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Abstract: The application of artificial intelligence (AI) to real-time strategy (RTS) games includes
considerable challenges due to the very large state spaces and branching factors, limited decision
times, and dynamic adversarial environments involved. To address these challenges, hierarchical
task network (HTN) planning has been extended to develop a method denoted as adversarial HTN
(AHTN), and this method has achieved favorable performance. However, the HTN description
employed cannot express complex relationships among tasks and accommodate the impacts of
the environment on tasks. Moreover, AHTN cannot address task failures during plan execution.
Therefore, this paper proposes a modified AHTN planning algorithm with failed task repair
functionality denoted as AHTN-R. The algorithm extends the HTN description by introducing three
additional elements: essential task, phase, and exit condition. If any task fails during plan execution,
the AHTN-R algorithm identifies and terminates all affected tasks according to the extended HTN
description, and applies a novel task repair strategy based on a prioritized listing of alternative
plans to maintain the validity of the previous plan. In the planning process, AHTN-R generates
the priorities of alternative plans by sorting all nodes of the game search tree according to their
primary features. Finally, empirical results are presented based on a µRTS game, and the performance
of AHTN-R is compared to that of AHTN and to the performances of other state-of-the-art search
algorithms developed for RTS games.

Keywords: HTN planning; real-time strategy game; task repair

1. Introduction

The application of artificial intelligence (AI) to real-time strategy (RTS) games includes
considerable challenges due to the very large state spaces and branching factors, limited decision
times, and dynamic adversarial environments involved [1]. RTS games are regarded as a simplification
of real-life environments, and could therefore serve as a test bed for investigating activities such as
real-time adversarial planning and decision making under uncertainty [2]. Moreover, task planning
techniques that have been demonstrated to be effective in RTS games could also be applied in real-world
domains [2].

Compared with conventional board games, RTS games have the following primary differences [2]:

1. Players can pursue actions simultaneously with the actions of other players, and need not take
turns, as in games such as chess. Moreover, player actions can be conducted over very short
decision times, allowing for rapid sequences of actions.

2. Players can pursue concurrent actions employing multiple controllable units. This is much more
complex than conventional board games, where only a single action is performed with each turn.
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3. Player actions are durative, in that an action requires numerous time steps to be executed. This
is also much more complex than conventional board games, where actions must be completed
within a single turn.

4. The state space and branch factors are typically very large. For example, a typical 128 × 128 map in
“StarCraft” generally includes about 400 player controllable units. Considering only the location
of each unit, the number of possible states is about 101685, whereas the state space of chess is
typically estimated to be around 1050. Of course, even larger values are obtained when including
the other factors in the RTS game.

5. The environment of an RTS game is dynamic. Unlike in conventional board games such as chess,
where the fundamental natures of the board and game pieces never change, the environment
of an RTS game may change drastically in response to player decisions, which can invalidate a
generated plan.

Because of the differences discussed above, standard game tree search methods, which perform
well for board games like alpha–beta search [3], cannot be directly applied in RTS games [4]. However,
research has been conducted to modify game tree search methods to address these differences [4].
Chung et al. [5] investigated the applicability of game tree Monte Carlo simulations in RTS games.
Balla and Fern [6] applied the upper confidence bound for trees (UCT) algorithm in an RTS game
to address the complications associated with durative actions. The UCT algorithm is a variant of
Monte Carlo tree search (MCTS) that modifies the strategy of exploring child nodes. The method is
believed to adapt automatically to the effective smoothness of the tree. Churchill et al. [7] addressed
the complications associated with simultaneous and durative actions by extending the alpha–beta
search process. However, the large branching factors caused by independently acting objects still
remained a substantial challenge. Methods such as combinatorial multi-armed bandits have attempted
to address the challenge of large branching factors [8,9]. Ontañón and Buro [10] addressed very large
state space and branch factors by combining the hierarchical task network (HTN) planning approach
with game tree search to develop what was denoted as adversarial HTN (AHTN). Here, rather than
exploring the entire combination of possible actions, HTN planning could guide the search direction
based on domain knowledge. AHTN also extended the HTN planning approach to accommodate
simultaneous and durative actions, and applied HTN planning directly into the game search tree to
take advantage of standard optimizations such as alpha–beta pruning.

Although AHTN has achieved good performance compared to other search algorithms [10], it still
suffers from the following weaknesses.

1. The HTN description used by AHTN cannot express complex relationships among tasks and
accommodate the impact of the environment on tasks. For example, consider a task involving the
forced occupation of a fortified enemy emplacement, denoted as the capture-blockhouse task, which
consists of two subtasks. The first subtask involves luring the enemy away from the emplacement
(denoted as the luring-enemy subtask), and the second subtask involves attacking the emplacement
(denoted as the attacking subtask). Here, the capture-blockhouse task will fail if the attacking subtask
fails. However, failure of the luring-enemy subtask would not necessarily lead to an overall failure
of the capture-blockhouse task, but would rather tend to increase the cost of completing the parent
task because the attacking subtask can still be executed even though the luring-enemy subtask fails.
This type of relation cannot be expressed by the HTN description employed in AHTN. Relations
related to conditions where subtasks are triggered by the environment or where the execution
results of a parent task depend on both the environment and the successful completion of its
subtasks also cannot be expressed by the HTN description employed in AHTN.

2. AHTN planning cannot effectively address task failures that occur during plan execution.
The planning process in AHTN generates a new plan at each frame of the game whenever
idle units which are not assigned or execute actions exist. The new plan processing cannot
cancel assigned actions of the previous planning. If units have been assigned actions in previous
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planning, they will keep executing those actions until those actions are failed or completed.
In AHTN, each failed task of the previous plan is simply removed at the time of failure without
considering its impacts on remaining executing tasks. The remaining tasks will continue executing
though these executions may be meaningless. To illustrate this point, we note that, if the failure
of a task leads to the failure of its plan directly, the remaining executing tasks of the plan should
not be continued execution because they cannot affect the failure of the plan. The remaining
executing tasks should therefore be terminated so that the released resources can be employed to
repair failed tasks or formulate a new plan. Thus, when one task fails and cannot be repaired,
all related tasks in the plan should be terminated, and the AI player should attempt to repair the
task to maintain the validity of the original plan.

