific Piano

In our proposed framework, the individual-specific transcription is conducted by feeding the
output of note recognition into a note verification stage. For comparative purposes, two transcription
systems were used to evaluate the performance of the proposed method. The first comparative
approach was proposed by Cheng, which is the current state-of-the-art specific piano transcription
method [32]. Cheng’s method is implemented using a sparse NMF in AMT, and all the templates
are extracted using the notes from "ENSTDkCl" of MAPS. Considering that the CNNs have shown
advantages in the note recognition stage, the second comparative approach is based on them. Adding
the specific individual’s data to the training set, we got two adapted CNNs. To make a fair comparison,
the newly-added training samples were isolated notes produced by the same piano.

The transcription results are shown in Table 4, and the proposed method performed best in general.
Although they are based on the same note recognition module, the proposed system outperformed
the adapted CNNs on all evaluation metrics. This illustrates the benefits of note verification. Another
reason is that the CNNs cannot learn enough information about the specific individual through these
limited isolated notes—especially the information of polyphony. The proposed system outperformed
Cheng’s system in terms of recall and F-measure. Our proposed method estimated 5511 notes correctly,
whereas the number of true positive notes was 5421 for Cheng’s method. This can be attributed to the
use of note recognition, which achieved significant performance on recall through CNNs. Meanwhile,
the preliminary results led to a limitation of note verification. Both the proposed method and Cheng’s
method achieved better performance than the adapted CNN on all evaluation metrics. One of the
reasons may be that both of them use the templates of attack during the NMF.
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Table 4. Performance comparison on specific piano transcription.

Method Recall Precision F-Measure

Proposed 0.7503 0.9039 0.8200
Cheng 0.7381 0.9070 0.8139

Adapted CNNs 0.7458 0.8792 0.8070

In general, all of the specific piano transcription systems in Table 4 perform better than
universal systems in Table 3. We can conclude that making use of the information of specific
individual is promising in AMT. Compared with results in Table 3, The proposed system performed
better on the metrics of precision and F-measure when the note verification stage was applied.
Therefore, the effectiveness of note verification is validated again.

The results of the proposed method and the state-of-the-art method are compared concretely.
Figure 9 shows the F-measure obtained by our proposed and Cheng’s methods, which is along the
different octaves of a piano. As shown in Figure 9, our proposed method outperformed Cheng’s
method for six octaves, except for the A5-Ab6 octave. Cheng’s method achieved an F-measure of
0.4854 for A0-Ab1, which shows its poor performance in the transcription of low-pitch notes. The
proposed method showed a more balanced result, with an F-measure of 0.5672 for the first octave.
In general, the F-measure increased approximately along the increase of octaves for the two methods.
This suggests the limitation of the time-domain approach, which brings a time–frequency resolution
trade-off.

A0-Ab1 A1-Ab2 A2-Ab3 A3-Ab4 A4-Ab5 A5-Ab6 A6-C8
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Figure 9. F-measure per octave achieved by our proposed system and Cheng’s system.

Figure 10 shows the specific piano transcription of the MAPS_MUS-bk_xmas5_ENSTDkCl excerpt,
which was produced by our proposed framework and Cheng’s system. Compared with the ground
truth in Figure 7d, the false positive notes are marked using red crosses, and the false negative notes
are marked using a blue dashed line. The contrast between Figures 8a and 10a indicates that the
note verification can improve the precision of transcription. As shown in Figure 10, Cheng’s method
estimated more correct pitches than our proposed method in the excerpt’s first 8.8 s. This is due to a
limitation in our proposed system. Although the note verification conducted on candidate notes can
save computing time and storage space, it is limited because the candidate set is not complete. In the
excerpt’s last 1.2 s, our system yielded a better performance than Cheng’s system. This indicates the
advantage of our note recognition stage, which is good at transcribing short notes. Another reason is
that modeling both the attack and decay stages in short duration is difficult for Cheng’s system.
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Figure 10. Results of specific piano transcription: (a) the transcription of our proposed system and
(b) the transcription of Cheng’s system.

