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Featured Application: The obtained data and model from the research can be useful for the
design of a pneumatic braking system and the development of advanced brake control strategy
with respect to multi-axle heavy vehicles in the future.

Abstract: This study aims to investigate the hysteresis characteristics of a pneumatic braking system
for multi-axle heavy vehicles (MHVs). Hysteresis affects emergency braking performance severely.
The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property
of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis
and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic
brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel
test bench. A servo drive device is applied to simulate the driver’s braking intensions normally
expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors
and the NI LabVIEW platform, both the delay time of eight loops and the response time of each
subassembly in a single loop are detected in real time. The outcomes of the experiment show that the
delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship
exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus
time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for
more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main
contributors to the hysteresis effect.

Keywords: hysteresis effect; pneumatic braking system; multi-axle heavy vehicle; emergency braking

1. Introduction

Multi-axle heavy vehicles (MHVs) are usually used as land transport platforms for large-scale
equipment. Compared with ordinary vehicles, MHVs have large inertia and a long wheelbase, and they
usually work in complicated and changeable driving conditions. Hence, good braking performance
is an important guarantee for fast maneuvering and safe driving. At present, the pneumatic braking
system (PBS) is widely employed in MHVs with the advantages of large braking force, good reliability
and easy maintenance [1].

Due to compressibility of gas, PBS will inevitably perform a hysteresis effect, which may easily lead
to serious traffic accident in an emergency braking condition [2]. For example, when a vehicle runs at
a normal speed of 20 m/s (approximately 70 km/h), if the braking time is delayed 0.5 s, the braking
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distance will increase by nearly 10 m. This delay could lead to heavy longitudinal loads along the vehicle
instantaneously [3]. The consequences will be more serious for the MHV owing to its large inertia.

Currently, electronic brake systems (EBSs), electronic brake force distribution (EBD) and other
advanced control technologies have been successfully applied to the majority of passenger cars, while
the applications on MHV are still relatively narrow and immature [4]. In this case, scholars have
undertaken a large amount of related research recently, and various technologies have been proposed
and successfully implemented for better pneumatic braking performance of MHVs, including sliding
mode controllers [5–7], nonlinear model predictive controllers [8], indirect adaptive robust controllers
(IARC) [9], and novel braking actuators [10]. Nevertheless, the braking performance of MHV is still
much poorer than that of the passenger car [7]. The reason may be the following. Most of these
studies have paid much attention only to the optimization and improvement of braking control
strategies [11]. Actually, the response time of valves as well as the long pipeline length tremendously
limit the performance of the pneumatic brake system, making it harder to control [9,12]. Therefore,
the properties of PBS itself is the basis for studying braking control strategies.

Hysteresis is an inherent property of the PBS, which with no doubt has a significant impact
on braking performance. Research on hysteresis characteristics can be divided into the system
level and component level. Most literature has focused on the latter, such as treadle valves [13],
brake pipelines [14], relay valves [15], proportional valves [16], and other subassemblies. However,
subassemblies in a loop are connected to each other and affect each other; analysis of individual
subassembly seems to be insufficient. In terms of the system level, Selvaraj [17] and He [18] established
simulation models of the PBS on two-axle vehicles using AMEsim (Advanced Modeling Environment
for performing Simulation of engineering systems) and MWorks, respectively. Pugi and his team [3,19]
have conducted in-depth research on the pneumatic braking plant of a railway vehicle and established
a complete parametric simulation library using Matlab-Simulink, which makes customizable design
possible. As for MHVs, existing literature concerned with the hysteresis effect is rare, and the few
accessible studies mainly concentrate on road tests [20]. However, road tests imply high risk, have high
costs, and involve a limited range of working conditions. In addition, sensors are not easily placed or
replaced on subassemblies after the vehicle is completely assembled. Hence, a test bench for studying
hysteresis characteristics of PBS for MHV is necessary.

A PBS on an MHV is usually composed of a service brake circuit, a parking brake circuit and
an auxiliary braking circuit. When a driver encounters an emergency braking condition, pushing the
brake pedal is probably the most common behavior. Therefore, the opening and moving speed of the
pedal directly reflect the driver’s braking intentions, and they have the most direct influence on the
hysteresis effect of the PBS since the brake pedal is the power source of the service brake circuit [21,22].
Hence, this paper pays more attention to the service brake circuit.

In this paper, a novel test bench of PBS for an 8-axle vehicle is described in detail. The influence
of opening and moving speed of the brake pedal, as well as the response time of subassemblies on
hysteresis effect in service braking circuit is analyzed. This research may provide a reference for further
experimental study of hysteresis effect of the PBS, and the obtained data and laws may be useful for
system design or the development of advanced control strategy on MHVs in the future.