In this paper, we propose a modified AHTN algorithm with failed task repair functionality,
denoted as AHTN-R, to address the two problems discussed above. First, AHTN-R employs an HTN
description extended by adding the elements essential task, phase, and exit condition to enhance its
capability for expressing complex relationships among tasks and for accommodating the impacts
of the environment. Second, AHTN-R employs a monitoring strategy based on the extended HTN
description to identify all tasks affected by a failed task. Finally, we develop a novel strategy for
repairing failed tasks based on a prioritized list of alternative plans. The priorities of alternative plans
are generated by sorting all nodes of the game search tree according to their primary features, and we
employ the valid alternative plan with the highest priority to repair the failed task. This method
can reduce time consumption by taking advantage of historical information. In each decision cycle,
the method attempts to repair failed tasks, followed by a new planning process.

The remainder of this paper is organized as follows. Related work is presented in Section 2.
The extended HTN description is presented in Section 3. The AHTN-R planning algorithm is presented
in Section 4. Experimental results indicative of the performance of the proposed AHTN-R algorithm
are compared with the performances of other algorithms in Section 5. Finally, we conclude the paper
and present an indication of future work in Section 6.

2. Related Work

Since the foundation of HTN planning was first proposed by Sacerdoti [11] in 1975, many HTN
planners have been proposed, such as the simple hierarchical ordered planner (SHOP) [12] and its
successor SHOP2 [13]. Combining HTN planning with search methods guided by human knowledge
has been demonstrated to speed up planning dramatically, and this has led some researchers to
attempt to apply this approach in typical video games [14]. Menif et al. [15] applied the Simple
Hierarchical Planning Engine (SHPE) to Steam Box, which is a type of first person shooter game,
using an alternative encoding of planning data. Soemers and Winands [16] investigated the reuse
of HTN plans in video games. Numerous examples exist of the successful use of HTN planners in
commercial video games [17]. However, to the best of our knowledge, only a few attempts have been
made to apply HTN planners to RTS games. Muñoz-Avila and Aha [18] employed an HTN planner to
provide human players with explanations for the reasons leading to current states or events according
to user queries, and for interrogating the behavior of autonomous players under computer control.
Laagland [19] presented the design, implementation, and evaluation of an HTN planner in an open
source RTS game denoted as Spring. The planning of the RTS game was divided into three levels with
the HTN planner being employed in the highest strategic level. Laagland [20] further summarized the
advantages and disadvantages of HTN planning in RTS games. Naveed et al. [21] employed HTN
planners to reduce the size of the pathfinding search space in RTS games, and tested their algorithm in
games developed using ORTS in 2010. Most recently in 2015, Ontañón and Buro [10] developed the
AHTN algorithm and applied it to RTS games.

Of the above studies, we note that no research other than that of Ontañón and Buro [10] has
considered the adversarial feature of RTS games. Moreover, no research has adequately addressed task
failures that occur during plan execution in RTS games. However, studies focused in other fields have
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addressed task repair based on HTN. Garzón et al. [22] proposed a task repair strategy based on HTN
planning to adapt to failures during the execution of treatment plans generated by therapy planning
systems. The strategy employed three methods for effecting task repair: application of the knowledge
base, search of alternative decompositions, and operator notification. Gateau et al. [23] employed HTN
to repair failed tasks to as localized an extent as possible in a high-level distributed architecture for
multi-robot cooperation. The core concept of the strategy was to re-plan only a sub-tree of the plan
based on a hierarchical structure. Ayan et al. [24] designed an extension of SHOP to repair failed tasks
by introducing a task-dependency graph. Here, only that portion of the original plan related to the
failed task was subjected to re-planning. The task-dependency graph was employed to record causal
links in the task network, and was then applied to eliminate the effects of re-planning on the other
portions of the original plan, and to reduce the cost of re-planning. The approach applied re-planning
only to the affected parts of the task network using HTN. However, many of these approaches failed
to take advantage of the information generated in the previous planning process to reduce the cost of
task repair.

3. Extended HTN Description

This section presents an extended HTN description to express complex relationships among tasks
and accommodate the impacts of the environment on tasks. We first analyze the requirements for
extending the HTN description, and then present a formal definition of the extended HTN description.

3.1. Requirements Analysis

The HTN planning approach generates plans by decomposing tasks recursively into smaller
subtasks [25]. HTN planning includes two types of tasks: primitive tasks and compound tasks.
Primitive tasks correspond to actions that can be executed by an agent directly in the game environment,
such as a specific movement. Compound tasks represent goals that must be achieved by a high-order
plan and decomposed into a task network.

3.1.1. Essential Task Attribute

In AHTN planning, the result of a compound task depends on the results and logical relationships
of its subtasks. Its task decomposition tree is an and-or-tree with logical relationships between subtasks
that are either AND or OR. The AND relationship indicates that the failure of any subtask will lead to a
failure of its parent task. The OR relationship indicates that the success of any subtask will lead to the
success of its parent task. However, some domain knowledge regarding the completion of a task cannot
be represented by an and-or-tree. Returning to the capture-blockhouse task example discussed in the
introduction, we note that the success of the luring-enemy subtask may decrease the cost of completing
the parent task, but its failure would not lead to the failure of its parent task. However, the success
and failure of the capture-blockhouse task is completely dependent on the success and failure of the
attacking subtask. These more complex logical relationships cannot be represented by the formation of
an and-or-tree.

