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Abstract: This paper investigates a unified theory to derive vector network analyzer calibration
algorithms based on the T-matrix representation, by which means the line-reflect-match (LRM),
line-reflect-match-match (LRMM), and the line-reflect-reflect-match (LRRM) calibrations are
formulated. The proposed calibration theory is more general than other versions of LRM, LRMM,
and LRRM in that an arbitrary known two-port device can be used as the line standard L, rather than
a perfect thru or transmission line. Experimental verifications of the proposed theory using on-wafer
calibrations from 0.5 GHz to 110 GHz are given.

Keywords: microwave measurement; vector network analyzer (VNA); calibration algorithm;
calibration standard; on-wafer calibration

1. Introduction

The vector network analyzer (VNA) is the workhorse in most microwave laboratories, and its
calibration technique has been well-developed through several decades [1]. As is well-known, the
purpose of VNA calibration is to determine systematic errors to allow for the error correction of a device
under test (DUT) measurement [2]. In general, the systematic errors, which are often lumped into error
boxes and collectively called an error model, are described by scattering parameters (S-parameters) [3].
Based on the error model, the calibration algorithm can make use of some knowledge about the
calibration standards to calculate the systematic errors, such as the classical SOLT calibration [3].
However, the S-parameter representation often obscures some simple and elegant mathematical
solutions, although it permits an insight into the physical causes behind the transmission and reflection
errors observed [4]. On the other hand, as an alternative representation of an error model, the
scattering transfer parameters (T-parameters [5], also called cascade parameters [6]), which allow for
the cascading of the matrix descriptions of the error boxes and the DUT, are typically used for deriving
the thru-reflect-line (TRL), line-reflect-match (LRM, also often called thru-reflect-match (TRM)), and
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short-open-load-reciprocal (SOLR) algorithms, etc. [7–11]. The T-matrix form of error boxes can be
utilized to establish the direct mapping of the waves at the ports of the DUT and the detected waves,
but a perfect thru is often required to simplify the derivation of the calibration algorithms. In recent
years, ABCD parameters have been used to reformulate calibration algorithms, because the impedance
information about single-port standards is formulated easily [12–14]. Besides, ABCD parameters have
the same advantage as T-parameters in that they allow matrix cascading.

Since the introduction of microwave probing, self-calibration techniques with fewer standards
have progressed to achieve higher accuracy and more versatility. Around the late 1980s, the LRM
calibration was proposed and has developed until present. The original LRM used a pair of fully known
and symmetrical loads as the match standards M [8]. As a particular case of the Lxx calibration family
studied in [15,16], the LRM technique exploited redundancy to determine the reflection coefficient of
symmetrical reflection standards R, and then calculated all the seven error terms. However, the match
standards M may be frequency dependent and non-identical in practice [17], so the LRM calibration
has been constantly improved. Some examples of improvement in the literature are Ref. [14], which
uses non-ideal match standards, and the line-reflect-match-match (LRMM) algorithm, which uses
non-symmetrical load standards [14,18]. Meanwhile, the line-reflect-reflect-match (LRRM) calibration
technique was proposed as an improvement to LRM. The advantage of LRRM is that only one
partially known match standard is required [9,12,19]. Although the present LRM/LRMM/LRRM
techniques are relatively mature, there is still a lack of a general theory which generalizes these three
calibration algorithms.

A theory to formulate the SOLT and SOT-Line algorithms has been proposed in our early work [20].
The idea is originally from the principle of coordinate transformation, which regards the T-matrix
of an error box as the transformation matrix in mathematics. Based on this idea, the T-matrix of an
error box is defined to transform the waves at the test port to the detected waves. Meanwhile, two
characteristic variables, which are essentially the ratios of the wave parameters, are newly introduced
into the derivation of the algorithm. The de-embedding formulas are finally derived to obtain the
corrected DUT parameters. However, the previous work is based on the 10-term error model, and is
thus inapplicable for most self-calibration techniques [1]. In addition, the T-matrices of error boxes are
not calculated.