2. System Principle

A PBS in an MHV is briefly shown in Figure 1. The system is composed of service brake circuit
and parking brake circuit. Usually, double circuits are employed in the service brake circuit, just for
avoiding the braking failure in case one of the two circuits has stochastic fault. Each circuit in the
system mainly consists of gas reservoirs, control valves, brake chambers and brakes. The gas source of
the whole vehicle is provided by an air compressor and stored in a main reservoir with large capacity
as well as several normal ones with relatively small capacity. Control valves mainly comprise a hand
brake valve and a treadle valve located in the cab, several relay valves, and delay relay valves arranged
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in the rear axle of the chassis. Drum brakes, which can offer more powerful braking force compared to
disc brakes, are widely used in MHVs [23].Appl. Sci. 2017, 7, 799 3 of 19 
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Figure 1. Schematic diagram of a pneumatic braking system (PBS) on a multi-axle heavy vehicle 

(MHV) (1—gas reservoir; 2—Treadle valve; 3—Hand brake valve; 4—Relay valve; 5—Delay relay 

valve; 6—Wheel; 7—Brake chamber; 8—Spring brake chamber). 

The structure of the service brake circuit of a PBS on MHV can be simplified as shown in Figure 

2. This circuit is made up of three parts: the gas supply part, pneumatic transmission part and 

mechanical actuator part. In this paper, we focus on the pneumatic transmission part because 

hysteresis is mainly caused by the long-distance pressure transmission in this part [24]. A complete 

working procedure of the service brake can be divided into the brake process, brake keeping process 

and brake release process. Taking the S-cam drum brake as an example, the working procedure can 

be described as follows. When encountering an emergency braking situation, the driver steps on the 

brake pedal quickly and the treadle valve is opened soon; this behavior meters out the compressed 

gas from the supply ports (port 11 and 12) of the treadle valve to its delivery ports (port 21 and 22). 

Then, the compressed gas travels to port 4 of the relay value through controlling pipeline, making 

the relay value open. Next, high-pressure gas moves into the brake chamber through braking pipeline 

and presses the diaphragm, pushing the plunger out. The ejected plunger then drives the brake arm, 

rotating the S-cam and expanding the brake shoes. As a result, the pads produce a friction torque, 

compelling the rotating hub to stop quickly. When the brake pedal is released by the driver, the gas 

is rapidly exhausted from the brake chamber, resulting in the opposite rotating direction of the S-

cam. Subsequently, the contact between the pad and the hub is broken and the brake is finally 

released.  
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Figure 1. Schematic diagram of a pneumatic braking system (PBS) on a multi-axle heavy vehicle
(MHV) (1—gas reservoir; 2—Treadle valve; 3—Hand brake valve; 4—Relay valve; 5—Delay relay valve;
6—Wheel; 7—Brake chamber; 8—Spring brake chamber).

The structure of the service brake circuit of a PBS on MHV can be simplified as shown in Figure 2.
This circuit is made up of three parts: the gas supply part, pneumatic transmission part and mechanical
actuator part. In this paper, we focus on the pneumatic transmission part because hysteresis is mainly
caused by the long-distance pressure transmission in this part [24]. A complete working procedure
of the service brake can be divided into the brake process, brake keeping process and brake release
process. Taking the S-cam drum brake as an example, the working procedure can be described as
follows. When encountering an emergency braking situation, the driver steps on the brake pedal
quickly and the treadle valve is opened soon; this behavior meters out the compressed gas from the
supply ports (port 11 and 12) of the treadle valve to its delivery ports (port 21 and 22). Then, the
compressed gas travels to port 4 of the relay value through controlling pipeline, making the relay value
open. Next, high-pressure gas moves into the brake chamber through braking pipeline and presses the
diaphragm, pushing the plunger out. The ejected plunger then drives the brake arm, rotating the S-cam
and expanding the brake shoes. As a result, the pads produce a friction torque, compelling the rotating
hub to stop quickly. When the brake pedal is released by the driver, the gas is rapidly exhausted from
the brake chamber, resulting in the opposite rotating direction of the S-cam. Subsequently, the contact
between the pad and the hub is broken and the brake is finally released.
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Figure 2. Structure of the service brake circuit of a PBS.
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3. Test System Design

3.1. General Setup

Referring to a real-world 8-axle vehicle, the test bench of PBS for an eight-axle vehicle is designed
as shown in Figure 3. The test bench is composed of two parts, the operation desk and control desk.
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Figure 3. Schematic diagram of the test bench (all the sensors are connected to the data acquisition
cards). TCP: transmission control protocol; IP: internet protocol; DAQ: data acquisition.

(1) The operation desk consists of gas supply devices, servo drive device, valves, pipelines, and
load simulators; the test bench is shown in Figure 4. The gas supply device consists of several
reservoirs and a pressure-regulating valve used for setting the working pressure of the system,
as displayed in Figure 4b. A low-friction and high-precision linear servo drive device is used to
drive the treadle valve, so as to accurately simulate the driver’s intensions expressed by pedal
opening and moving speed. It is composed of a servo motor and screw transmission, as shown in
Figure 5. Sixteen load simulators (manual control) made up of disc springs are applied to simulate
different load torques of 16 wheels. The force sensor arranged between the brake chamber and
load simulator is used for detecting the brake force. In order to avoid function failure or error
accumulation of subassemblies, these used key pneumatic components are calibrated beforehand
on a specific test bench, as shown in Figure 4c.