To represent task decomposition reflecting more complex logical relationships, we introduce an
attribute denoted as essential task, whose value is either true or false, and this attribute is applied to
all tasks of the HTN. Here, the failure of any essential task will automatically lead to the failure of its
parent task without consideration for the results of any other subtasks. For two subtasks t1 and t2,
their logical relationships are represented as follows:

1. if the essential task attributes of both are true, the relationship between t1 and t2 is AND;
2. if the essential task attributes of both are false, the relationship between t1 and t2 is OR;
3. if the essential task attribute of only one is true, the relationship is neither AND nor OR.
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3.1.2. Phase and Exit Condition Attributes

The result of a compound task not only depends on the relationships and results of its subtasks,
but sometimes also depends on the environment, which can change dynamically. These impacts from
the environment can be of the following two types.

1. The environment can control the start of tasks once previous tasks have been completed.
For example, the task associated with the sudden concealed attack on an enemy, denoted as
the ambushing-enemy task, consists of two subtasks: the first is associated with movement to
the staging area of the ambuscade, denoted as move-to-ambushing-area, and the actual activity
of attacking, denoted as attack-enemy. It is obvious that the attack-enemy subtask could not
be executed immediately upon completing the move-to-ambushing-area subtask because the
attack-enemy task cannot be executed until the enemy resides in the ambuscade area.

2. The environment could necessitate the failure of a task. For the ambushing-enemy task example,
the move-to-ambushing-area subtask must be completed before the enemy has passed the
ambuscade staging area; otherwise, the ambushing-enemy task would fail.

While the AHTN algorithm can accommodate the first type of impact using the preconditions of
tasks, the second type of environmental impact cannot be addressed. In this paper, we propose the exit
condition attribute to address these two types of environmental impacts. The exit condition attribute can
be divided into sufficient exit condition and necessary exit condition attributes. If a task has some necessary
exit conditions, its subsequent task cannot be executed until all necessary exit conditions are satisfied.
If a task has some sufficient exit conditions, its parent task will fail when any sufficient exit condition is
satisfied but the task is not completed. The exit condition attribute is written using a Lisp-like syntax
like the precondition defined in [13].

The phase attribute is proposed to describe the relationships between subtasks that reflect the fact
that the execution of a compound task can be divided into several sequential steps, and each step may
include parallel subtasks. Because tasks in the same phase are often affected by the same exit conditions,
we add the set of exit conditions to the phase rather than adding them to each task.

For an example, we return to the ambushing-enemy task, where we have modified the task to
consist of three subtasks: move-to-ambushing-area, surveil-enemy, and attack-enemy. The modification
includes the subtask surveil-enemy reflecting the requirement to first determine that the enemy resides
in the ambuscade area prior to attacking. The first two subtasks are executed in parallel using
different units and the attack-enemy can be executed only when the first two subtasks are completed.
We divide the execution of ambushing-enemy into two phases. The subtasks move-to-ambushing-area and
surveil-enemy are included in the first phase, which is denoted as the preparatory-phase. The attack-enemy
subtask is included in the second phase, denoted as the attack-phase. The preparatory-phase has both
sufficient and necessary exit conditions, where the ambushing-enemy task will fail if the subtasks of
the preparatory-phase have not been completed by the point at which the enemy has passed the
ambushing-area (i.e., the sufficient exit condition is satisfied), and the attack-enemy task will not be
initiated if the subtasks of the preparatory-phase have been completed while the enemy has not passed
the ambushing-area (i.e., the necessary exit condition is not satisfied). The data structures employed in
the example are shown in Figure 1, where the units denoted as ?unitid1 and ?unitid2 will ambush the
enemy denoted as ?enemy at the ambushing-area denoted as ?place. In the preparatory-phase, ?unitid1
is allocated to move to ?place and ?unitid2 surveils ?enemy. If the preparatory-phase is completed,
?unitid1 will attack ?enemy. Additional definitions are provided in the following subsections.
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Including the phase attribute during the decomposition of a compound task is the main difference
between the AHTN used in this paper and that in [10]. The definition of the phase attribute is as follows.

Definition 1 (phase). The phase attribute is defined as a tuple: 〈name, method, su f exitconset,
necexitconset, taskset〉, where the following definitions apply.

• name is the name of the phase.
• method consists of the name of the method to which the phase belongs and a list of parameters for the phase.
• su f exitconset is the set of sufficient exit conditions. Each element is a logic expression of literals which

consist of the name and a list of parameters.
• necexitconset is the set of necessary exit conditions. Each element is a logic expression of literals which

consist of the name and a list of parameters. Here, subsequent phases can be executed only when all
necessary exit conditions are satisfied.

• taskset is the set of subtasks that should be completed to accomplish a compound task. The subtasks can be
either compound tasks or primitive tasks. Each element in taskset consists of the subtask’s name and a list
of parameters.

Because a phase is executed sequentially, any failure of a phase will lead to the failure of the
method associated with that phase. The result of a phase depends on two factors: tasks and sufficient exit
conditions. Accordingly, the following four conditions lead to the failure of a phase:

1. Any essential task of the phase has failed.
2. Any sufficient exit condition is satisfied, with one or more essential tasks still executing.
3. Any sufficient exit condition is satisfied, and no subtasks have been completed.
4. All subtasks have failed.

For 1, the failure of any essential task means that the parent task has failed, and its phase is also
considered as failed. For 2, uncompleted essential tasks cannot continue executing when a sufficient exit
condition is satisfied, and the parent task also fails. In addition, according to 3, the phase will fail when
no subtasks are completed and a sufficient exit condition is satisfied. Finally, a task obviously fails if all
its subtasks have failed.
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3.2. Definition of the Extended HTN Description

An HTN problem can be defined as a tuple: 〈S, M, O, TN, γ〉, where the following definitions apply:

• S is the set of current world states, and consists of all information that is relevant to the
planning process.

• M is the set of task decomposition methods. Each method m ∈ M can be applied to decompose a
task into a set of subtasks.

• O is the set of operators. Each operator o ∈ O is an execution of a primitive task.
• TN is the current task network. It is a tree whose nodes are tasks, methods, or phases.
• γ is the state transform function. Given s ∈ S, γ(s, o) defines the transition of the state when an

primitive task is executed by an agent. If γ(s, o), the operator o is not applicable in s.