This work further develops the previous theory, and the developed theory applies to
LRM/LRMM/LRRM calibrations. This theory constructs the T-matrices of error boxes by using
single-port measurements, and newly introduces three wave ratios to express the error boxes in the
algorithm. Existing calibration methods, e.g., LRRM [12], also allow the reduction of calibration
unknowns to three by utilizing a two-port standard measurement, but consequently a perfect thru or a
known transmission line is often required for the convenience of analytical derivation [21,22]. In this
theory, a unified mathematical framework is developed for LRM/LRMM/LRRM calibrations, and the
line standard L can be an arbitrary known two-port standard. Although the early work [23] can also
use the arbitrary known two-port standard, the formulas for the LRRM calibration were not described
in sufficient detail. As will be shown in this paper, by using the proposed theory, LRM, LRMM, and
LRRM calibration algorithms can be simply derived.

This paper is organized as follows. Section 2 explains the new general calibration theory. Section 3
gives the analytical derivations of the LRM/LRMM/LRRM calibration techniques using the new
theory. In Section 4, the proposed theory is validated by experimental results. Some conclusions are
drawn in Section 5.

2. Theory

Error correction for two-port S-parameter measurements using a VNA is usually modeled as
shown in Figure 1, where the waves aij and bij at the DUT are mapped to the raw measured waves amij

and bmij through the error boxes. The subscript ij (i, j = 1, 2) indicates that the parameter is located
at port i and the power source is connected to port j. In this work, the crosstalk and switch terms
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are assumed to be negligible or have been accounted for. That is, VNA calibrations apply switch
corrections independently and ignore (or pre-correct) crosstalk, resulting in the error model shown in
Figure 1 [24,25].
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Figure 1. Error model of a two-port vector network analyzer (VNA).

In this work, the error boxes are represented in the form of T-matrices as follows:[
a1j

b1j

]
= [T10]

[
am1j

bm1j

]
(1)

[
a2j

b2j

]
= [T23]

[
am2j

bm2j

]
. (2)

The T-matrices of the left and right error boxes, [T10] and [T23], respectively, are defined from the
VNA side (reference planes 0/3) to the DUT side (reference planes 1/2). The relationships between the
waves at the ports of a calibration standard or a DUT are described by[

a1j

b1j

]
=

[
0 1
1 0

]
[T12]

[
a2j

b2j

]
(3)

where [T12] is the T-matrix of the two-port standard or DUT.
Based on the above error model and the T-matrix definition, the basic theory of the calibration

algorithm is explained in detail below.

2.1. Construction of the T-Matrices of Error Boxes

The left and right error boxes are described in the form of T-matrix by (1)–(2), which should be
solved during the calibration procedure. Unlike the traditional calibration methods, the proposed
algorithm constructs the T-matrix of each error box by measuring two independent single-port
standards as shown in Figure 2.
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Figure 2. Single-port calibration. (a) Error model for standard Rk1 measurement; (b) Error model for
standard Rk2 measurement.

When measuring the single-port standard Rkl (k, l = 1, 2), the error model simplifies to the error
box as shown in Figure 2. The subscript of Rkl represents the kth (k = 1, 2 . . . ) standard connected to
port l (l = 1, 2). The reflection coefficient of Rkl is defined as ΓRkl.

By measurements of two single-port standards R11 and R21 at port 1 (Figure 2a), two Equations
similar to (1) can be obtained, and after combination the result is shown as follows:
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[
aR11

11 aR21
11

ΓR11aR11
11 ΓR21aR21

11

]
= [T10]

[
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]
. (4)

Similarly, measurements of two single-port standards R12 and R22 at port 2 (Figure 2b) generate
the following Equation: [

aR12
22 aR22

22
ΓR12aR12

22 ΓR22aR22
22

]
= [T23]

[
aR12

m22 aR22
m22

bR12
m22 bR22

m22

]
. (5)

Based on (4) and (5), the T-matrices of error boxes can be rewritten as follows:

[T10] = aR11
11

[
1 x

ΓR11 ΓR21x

][
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]−1

(6)