4. Conclusions

We present a two-stage framework for note-level polyphonic piano music transcription, which
comprises a note recognition stage and a note verification stage. In the note recognition, one CNN is
trained for onset detection and another is trained for pitch estimation at each onset. To our knowledge,
the combination of two CNNs has not been attempted before for AMT. The note verification for the
specific piano is implemented using NMF. The factorization is conducted in the time slice around
candidate onset, which only uses attack templates of the candidate pitches. Our experiments are
carried out on the MAPS database and the performance of each module is discussed. The experiments
demonstrate that CNN performs better than other types of neural networks in the subtasks of onset
detection and pitch estimation, and the connection of two CNNs outperforms a single CNN in note
recognition. We also observe that the performance of transcription is improved significantly when note
verification is applied to the system, and our proposed system performs better than state-of-the-art
systems in specific piano transcription.

There are some limitations of the proposed system. As the biggest dataset for piano AMT,
the MAPS has only 270 solo pieces. So, the data may be not enough for training CNNs. Although
training data and testing data are from synthesized pianos and a real piano, respectively, they contain
overlaps in music pieces. The limited data and piece-dependent scheme led the CNNs to overfit.
For the real pieces in the testing dataset, the recording environment was quiet and the distance between
the piano and microphones was close. Therefore, one future research direction is to discuss whether
the proposed method is robust to noise and reverberation. Additionally, the proposed method cannot
estimate note offsets or loudness, which will be another research direction in the future.
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Appendix A

#Builds the CNN. The code is based on the open source software library-TensorFlow.
import tensorflow as tf

def inference(images0):
"""Build the CNN model.
Args: images0: Images placeholder, from inputs().
Returns: sigmoid_linear: Output tensor with the computed probabilities.
"""
images=tf.reshape(images0, [-1,267,9,1])

# conv1
with tf.variable_scope(’conv1’) as scope:

weights = tf.Variable(tf.truncated_normal([16,2,1,10],stddev=0.1))
conv = tf.nn.conv2d(images, weights, [1,1,1,1],padding=’VALID’)
biases = tf.Variable(tf.constant(0.1,shape=[10]))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)

# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’,

name=’pool1’)

# conv2
with tf.variable_scope(’conv2’) as scope:

weights = tf.Variable(tf.truncated_normal([11,3,10,20],stddev=0.1))
conv = tf.nn.conv2d(pool1, weights, [1, 1, 1, 1], padding=’VALID’)
biases = tf.Variable(tf.constant(0.1,shape=[20]))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)

# pool2
pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=’SAME’,

name=’pool2’)

# fully-connected1
with tf.variable_scope(’fully-connected1’) as scope:

reshape = tf.reshape(pool2, [-1,58*1*20])
weights = tf.Variable(tf.truncated_normal([58*1*20,256],stddev=0.1))
biases = tf.Variable(tf.constant(0.1,shape=[256]))
local = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)

# fully-connected2
with tf.variable_scope(’fully-connected2’) as scope:

#dropout
local3_drop =tf.nn.dropout(local, 0.5)
weights = tf.Variable(tf.truncated_normal([256,num_classes],stddev=0.1))
biases = tf.Variable(tf.constant(0.1,shape=[num_classes]))
sigmoid_linear = tf.nn.sigmoid(tf.matmul(local3_drop, weights) + biases, name=scope.name)
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return sigmoid_linear

def loss(logits, labels):
"""Calculates the loss from the logits and the labels.
Args:
logits: Logits from inference(), float - [batch_size, num_classes].
labels: Labels tensor, int32 - [batch_size, num_classes].
Returns: cross_entropy: Loss tensor of type float.
"""
cross_entropy = -tf.reduce_sum(labels*tf.log(logits+1e-10)+(1-labels)*tf.log(1-logits+1e-10))
return cross_entropy

def evaluation(logits, labels, threshold):
"""Evaluate the quality of the logits at predicting the label.
Args:
logits: Logits from inference(), float - [batch_size, num_classes].
labels: Labels tensor, int32 - [batch_size, num_classes].
threshold: Threshold applied to the logits.
Returns: accuracy: Compute precision of predicting.
"""
pred=tf.cast(tf.greater(logits, threshold),"float")
correct_prediction = tf.cast(tf.equal(pred, labels), "float")
accuracy = tf.reduce_mean(correct_prediction)
return accuracy

def training(loss, learning_rate):
"""Sets up the training Ops.
Creates an optimizer and applies the gradients to all trainable variables.
Args:
loss: Loss tensor, from loss().
learning_rate: The learning rate to use for gradient descent.
Returns: train_op: The Op for training.
"""
# Create the gradient descent optimizer with the given learning rate.
optimizer = tf.train.AdamOptimizer(learning_rate)
# Use the optimizer to apply the gradients that minimize the loss
train_op = optimizer.minimize(loss)
return train_op
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