The definition of a method in the proposed extended description is similar to the definition
employed in previous HTN descriptions. However, our method uses the list of phases rather than sets
of subtasks, and adds the attribute denoted as essential.

Definition 2 (method). A method is defined as a tuple: 〈name, task, precon, phases, essential〉, where the
following definitions apply.

• name is the name of the method.
• task is the name of the task to which the method is applied.
• precon is the logical preconditions for the method, which should be satisfied when the method is applied.
• phases is the list of phases. The sequence of the elements in phases is the execution sequence.
• essential is a Boolean value, and is true to indicate that a task to which the method is applied is an essential task.

The definition of an operator is also similar with that in previous HTN descriptions except for
adding the essential attribute.

Definition 3 (operator). The operator is defined as a tuple: 〈head, cons, dels, adds, essential〉, where the
following definitions apply.

• head is the primitive task that can be applied by this operator.
• cons is the precondition that must be satisfied before task execution.
• dels are the delete effects.
• adds are the add effects.
• essential is a Boolean value, and is true to indicate that the task to which the operator is applied is an essential task.

4. AHTN-R Planning Algorithm

The overall framework of the AHTN-R algorithm is provided firstly, and the functions of its different
components are explained. Then, the monitoring strategy employing the extended HTN description is
proposed to address the issue of failed tasks. Finally, we discuss the proposed failed task repair strategy.

4.1. ATHNR Framework

The overall framework of the AHTN-R algorithm is illustrated in Figure 2. The process flow
consists of three main components: plan generation, plan execution, and task repair. The plan
generation component provides the best plan to the plan execution component, and provides a
prioritized list of alternative plans to the task repair component. The plan execution component
processes the failed tasks responsible for plan failure and sends the task needing repair to the task
repair component. The task repair component attempts to repair failed tasks at the beginning of each
decision cycle.
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At each decision cycle, when there are idle units, the plan generation component will search the
best plan using the AHTN algorithm with the extended HTN description. This paper modified the part
of the AHTN algorithm obtaining the next action. In AHTN, the subtasks can be obtained if a method
is applied. However, with the introduction of phase in AHTN-R, the phases will be obtained rather than
the subtasks if a method is applied. The AHTN-R algorithm accesses the generated phases to obtain
the next primitive task. Algorithm 1 shows the method employed to obtain the next executable action
based on the HTN plan N and execution pointer t, which keeps track of which parts of N have already
been executed. The result of Algorithm 1 is a primitive task or an empty set, indicating an absence
of an available primitive task. Lines 1–4 show that, if no tasks have yet been executed, the algorithm
returns the first primitive task in N. Lines 7–19 show that, if all tasks in the same phase with t have
been executed, the algorithm searches the first primitive task from the next phase. If no primitive tasks
are found in the next task, an empty set is returned. Lines 20–31 show that the algorithm searches for a
primitive task from the remaining tasks in the same phase that have not been executed.

Algorithm 1 Returns nextAction (N, t)

1. If t = ⊥ then
2. Get the root of N, denoted as the rootTask
3. Return nextAction (N, rootTask)
4. End If
5. Acquire the phase p to which t belongs
6. Get all tasks denoted as subtasks of p
7. If all tasks in subtasks have been executed then
8. Get the next phase p′ of p
9. If p′ = ⊥ then
10. Return �
11. End If
12. Get all tasks denoted as subtasks′ of p′

13. For all t′ ∈ subtasks′ do
14. If nextAction (N, t′) 6= � then
15. Return nextAction (N, t′)
16. End If
17. End For
18. Return �
19. End If
20. For all t′′ ∈ subtasks that have not been executed do
21. If t′ is a primitive task then
22. Return t′′

23. End If
24. Get the first phase p′′ of the method applied to t′′

25. Get all tasks denoted as subtasks′′ of p′′

26. For all t′′′ ∈ subtasks′′ do
27. If nextAction (N, t′′′ ) 6= � then
28. Return nextAction (N, t′′′ )
29. End If
30. End For
31. End For
32. Return �
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Once the best plan is generated, the AHTN-R will obtain the prioritized listing of alternative
plans generated by AHTN through sorting the nodes of the game search tree. The method of sorting
plans is discussed in Section 4.3. During plan execution, the task may fail because of the dynamics
of the RTS game environment. Once a task fails, AHTN-R will process the failed task according to
the monitoring strategy discussed in Section 4.2, which seeks to identify and terminate the smallest
possible set of tasks affected by the failed task. In this way, the effects of a failed task can be limited to
the smallest scope possible.

At the beginning of each decision cycle, AHTN-R first attempts to repair the failed task by
selecting a suitable plan from the list of alternative plans according to their priorities. AHTN-R will
then execute the tasks of the alternative plan corresponding to the tasks affected by the failed task.
If AHTN-R is unable to find a suitable alternative plan, it will generate an altogether new plan for the
failed task by AHTN. This process is discussed at the end of Section 4.3.

4.2. Failed Task Monitoring Strategy Using the Extended HTN Description

Once a task fails, an AI player must identify and terminate all tasks affected by the failed task.
To accomplish this, the sources of the plan failure are analyzed first. Plan failure can be attributed
to two sources: the failure of actions and the state of the sufficient exit conditions attribute. An action
will fail when its unit is destroyed or when available resources cannot be obtained to fulfill the action.
A plan may also fail if the sufficient exit condition is satisfied, as discussed in Section 3.1.2. Task failure
triggers the monitoring strategy. Algorithm 2 shows the main process of the strategy employed to
monitor failed tasks.

The input of Algorithm 2 is the failed task t, and the result of Algorithm 2 is a list denoted as
RepairTaskList, which contains the tasks requiring repair. Lines 1–4 show the different strategies for
addressing essential and unessential tasks. Lines 5–15 show how failed compound tasks are addressed.
Lines 7–13 show that, if a failed compound task has available methods, it will be saved and repaired in
the next decision cycle. Only when a task has no available methods will it be considered as the failed
task. In this way, the number of affected tasks will be as small as possible, which will reduce the extent
of repair required. Line 15 shows the strategy for addressing primitive and compound tasks without
available methods.