[T23] =
aR11

11
z

[
1 y

ΓR12 ΓR22y

][
aR12

m22 aR22
m22

bR12
m22 bR22

m22

]−1

(7)

where x, y, and z are defined as follows:

x =
aR21

11
aR11

11
(8)

y =
aR22

22
aR12

22
(9)

z =
aR11

11
aR12

22
. (10)

As shown in (8)–(10), x, y, and z are the ratios of wave parameters; therefore, we define them
as wave ratios in this paper. Meanwhile, because aR11

11 , aR21
11 , aR12

22 , and aR22
22 are directly inspired by

the stimulated signals, the wave ratios x, y, and z should have nonzero and finite values. Obviously,
(6) and (7) contain the information about the standards Rkl (k, l = 1, 2), so no more Equations need to
be set up for these standards.

2.2. Establishment of the Calibration Equation

Having obtained the description for [T10], when a single-port standard Rk1 (k >2) is connected to
port 1 and is measured by the VNA (Figure 2a), the following Equation is obtained:[

aRk1
11

ΓRk1aRk1
11

]
= [T10]

[
aRk1

m11
bRk1

m11

]
. (11)

Then, substituting (6) into (11) results in the following Equation:[
aRk1

11
ΓRk1aRk1

11

]
= aR11

11

[
1 x

ΓR11 ΓR21x

][
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]−1[
aRk1

m11
bRk1

m11

]
. (12)

Based on (12), the calibration Equation for Rk1 (k >2) is given as follows:

ΓRk1 =
wRk1

1 ΓR11 + wRk1
2 ΓR21x

wRk1
1 + wRk1

2 x
(13)

where the measurement terms wRk1
1 and wRk1

2 are defined as
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[
wRk1

1
wRk1

2

]
=

[
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]−1[
aRk1

m11
bRk1

m11

]
. (14)

Similarly, measurement of a single-port standard Rk2 (k >2) (Figure 2b) can generate the
following Equation:

ΓRk2 =
wRk2

1 ΓR12 + wRk2
2 ΓR22y

wRk2
1 + wRk2

2 y
(15)

where the variables wRk2
1 and wRk2

2 are defined by using measurements as shown below.[
wRk2

1
wRk2

2

]
=

[
aR12

m22 aR22
m22

bR12
m22 bR22

m22

]−1[
aRk2

m22
bRk2

m22

]
(16)

Besides the calibration Equations (13) and (15) for single-port standards, at least a two-port
standard must be introduced in order to complete the two-port VNA calibration. The kth two-port

standard Lk (k = 1, 2 . . . ) with T-matrix [TLk
12 ] =

[
tLk
11 tLk

12
tLk
21 tLk

22

]
, is measured to continue the calibration

as shown in Figure 3.
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aLk
11 aLk

12
bLk

11 bLk
12

]
= [T10]

[
aLk

m11 aLk
m12

bLk
m11 bLk

m12

]
(17)

[
aLk

21 aLk
22

bLk
21 bLk

22

]
= [T23]

[
aLk

m21 aLk
m22

bLk
m21 bLk

m22

]
. (18)

Based on (3), we can use (17) and (18) to get the following matrix Equation for the two-port standard:

[T10]

[
aLk

m11 aLk
m12

bLk
m11 bLk

m12

]
=

[
0 1
1 0

]
[TLk

12 ][T23]

[
aLk

m21 aLk
m22

bLk
m21 bLk

m22

]
. (19)

Then, by substituting (6) and (7) into (19), the calibration Equation resulting from Lk is given
as follows:[

0 1
1 0

]
[TLk

12 ] = z

[
1 1

ΓR11 ΓR21

][
1 0
0 x

]
[WLk]

[
1 0
0 y

]−1[
1 1

ΓR12 ΓR22

]−1

(20)

where the matrix [WLk] is fully known from measurements as shown below.