Algorithm 2 Return TaskFailed(t)

1. If Essential(t) = f alse then
2. SubTaskFailed(t)
3. Return
4. End If
5. If t is a compound task then
6. Acquire all methods m of t
7. For each method m ∈ M ∧ status(m)! = failed
8. Get the precondition set C of m
9. If all c ∈ C is satisfied then
10. Add t into RepairTaskList
11. Return
12. End if
13. End For
14. End if
15. SubTaskFailed(t)

According to the extended HTN description, each task, except the root node task, belongs
to a single phase, and whether the phase corresponding to a failed task has also failed must be
determined. Algorithm 3 shows the strategy for addressing the corresponding phase according to
the HTN description presented in Section 3.2. The input of Algorithm 3 is a task t. Line 2 shows that,
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if the failed task is the root node task, it need not be repaired. If the phase is failed, Algorithm 4 and
Algorithm 5 are called to terminate the affected tasks and process compound tasks. The failed phase
serves as the input of Algorithms 4 and 5. Algorithm 4 shows the strategy for processing the failed
phase. If the task belonging to the failed phase is a compound task, its subtasks will be processed, and,
if it is a primitive task, it will be terminated directly. Algorithm 5 shows the strategy for processing the
method to which the failed phase belongs. Lines 2–6 show that all unfinished phases of the method
are failed because they are sequential.

Algorithm 3 SubTaskFailed(t)

1. Acquire the phase p corresponding to t
2. If p = ⊥ then return
3. End If
4. If one of the sufficient conditions of p is met then
5. If any essential tasks of p are failed then
6. PhaseFailed(p);
7. MethodFailed(p);
8. Else If p has no essential task
9. ∧ (all tasks of p were executed or did not start)
10. PhaseFailed(p);
11. MethodFailed(p);
12. End If
13. End If
14. Else If any essential tasks of p fail ∧
15. (p has no essential task ∧ all tasks of p fail)
16. PhaseFailed(p);
17. MethodFailed(p);
18. End If
19. End If

If any sufficient exit condition is satisfied, the AI player will determine whether the phase to which
the sufficient exit condition belongs has failed. The processing involved is similar to that given by
Algorithm 3 except that its input parameter is a sufficient exit condition rather than a failed task.

Algorithm 4 PhaseFailed(p)

1. Get all tasks denoted as subtasks of p
2. For all tasks t ∈ subtasks
3. If status(t) = f inished ∨ status(t) = f ailed then
4. continue;
5. End If
6. If t is a compound task then
7. Get the method m applied to t
8. Get all phases within Phases of m
9. For all phases q ∈ Phases
10. PhaseFailed(q)
11. End For
12. Else
13. Cancel(t)
14. End If
15. End For
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Algorithm 5 MethodFailed (p)

1. Get the method m to which p belongs
2. For all phases Phases of m
3. If q ∈ Phases ∧ q 6= p ∧ status(q)! = f inished then
4. PhaseFailed(q)
5. End If
6. End For
7. Get task t to which m is applied
8. TaskFailed(t)

4.3. Task Repair Strategy Based on the Priorities of the Alternative Plans

At each decision cycle, the AI player attempts to find an alternative plan for each task in
RepairTaskList based on the information included in previous planning. Here, if all plans generated
during previous planning could be saved, the AI player could generate a repair plan by searching
the previously generated plans rather than constructing a new plan for the failed task directly. This
will reduce the time consumed by the task repair process. To accomplish this, the AI player generates
some alternative plans with different evaluations during each task planning period. These evaluations
establish the priorities of the alternative plans. The evaluations are based on two primary features of
the alternative plans: their task decompositions and task parameters. For example, a task T can be
decomposed into tasks sub-T1 and sub-T2, or sub-T3 and sub-T4. Each constructs a plan. The planner
will compute the evaluations for executing T according to the two plans, respectively. If one fails
during execution, the planner will employ the other to repair T. Better repair performance will be
obtained by conducting a search according to the priorities of the alternative plans, beginning with the
alternative plan with the highest priority. However, aside from the best plan, the plans generated by
the AI player are usually out of order. Therefore, the generated alternative plans must be recorded in
descending order according to their evaluations. At the same time, because the alternative plans form
the leaves of the game search tree in the AHTN algorithm, the reordering of plans is equivalent to the
reordering of leaf nodes. To accomplish the above processing, we propose Theorem 1 and prove the
validity of the ordering thereby obtained as follows.

Theorem 1. Given an m-level min–max search tree, the ith level has Ni nodes, where each node is represented
by ni,j (i ≤ m, j ≤ Ni). The sub-nodes of ni,j are ordered according to the following two conditions.

1. if ni,j (i.e., the parent node) is a max node, its subnodes (or child nodes) are ordered decreasingly from left
to right according to their evaluations;

2. if ni,j is a min node, its subnodes are ordered increasingly from left to right according to their evaluations.

The above ordering of all nodes of the min-max search tree represent the proposed prioritizing of
plans, where the plan of the left node will better than the plan of the right node.

Proof. We employ the min–max search tree illustrated in Figure 3 as an example, where max nodes and
min nodes are represented by rectangular and circular boxes, respectively. Here, ni,1,1, ni,1,2, · · · , ni,1,Ni

are subnodes of ni−1,1 and ni+1,j,1, ni+1,j,2, · · · , ni+1,j,k are subnodes of ni,1,j, 1 ≤ j ≤ Ni. We assume that
ni−1,1 is a max node. The evaluations are denoted by the variable v. For example, the evaluation of ni,1,j
is represented by vi,1,j, where the subnode evaluations of ni−1,1 are ordered decreasingly from left to
right as vi,1,1 ≥ vi,1,2 ≥ · · · ≥ vi,1,N1 . In addition, we assume that ni,1,j is a min node, so that its subnode
evaluations are ordered increasingly from left to right as vi+1,j,1 ≤ vi+1,j,2 ≤ · · · ≤ vi+1,j,h. With ni−1,1
being a max node, we obtain the relationships vi−1,1 = vi,1,1 = vi+1,1,1 and vi,1,Ni ≤ vi,1,Ni−1 ≤ · · · ≤
vi,1,2 ≤ vi+1,1,1 ≤ vi+1,1,2 ≤ · · · ≤ vi+1,1,k1 . When the best plan node ni+1,1,1 is removed, the value
vi,1,1 of ni,1,1 will become vi+1,1,2, and the values of the other subnodes of ni−1,1 will not change.
Therefore, the value of ni−1,1 will become vi+1,1,2, and the best plan node is ni+1,1,2. If we continue the
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process of removing the best plan node, the best plan node will become ni+1,1,3, ni+1,1,4, · · · , ni+1,1,k1 .
When all subnodes of ni,1,1 have been removed, the best plan node will become the first subnode of
ni,1,2. For ni−1,1, the order of best plans is the same as the order of ni+1,j,h. If ni−1,1 is a min node,
the conclusion will not change.
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Figure 3. A min–max search tree is employed as an example for proof of Theorem 1. The rectangular
nodes are max nodes, which are ordered increasingly from left to right according to their evaluations,
and the circular nodes are min nodes, which are ordered decreasingly from left to right according to
their evaluations.

Algorithm 6 shows the main process of sorting plans according to their evaluations. The input of
Algorithm 6 is a node of the game search tree. The sorting process begins with the root node of the
game search tree. The algorithm sorts all nodes of the game search tree from the top down. Lines 2–4
check whether the input node is a leaf node. Lines 5–9 sort all subnodes of the input node according to
Theorem 1. Lines 10–12 process each subnode of the input node iteratively.

Algorithm 6 SortedPlan(root)

1. Get the list of all subnodes nodelist of root
2. If nodelist = � then
3. Return
4. End If
5. If root is a max node then
6. Sort nodelist decreasingly according to subnode evaluations
7. Else
8. Sort nodelist increasingly according to subnode evaluations
9. End If
10. For each node ∈ nodelist
11. SortedPlan(node)
12. End For

After conducting the above process, the generated alternative plans are provided to the AI player
for repairing failed tasks. However, prior to conducting task repair, we must determine the location of
the failed task within the alternative plan, and execute that part of the alternative plan in place of the
failed task. Because the same task can be used as a subtask of different compound tasks, it is necessary
to compare both the name and decomposition path to confirm the location of the failed task within the
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alternative plans. When the failed task has been found in an alternative plan, its leaf nodes will be
considered as the new actions to be executed.

An example is given in Figure 4, where Figure 4a shows a plan that has failed owing to the failure
of essential task T6 (given in bold font). The failure of T6 requires the repair of T3, which is a subtask of
T1, and does not affect T2. AHTN will only remove T6 and continue executing remaining tasks even
though the plan has failed. However, AHTN-R can select an alternative plan, which applies another
method to T3. AHTN-R executes new subtasks T11 and T12 in place of subtasks T6 and T7, which is
marked by the dashed-line box in Figure 3b.
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Figure 4. An Example of repairing a failed plan (a) owing to the failure of subtask T6 by employing an
alternative plan (b).

5. Experimental

5.1. Experimental Environment and Settings

We compared the performance of the proposed AHTN-R algorithm with other algorithms [26]
using free µRTS software [27], which has been used in the past to evaluate various algorithms applied
in RTS games [4,9,10]. A screenshot of the µRTS game environment is shown in Figure 5. Here,
the units of two players (denoted by the blue and red outlines) compete to destroy the units of their
opponent. Each player has the same types of units. The small gray circles are workers that can attack
enemies, build bases, and harvest and transport resources. The green squares are the limited resources
that can be harvested. The orange circles are light attackers, and the yellow circles are heavy attackers.
The heavy and light attackers both have larger hit and health points than the workers, making them
more effective and resilient attackers, but they cannot harvest or transport resources. The white squares
are bases that can produce new units. The µRTS game environment provides six types of actions for
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units: move into any empty space in the four cardinal directions, attack any enemy in range, harvest
minerals from resource units, return minerals to bases, produce new units in any empty spaces in
one of the four cardinal directions (for workers and bases), and remain idle, where the unit takes no
action. Although µRTS provides simplified RTS games, the games are sufficiently complex, and exhibit
the standard challenges of RTS games, such as concurrent player activity, durative and simultaneous
actions, real-time limitation, and large branching factors. The original µRTS is deterministic and
fully observable.
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The comparison evaluation considered the standard AHTN algorithm in addition to the following
collection of search algorithms.

1. Randombiased: An AI player employing a random biased strategy that executes actions randomly.
2. LightRush: A hard-coded strategy. This AI player produces light attackers, and commands them

to attack the enemy immediately.
3. HeavyRush: A hard-coded strategy. This AI player produces heavy attackers, and commands

them to attack the enemy immediately.
4. UCT: We employ an implementation with the extension for accommodating simultaneous and

durative actions [10].

The following parameters were employed in the testing.

• CPU time: The limited amount of CPU time allowed for an AI player per game frame. In our
experiments, we employ different CPU time settings from 20 to 200 ms to test the performances of
the algorithms.

• Playout policy: The Randombiased playout policy is employed for the AHTN-R, AHTN, and UCT
algorithms in our experiments [10].
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• Playout time: The maximum running time of a playout. The playout time is 100 cycles.
• Pathfinding algorithm: In our experiments, the AI player employs the A* pathfinding algorithm

to obtain the path from a current location to a destination location.
• Evaluation function: In our experiments, we employ an evaluation function derived from [10]

to compute a reward value to obtain the best plan. The evaluation function is a variant of
LTD2 [27,28] that not only considers the hit-points of a unit, but also its costs.

• Maximum game time: The maximum game time is limited to 3000 cycles. This means that, if both
players have living units at the 3000th cycle, the game is declared a tie.

• Maps: The three maps used in our experiments are M1 (8 × 8 tiles), M2 (12 × 12 tiles), and M3
(16 × 16 tiles).