[WLk] =

[
wLk

11 wLk
12

wLk
21 wLk

22

]

=

[
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]−1[
aLk

m11 aLk
m12

bLk
m11 bLk

m12

][
aLk

m21 aLk
m22

bLk
m21 bLk

m22

]−1[
aR12

m22 aR22
m22

bR12
m22 bR22

m22

] (21)
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The calibration Equation (20) from the two-port standard Lk can also be expanded, and the results
are given as follows: 

tLk
21 + tLk

22 ΓR12 = wLk
11 z + wLk

21 xz
tLk
21 y + tLk

22 ΓR22y = wLk
12 z + wLk

22 xz
tLk
11 + tLk

12 ΓR12 = wLk
11 ΓR11z + wLk

21 ΓR21xz
tLk
11 y + tLk

12 ΓR22y = wLk
12 ΓR11z + wLk

22 ΓR21xz

. (22)

Equations (13), (15), (20), and (22) are established to solve the unknowns in the calibration algorithm.

2.3. Error Correction for DUT Measurement

According to the above analysis, a two-port DUT measurement will result in a matrix Equation
similar to (19). Therefore, the T-matrix of the DUT can be expressed as follows:

[TD
12] =

[
0 1
1 0

]
[T10]

[
aD

m11 aD
m12

bD
m11 bD

m12

][
aD

m21 aD
m22

bD
m21 bD

m22

]−1

[T23]
−1 (23)

where aD
mij and bD

mij (i, j = 1, 2) are the measured wave parameters of the DUT. After substitution of (6)
and (7) in (23), an Equation similar to (20) can be obtained for the corrected [TD

12] as shown below.

[TD
12] = z

[
ΓR11 ΓR21x

1 x

]
[WD]

[
1 y

ΓR12 ΓR22y

]−1

(24)

The matrix [WD] with the same form of (21) is obtained from measurement. From the above
results, it is easy to find out that the elements of [T10] and [T23] must be known except a common
factor aR11

11 . A knowledge of aR11
11 is not required for the de-embedding or calibration task, therefore

one may arbitrarily set it to any nonzero value. In this work, we set

aR11
11 =

√
aR11

m11bR21
m11 − aR21

m11bR11
m11

(Γ R21 − ΓR11)x
. (25)

Equation (25) can make the determinant of [T10] equal to 1, which does not mean that the real
error box is reciprocal. Substituting (25) into (6) and (7) can conclude

[T10] =

√
aR11

m11bR21
m11 − aR21

m11bR11
m11

(Γ R21 − ΓR11)x

[
1 x

ΓR11 ΓR21x

][
aR11

m11 aR21
m11

bR11
m11 bR21

m11

]−1

(26)

[T23] =
1
z

√
aR11

m11bR21
m11 − aR21

m11bR11
m11

(Γ R21 − ΓR11)x

[
1 y

ΓR12 ΓR22y

][
aR12

m22 aR22
m22

bR12
m22 bR22

m22

]−1

. (27)

To determine [T10] and [T23], besides the definition and measurement of standards Rkl (k, l = 1, 2),
only the newly introduced x, y, and z are required to be solved. Once the unknowns in (26) and (27)
are all determined, the T-matrix of the DUT can be corrected by (23), and then the following Equation
can be used for the S-matrix transformation:

[S] =

([
1 0
0 0

]
− [TD

12]

[
0 0
0 1

])−1(
[TD

12]

[
0 1
0 0

]
−
[

0 0
1 0

])
(28)

where [S] is defined as the S-matrix of the DUT.
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The T-matrix representation of error boxes can be also converted into the cascade matrix form
defined in [6] by using the following Equations:

[Rleft] =

[
0 1
1 0

]
[T10]

−1

[
0 1
1 0

]
(29)

[
Rright] = [T23] (30)

where [Rleft] and [Rright] are the cascade matrix of the left error box and the reverse cascade matrix of
the right error box, respectively.

3. LRM/LRMM/LRRM Deviation

This section determines the elements of [T10] and [T23] in (26) and (27) by means of LRM, LRMM,
and LRRM calibrations. For the self-calibration methods LRM/LRMM/LRRM, not only the wave
ratios but also the unknown reflection coefficients of the single-port standards need to be determined.
To make a clear distinction among LRM/LRMM/LRRM, the used standards are shown in Table 1.
For a certain calibration method, the independent standards at each port are distinguished by using
different characters or numbers. The symmetrical standards with identical reflection coefficient are
represented by identical characters and numbers. The detailed summary of LRM/LRMM/LRRM
calibrations can be found in Table 2 of Ref. [1].