To evaluate each algorithm, we conduct a round-robin tournament, in which each algorithm plays
50 games (with various starting positions) against all other algorithms in each of 3 different maps
(8 × 8 × 50 × 3 = 9600 games in total). The method used to compute the score of each algorithm
is as follows: the winner of each game was awarded 1 point, and both algorithms were awarded
0.5 points in the event of a tie. Each of the two AI players in all competitions began with a single base,
an equivalent resource value, and a single worker.

To compare the performance of our AHTN-R algorithm with the performance of the standard
AHTN algorithm, we crafted two different HTNs for the µRTS domain, which are defined as follows.

1. Low Level: contains 12 operators (primitive tasks) and 9 methods for 3 types of tasks.
2. Flexible: contains the 12 operators of the Low Level, but provides 49 methods and 9 types of

tasks. This functionality allows methods to employ parallel execution tasks.

The employment of the Low Level and Flexible HTNs in the AHTN and AHTN-R algorithms are
denoted subsequently as, e.g., AHTN-R-LL and AHTN-R-F, respectively. Naturally, the HTNs used by
the AHTN-R algorithm employ the extended HTN description. All tasks except for wait-for-free-unit
and wait in HTNs are defined as essential tasks. Some of the phases include exit conditions to reflect
the influence of the environment. Figure 6 shows an example task from the Low Level HTN. The task
named destroy-player-internal can be decomposed into two subtasks unit-order and destroy-player-internal
by applying the method dpi-nextunit when the precondition is satisfied. Because the two subtasks
are parallel, they belong to the same phase, denoted as dpi-nextunit-phase. Because one subtask is
the same as its parent task, we will focus on subtask unit-order. If the preconditions of its method
uo-attack are satisfied, this task will be decomposed into the subtasks move-into-attack-range and attack.
The subtasks belong to the different phases: preparatory-phase and attack-phase because they must
be performed sequentially, and both are essential tasks. We note that attack-phase-1 has a necessary
exit condition, indicating that subtask attack in the subsequent phase cannot be executed until the
necessary exit condition is satisfied. Because the essential attributes are all true in Figure 6, the failure of
move-into-attack-range or attack will lead to repair unit-order. If unit-order cannot be repaired, the planner
will terminate all tasks in dpi-nextunit-phase and try to repair its parent task.
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from the Low-Level functionality.

5.2. Experimental Results and Analysis

In this section, we compare the performance of AHTN-R with the other algorithms in terms of
the average score, average decision time, and average failed task repair rate for the three maps. Each
algorithm will play 700 games in total against the other algorithms as player 1 or player 2 and 50 games
against itself. Because data are collected from both players, the average score of each algorithm shown
in Figures 7–9 is obtained effectively over 800 games. The average decision time for each algorithm
shown in Figures 10–12 is effectively the average value of 100 games against eight types of AI players,
respectively. The average failed task repair rate of AHTN-R is also obtained in the same way.
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5.2.1. Average Score under Different CPU Time Settings for the Three Maps

Figures 7–9 present the comparisons of the average scores obtained for each algorithm during the
round-robin competition with respect to the CPU time from 20 to 200 ms for the three maps. According
to the results, we can see that the AHTN-R-F player outperforms all other AI players on all three maps
under different CPU times. In addition, the performances of AHTN-R-F vary little with the increasing
scale of the maps, and are very stable with respect to CPU time. AHTN-R-F outperforms AHTN-F
because of the greater flexibility of AHTN-R than AHTN in a dynamic environment. Here, AHTN
does not consider the effects of failed tasks, while AHTN-R identifies and terminates all tasks affected
by the failed task, which allows AHTN-R to make more efficient use of available units and resources.
AHTN-R also attempts to repair failed tasks in as local an extent as possible in an effort to maintain
the validity of the previous plan. AHTN-R-F performs best because it uses an improved HTN domain
knowledge for guiding the game tree search, which yields a good plan in a relatively short time.

With respect to the other algorithms, we note that AHTN-R-LL and AHTN-LL have similar
performances on the smallest map. However, the performance of both AHTN-R-LL and AHTN-LL
deteriorate as the map size increases, and AHTN-R-LL generally performs worse than AHTN-LL on
the largest map. The performances of both players deteriorate because more units are produced on the
larger maps and the domain knowledge obtained by AHTN-R-LL and AHTN-LL is too simple to adapt
to such a complex game. For AHTN-R, the poor domain knowledge means that the previous plan may
not be suitable for the current condition, and it would be better to construct a new plan. The relative
performances of the scripted methods HeavyRush and LightRush are also observed to improve with
increasing map size, which is owing to the underperformance of AHTN-R-LL and AHTN-LL on
larger maps.

With respect to CPU time, the performances of all AI players change very little for all three
maps. This is because all AI players require little time to make decisions. However, if the CPU
time is very small, the performance will deteriorate. Because the performances of all AI players
were similar under different CPU time settings, we employed a single CPU time setting of 100 ms in
subsequent experiments.
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5.2.2. Average Decision Time for the Three Maps

Figures 10–12 show the average planning times of the AHTN-R and AHTN players for one
decision process of 100 games for the three maps, respectively. We find that AHTN-R usually requires
more decision time than AHTN when they have similar domain knowledge. This is caused by the
added time of task repair. Both the repair of failed tasks at the beginning of each decision cycle and
the sorting of all alternative plans according to their evaluations requires greater planning time for
AHTN-R than AHTN. However, as shown in Tables 1 and 2, the time required for repairing failed tasks
and saving alternative plans is short compared with the total time required by the decision process.
Therefore, while AHTN-R requires greater decision time than AHTN, it is within an acceptable range.
We note that the decision times for AHTN-LL and AHTN-R-LL increase for M2 and M3 when playing
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against Randombiased or UCT. Compared to the other algorithms, Randombiased and UCT have
greater opportunity to create complex game environments due to the greater randomness of their
actions. Here, the poor domain knowledge of AHTN-LL and AHTN-R-LL relative to that of AHTN-F
and AHTN-R-F makes it more difficult for AHTN-LL and AHTN-R-LL to generate plans in response
to the random actions of Randombiased and UCT. Therefore, AHTN-LL and AHTN-R-LL must utilize
more recursive tasks in HTN to obtain better solutions. This requires that the AI player search more
tree nodes, and the time spent on some nodes also increases with increasing HTN depth.
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Table 1. The percentage of extra time required for repairing failed tasks and saving alternative plans
relative to the total time for decision processing. The games were between AHTN-R-LL and the
8 algorithms for the three map sizes (M1 is 8 × 8 tiles, M2 is 12 × 12 tiles, and M3 is 16 × 16 tiles).