Table 1. Standards used for LRM/LRMM/LRRM.

Algorithm

Standard Single-Port Standard Two-Port
Standard LkRk1 at Port 1 Rk2 at Port 2

LRM R (×), M (
√

) R (×), M (
√

) L (
√

)
LRMM R (×), M1 (

√
) R (×), M2 (

√
) L (

√
)

LRRM R1 (×), R2 (×), M (?) R1 (×), R2 (×) L (
√

)

LRM: line-reflect-match; LRMM: line-reflect-match-match; LRRM: line-reflect-reflect-match;
√

: known; ×:
unknown; ?: partially known.

The symbol ‘
√

’ means that the network parameters of a standard are completely known, whereas
the symbol ‘×’ means that the network parameters are unknown but the sign can be identified by using
the inductive or capacitive property. The symbol ‘?’ means that the standard is partially known. For
the match standard (M) used in LRRM, only its direct current (DC) resistance is known and its parasitic
inductance and capacitance are to be determined [26], as a result, this standard is denoted by the ‘?’
symbol. In this work, the standard L represents an arbitrary two-port device with completely-known
property rather than a perfect thru or a line.

Based on the theory given in section II, the formulation of LRM/LRMM/LRRM calibration
algorithms is described in detail below.

3.1. LRM Derivation

As shown in Table 1, the LRM calibration uses a known two-port standard L (L1), unknown
symmetrical reflection standards R (R11/R12), and known symmetrical match standards M (R21/R22).
The reflection coefficients of R and M are defined as ΓR and ΓM, respectively. With ΓR11 = ΓR12 = ΓR

and ΓR21 = ΓR22 = ΓM, the T-matrices [T10] and [T23] can be constructed by using (6) and (7) through
the measurements of R and M. After that, only the following Equation needs to be built by using (20)
to implement the LRM algorithm.[

0 1
1 0

]
[TL

12] = z

[
1 1

ΓR ΓM

][
1 0
0 x

]
[WL]

[
1 0
0 y

]−1[
1 1

ΓR ΓM

]−1

(31)
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The T-matrix [TL
12] of standard L and the reflection coefficient ΓM are known from their definition,

meanwhile, the matrix [WL] with the same form of (21) can be obtained by measurement. The unknown
reflection coefficient ΓR and the wave ratios x, y, and z need to be solved by (31) before the error
correction. To simplify the calculation, the determinant and trace conservation of (31) result in the
following Equations:

x
y

z2 = −
∣∣[TL

12]
∣∣

|[WL]|
(32)

wL
11z + wL

22
x
y

z = tL
21 + tL

12 (33)

where wL
ij and tL

ij are defined as the (i, j)th element of [WL] and [TL
12], respectively. If any reciprocal

device is used as the standard L, the determinant
∣∣[TL

12]
∣∣ equals one and (32) could be further simplified.

Multiplying both sides of (33) by z and substituting (32) into the result leads to the following quadratic
Equation about z:

c2z2 + c1z + c0 = 0. (34)

The coefficients are known and expressed by
c2 = wL

11

c1 = −tL
21 − tL

12

c0 = −wL
22|[TL

12]|
|[WL]|

. (35)

As a result, the wave ratio z can be solved directly from (34) as follows:

z =
−c1 ±

√
c2

1 − 4c2c0

2c2
. (36)

The root of z is selected later by the corrected ΓR. Besides, if any uniform line is selected as the
standard L, the right term in (33) equals zero and (34) could be reduced. However, in this work,
the algorithm can use an arbitrary known two-port device as the line standard L, rather than the
perfect thru or line, which adds to the versatility of the proposed theory. Substituting (36) into (32)
can calculate

x
y

z = −
∣∣[TL

12]
∣∣

|[WL]|z
. (37)

Based on (36) and (37), and similar to (22), (31) is expanded and the following Equations are
obtained: 

tL
22 −w

′L
21

0 tL
21 + tL

22ΓM − w
′L
22

w
′L
11 − tL

12 w
′L
21ΓM

w
′L
12 w

′L
22ΓM − tL

11 − tL
12ΓM


[

ΓR

x

]
=


w
′L
11 − tL

21
w
′L
12

tL
11
0

 (38)

where the known variables are defined as

w
′L
11 = wL

11z

w
′L
21 = wL

21z

w
′L
12 = wL

12
x
y z

w
′L
22 = wL

22
x
y z

. (39)
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Based on the first two Equations of (38), x and ΓR can be determined by

x =
w
′L
12

tL
21 + tL

22ΓM − w′L22
(40)

ΓR =
w
′L
11 − tL

21 + w
′L
21x

tL
22

. (41)

Substituting (36) and (40) into (37) results in the solution for wave ratio y:

y = − |[WL]|∣∣[TL
12]
∣∣ xz2. (42)

At this stage, all the unknown variables ΓR, x, y, and z have been calculated, so the LRM calibration
is done.

3.2. LRMM Derivation

Different from the LRM calibration shown in Table 1, in LRMM calibration, the asymmetrical
match standards M1 (R21) and M2 (R22), with known reflection coefficients ΓM1 and ΓM2, are used
to construct the T-matrices of error boxes. Similar to (31), the calibration Equation resulting from
measurement of the two-port standard L is easily given as below:[

0 1
1 0

]
[TL

12] = z

[
1 1

ΓR ΓM1

][
1 0
0 x

]
[WL]

[
1 0
0 y

]−1[
1 1

ΓR ΓM2

]−1

. (43)

The trace conservation cannot be used anymore, so similar to (22), (43) is expanded and the result
is shown as follows:

wL
21 0 wL

11
wL

22 −tL
21 − tL

22ΓM2 wL
12

wL
21ΓM1 0 wL

11ΓR

wL
22ΓM1 −tL

11 − tL
12ΓM2 wL

12ΓR


 xz

y
z

 =


tL
21 + tL

22ΓR

0
tL
11 + tL

12ΓR

0

. (44)

By solving the first three equations of (44), expressions for xz, y, and z in function of ΓR are
obtained. These expressions are plugged into the last equation of (44) to obtain a quadratic equation
about ΓR as shown below:

d2Γ2
R + d1ΓR + d0 = 0 (45)

where the coefficients are known and given by

d2 = wL
11wL

22tL
22(t

L
11 − tL

21ΓM1 + tL
12ΓM2 − tL

22ΓM1ΓM2)

−wL
21wL

12(t
L
21 + tL

22ΓM2)(tL
12 − tL

22ΓM1)

d1 = wL
11wL

22(t
L
21 − tL

12)(t
L
11 − tL

21ΓM1 + tL
12ΓM2 − tL

22ΓM1ΓM2)

−wL
21wL

12[(t
L
11 − tL

21ΓM1)(tL
21 + tL

22ΓM2)

−(tL
11 + tL

12ΓM2)(tL
12 − tL

22ΓM1)]

d0 = −wL
11wL

22tL
11(t

L
11 − tL

21ΓM1 + tL
12ΓM2 − tL

22ΓM1ΓM2)

+wL
21wL

12(t
L
11 − tL

21ΓM1)(tL
11 + tL

12ΓM2)

. (46)

Once ΓR is solved after a root choice, the wave ratios x, y, and z can be calculated by (44) and the
LRMM calibration is completed.
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3.3. LRRM Derivation

Based on the above LRM and LRMM calibration algorithms, a similar algorithm is developed
for LRRM calibration. As shown in Table 1, a two-port standard L (L1) and single-port standards R1