AI Player M1 M2 M3

Randombiased 0.1682 0.0003 0.0003
LightRush 0.0381 0.0078 0.0105

HeavyRush 0.0355 0.0066 0.0070
UCT 0.0498 0.0057 0.0060

AHTN-R-LL 0.0202 0.0128 0.0137
AHTN-R-F 0.034 0.0188 0.0103
AHTN-LL 0.0221 0.0103 0.0114
AHTN-F 0.0176 0.0174 0.0071

Table 2. The percentage of extra time required for repairing failed tasks and saving alternative
plans relative to the total time for decision processing. The games were between AHTN-R-F and the
8 algorithms for the three map sizes.

AI Player M1 M2 M3

Randombiased 0.0265 0.0290 0.0228
LightRush 0.0226 0.0259 0.0217

HeavyRush 0.0216 0.0275 0.0219
UCT 0.027 0.0274 0.0275

AHTN-R-LL 0.0312 0.0348 0.0391
AHTN-R-F 0.0302 0.0353 0.0272
AHTN-LL 0.0232 0.0279 0.0283
AHTN-F 0.0192 0.0263 0.0141

5.2.3. Average Failed Task Repair Rate for the Three Maps

The average repair rates of AHTN-R against the eight algorithms over 100 games for the three
maps are shown in Tables 3 and 4. We can see that AHTN-R-F has a higher repair rate than AHTN-R-LL
against all AI players for all three maps. It is the result of the different levels of domain knowledge used
by AHTN-R-LL and AHTN-R-F, where the poor domain knowledge used by AHTN-R-LL was not able
to provide good alternative plans for task repair. Here, when a player attempted to repair a failed task,
no alternative plans were available due to a lack of units. A greater number of alternative plans with
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greater differences can increase the repair rate. The improved domain knowledge generated a greater
number of alternative plans, which tended to facilitate meeting the requirements of the environment.

Table 3. Average repair rate of AHTN-R-LL against the 8 algorithms for the three map sizes. The symbol
“-” indicates no failed tasks.

AI Player M1 M2 M3

Randombiased 0.262 0.278 0.227
LightRush - 0.324 0.037

HeavyRush - 0.929 0
UCT 0.618 0.591 0.553

AHTN-R-LL 0 0 0
AHTN-R-F 0.005 0 0
AHTN-LL 0.355 0.343 0.373
AHTN-F 0.236 0.233 0.213

Table 4. Average repair rate of AHTN-R-F against the 8 algorithms for the three map sizes. The symbol
“-” indicates no failed tasks.

AI Player M1 M2 M3

Randombiased 0.904 0.886 0.852
LightRush - 0.753 0.449

HeavyRush 1 1 0.767
UCT 0.945 0.907 0.906

AHTN-R-LL 0.008 0.044 0
AHTN-R-F 0.016 0.01 0.018
AHTN-LL 0.401 0.618 0.697
AHTN-F 0.407 0.373 0.452

6. Conclusions and Future Work

The AHTN algorithm has addressed the problem of very large state spaces and branch factors in
RTS games. However, the HTN description employed by AHTN cannot express complex relationships
among tasks and accommodate the impacts of the environment. Moreover, the method cannot address
task failures caused by dynamic environmental factors during plan execution. Therefore, this paper
proposed a modified AHTN algorithm with failed task repair functionality, denoted as AHTN-R,
to address these deficiencies in AHTN planning. The main contributions of AHTN-R are as follows.

(1) An extended HTN description employing three additional elements denoted as essential task, phase
and exit conditions is introduced to express complex relationships among tasks and accommodate
the impacts of the environment.

(2) A monitoring strategy based on the extended HTN description is employed in AHTN-R to
identify and terminate all affected tasks localized to the failed task to the greatest extent possible.
AHTN-R searches and terminates the affected tasks from the bottom to the top until a parent task
has an optional useful method. The strategy is designed to limit the number of tasks affected by
the failed task.

(3) A novel task repair strategy based on a prioritized listing of alternative plans is used in AHTN-R
to repair failed tasks. In the planning process, AHTN-R saves and sorts all generated plans in
the game search tree according to their primary features. When a plan fails, AHTN-R selects the
alternative plan with the highest priority from its saved plans to repair the failed task.

For a µRTS game, the AHTN-R obtained the best average score in a round robin competition
with standard AHTN and four state-of-the-art search algorithms. In addition, compared with the
standard AHTN algorithm, AHTN-R demonstrated its capability for repairing task failures using the
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extended HTN description to accommodate more complex decision problems with a reasonable degree
of increased decision processing time.

In future work, the AHTN-R can be extended in multiple directions. Our experiments demonstrated
that the level of domain knowledge of the HTN had a significant influence on the performance of AHTN-R.
However, encoding perfect knowledge in an HTN is a difficult and time-consuming process even
for domain experts [29]. The automatic extraction of HTNs from thousands of RTS game replays
may provide considerable assistance for constructing refined HTNs. In addition, we note that neither
AHTN nor AHTN-R consider indetermination and partial observation, which frequently appear in
RTS games. This would lead to evolving game states that may differ considerably from the states
forecasted during HTN planning, and affect the validity of the plan solution. Some research has
been conducted [30–34], but none has been applied in RTS games. Therefore, an improved AHTN-R
algorithm using the techniques of HTN planning under uncertainty may enhance its performance in
RTS games.
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