(R11/R12), R2 (R21/R22), and M (R31) are used. Here, R1 and R2 are assumed to be the short with the
unknown reflection coefficient ΓR1 and the open standard with ΓR2, respectively. With ΓR11 = ΓR12 =
ΓR1 and ΓR21 = ΓR22= ΓR2, R1 and R2 are used to construct the T-matrices of error boxes by (6) and (7).
Different from LRM, the reflection coefficient ΓM of the match standard M is not fully known. With
ΓRk1 = ΓM (k = 3), applying (13) results in the following Equation:

ΓM =
wM

1 ΓR1 + wM
2 ΓR2x

wM
1 + wM

2 x
(47)

where the measurement terms wM
1 and wM

2 are defined similar to (14). Meanwhile, based on (20), the
measurement of the two-port standard L can generate the following Equation:[

0 1
1 0

]
[TL

12] = z

[
1 1

ΓR1 ΓR2

][
1 0
0 x

]
[WL]

[
1 0
0 y

]−1[
1 1

ΓR1 ΓR2

]−1

. (48)

From (21), we know that the matrix [WL] can be gained by measurement. Also, the T-matrix
[TL

12] is known from the definition of the standard L. However, for the unknowns, not only the wave
ratios x, y, and z, but also the reflection coefficients ΓR1, ΓR2, and ΓM need to be solved before the
error correction. Similar to the analysis in LRM calibration, we can obtain the same results as shown
in (32)–(37) by using the determinant and trace conservation for (48). To ensure that the analysis is
complete and concise, only two formulas are repeated and given below:

z =
−c1 ±

√
c2

1 − 4c2c0

2c2
(49)

x
y

z = −
∣∣[TL

12]
∣∣

|[WL]|z
. (50)

The variables on the right side of (49) have been defined in (35). Equations (49) and (50) are
plugged into (48), and after a similar expansion as in (22), the resulting matrix Equation is shown as
follows: 

tL
22 −w

′L
21

0 tL
21 + tL

22ΓR2 − w
′L
22

w
′L
11 − tL

12 w
′L
21ΓR2

w
′L
12 w

′L
22ΓR2 − tL

11 − tL
12ΓR2


[

ΓR1

x

]
=


w
′L
11 − tL

21
w
′L
12

tL
11
0

 (51)

where the known variables w
′L
ij (i, j = 1, 2) are defined in (39). From the first two equations of (51), ΓR1

and x are solved as function of ΓR2, and the results are as follows:

x =
w
′L
12

tL
21 + tL

22ΓR2 − w′L22
(52)

ΓR1 =
(w
′L
11 − tL

21)(t
L
21 + tL

22ΓR2 − w
′L
22) + w

′L
21w

′L
12

tL
22(t

L
21 + tL

22ΓR2 − w
′L
22)

. (53)

Then, by substituting (52) and (53) into (47), the following first-order rational expression about
ΓR2 is obtained:

ΓM =
f1ΓR2 + f0

e1ΓR2 + e0
. (54)
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The coefficients in (54) are all known by calibration standard definitions and the measurement
quantities as shown below.

e1 = (tL
22)

2wM
1

e0 = tL
22(t

L
21 − w

′L
22)w

M
1 + tL

22wM
2 w

′L
12

f1 = tL
22(w

′L
11 − tL

21)w
M
1 + tL

22wM
2 w

′L
12

f0 = (w
′L
11 − tL

21)(t
L
21 − w

′L
22)w

M
1 + wM

1 w
′L
21w

′L
12

(55)

The broadband reflection coefficient of the match standard, ΓM is determined from the relationship
between ΓR2 and ΓM by (54). Similar to the previous work [26], the impedance of the match standard
at low frequencies is approximated by its DC resistance, which then allows the open capacitance to
be determined at low frequencies. Once the open capacitance is known, the broadband reflection
coefficient of the match standard ΓM can be calculated. A nonlinear fitting is performed for fitting
ΓM with a physical load model [26]. The fitting returns the parasitic load inductance and capacitance,
which then allows the fitted ΓM.fit to be calculated. ΓM.fit is used as the load definition. The rest of
the unknown variables ΓR2, ΓR1, x, y, and z can be subsequently calculated. At this point, the LRRM
calibration is done.

4. Measurements

On-wafer measurements were performed with a broadband VNA from 0.5 GHz to 110 GHz. One
hundred micrometer (100 µm) pitch wafer probes and a commercial impedance standard substrate (ISS)
CS-5 (GGB industries, Inc.) were used. On CS-5, there are short, open match standards, and 50 Ω lines
of multiple lengths, required by multiline thru-reflect-line (MTRL) calibration [27]. The calibrations
proposed in this work are compared with MTRL calibration in order to assess their accuracy. The line
lengths are 200 µm, 500 µm, 550 µm, 1000 µm, 1500 µm, and 6000 µm. The on-wafer short standards
are used as the short for the calibrations, but open is realized by lifting the wafer probes in air. The
different match standards have DC resistances ranging from 12.5 Ω to 100 Ω. An LRM calibration was
performed with the 200 µm line, open, and a pair of 50 Ω loads. An LRMM calibration was performed
with the 200 µm line, open, and a 50 Ω load at port 1 and a 100 Ω load at port 2. An LRRM calibration
was performed with the 200 µm line, on-wafer short, open, and a 50 Ω load at port 1. The reference
plane for these calibrations is at the probe-tip.

Since LRM and LRMM calibrations require known match standards, the match standards are first
characterized using on-wafer MTRL. Figures 4 and 5 show the measured match impedances of the 50
Ω and 100 Ω loads, respectively.

In Figures 4 and 5, the measured load impedances are fitted to a physical load model which
takes into account the parasitic inductance and capacitance of shunt loads [26]. The close agreement
between the measured (circles) and fitted (squares) values shows that the physical model is sufficient
in describing the dispersion in the match impedances up to 110 GHz. The fitted match impedances
are used as match definitions for LRM and LRMM calibrations. The triangles in Figure 4 indicate
the extracted load impedances from LRRM calibrations. They also show a close match with the
impedances from MTRL calibrations, which proves the validity of the proposed LRRM in terms of
shunt load characterization.
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Figure 5. Real (a) and imaginary (b) part of the 100 Ω match impedance. “MTRL meas.” denotes the
impedance measured with MTRL calibration, and “MTRL model” denotes the impedance fitted from
“MTRL-meas.”

The LRM, LRMM, and LRRM calibrations are compared with on-wafer MTRL calibrations
using the calibration comparison technique [28]. Calibration comparison is a known method for
comparing two calibrations. The method calculates the maximum deviation in calibrated S-parameters
(max|∆Si, j|i, j=1 or 2) of an arbitrary passive DUT. The error boxes [T10] and [T23] are transformed into
the cascade matrices defined in [6] and then compared with the error boxes from MTRL calibrations.
The calibration comparison results of LRM and LRRM are shown in Figure 6a. The proposed LRM
and LRRM calibrations show relatively low deviations from MTRL calibration, compared to the
repeatability of MTRL calibration. Figure 6b shows the comparison between the LRMM, TRM,
and MTRL calibrations. The proposed LRMM gives exactly the same calibration coefficients as the
state-of-the-art TRM method [14], and shows small deviation from the reference MTRL. As a conclusion,
LRM, LRMM, and LRRM all show good accuracies up to 110 GHz.
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5. Conclusions 

This paper develops a theory for reformulations of LRM/LRMM/LRRM calibrations. By using 
single-port measurements to construct the T-matrices of error boxes, only three wave ratios need to 
be defined, and the number of Equations involved in the calculation process is largely reduced. In 
addition, the two-port standard L is not limited to the perfect thru or line. Instead, an arbitrary 
two-port device with known properties can be used. Based on this new theory, the analytical 
formulas for LRM, LRMM, and LRRM calibrations are derived and successfully verified by 
experiments. 
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to be defined, and the number of Equations involved in the calculation process is largely reduced.
In addition, the two-port standard L is not limited to the perfect thru or line. Instead, an arbitrary
two-port device with known properties can be used. Based on this new theory, the analytical formulas
for LRM, LRMM, and LRRM calibrations are derived and successfully verified by experiments.
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