(2) The control desk is composed of hardware and software. The hardware includes an Advantech
610H industrial personal computer (IPC) (Advantech, Taipei, China), a Panasonic programmable
logic controller (PLC) ( Panasonic, Osaka, Japan), NI PCI-6229 data acquisition (DAQ) cards
(National Instruments, Austin, TX, USA) and fast-response sensors. Communication between
the PLC and the host computer is implemented through the object linking and embedding for
process control (OPC) protocol using the transmission control protocol (TCP)/internet protocol
(IP) interface. The test software is developed on the NI LabVIEW platform (version 14.0, National
Instruments, Austin, TX, USA, 2014). The software has rich functions such as convenient data
acquisition, processing, preservation and real-time display.

3.2. Arrangement of Sensors

The layout of gas transmission path of PBS on the test bench is shown in Figure 6. There are
double service brake circuits, the front circuit including four loops (dark red) and the rear circuit
including the other four loops (magenta); each loop corresponds to an axle. The parking brake circuit
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(blue) is also described in the figure. Due to the symmetrical arrangement of two brake chambers on
one bridge, sensors are placed only in one side of the bridge.
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Figure 5. A servo drive device used for simulating driver’s braking intensions.

Hysteresis characteristics of PBS on an MHV are mainly displayed in two aspects. On one hand,
the delay time of each loop is different because of different gas transmission path. On the other
hand, the delay time of a certain loop is the accumulation of response time of each subassembly.
Both the times need to be detected on this test bench. In order to measure the delay time of each
loop in service brake circuit, pressure sensors marked fA, fB, fC, fD and rE, rF, rG, rH , are respectively
placed on the entrance of brake chamber in the front four loops and rear four loops,as shown in
Figure 6. To detect response time of each subassembly, pressure sensors marked fi, ri(i = 1, 2, 3, 4) are
respectively laid on the C-loop in the front circuit and E-loop in the rear circuit (Note: f4, r4 are the
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same as fC, rE. A displacement sensor marked TD (Treadle displacement sensor) is used for measuring
pedal propulsion displacement, as shown in Figure 7.
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3.3. Key Parameters of the Test Bench

Control valves in this experiment include the relay valve, treadle valve, hand brake valve and
delay relay valve; they are all produced by Westinghouse Air Brake Company (WABCO) and have
been offered by a vehicle research insitute. Brake chambers of the QF series are produced by the
Sanjiang Mechanical Company (Yibin, China). In order to obtain meaningful experimental results,
these key subassemblies are the same as the real ones equiped on a certain eight-axle heavy vehicle.
Gas supply pressure of the circuit is set at 800 kpa by the regulate valve shown in Figure 4b,which is
the rated working pressure according to the National Standard GB12676-1999. Considering the size on
a real-world eight-axle vehicle, the length of controlling pipeline is chosen as 4 m for the front circuit
and 10 m for the rear one on the test bench. Meawhile, the lengths of braking pipeline in loop A, D, E
and H are chosen as 1 m ,and in loop B, C, F and G as 2 m. Other key parameters are shown in Table 1.

Table 1. Key parameters of test bench. (FS: full scale).

Name Type Range Precision

Servo driver TJE075-S100 0–40 mm 0.5% FS (measurement)
1% FS (control)

Pressure sensor MEAS 0–1.6 Mpa 0.3% FS

Force sensor PST2T 0–20000 N 0.5% FS

Displacement sensor DA35 0–35 mm 0.5% FS

pipeline Φ10PA 0–2 Mpa -

Control valves WABCO -

3.4. Testing Conditions

In order to study the influence of opening and moving speed of the brake pedal on hysteresis
characteristics in service circuit, different propulsion displacements and action time of the servo drive
device were set in different testing conditions. As for the brake process and brake release process in
a certain condition, the two parameters were set the same except for the opposite moving direction of
the servo motor. The detailed testing groups are shown in Table 2. Firstly, in the first to the fifth groups,
the propulsion speeds (vT = l/t) were approximately equal while the displacements were different,
just for studying the relationship between hysteresis and opening. Secondly, in the fifth to the sixth
group the propulsion displacements were the same while speeds were different, just for studying the
relationship between hysteresis and moving speed. Given the fact that the rated stroke of pushrod in
the tested treadle valve is 15 mm, maximum propulsion displacement of the servo drive device was
set to 14 mm for protecting the valve. Each experiment group was repeated five times for less random
error, and their mean values were used for subsequent calculations.

Table 2. Testing conditions.

Group Propulsion Displacement (l/mm)
(Brake and Brake Release)

Action Time (t/s)
(Brake and Brake Release)

1 6 0.20
2 8 0.27
3 10 0.33
4 12 0.40
5 14 0.46
6 14 2.50
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4. Results and Discussion

According to GB12676-1999(Road vehicle-braking systems-structure, performance and test
methods. China) and GB7258-2012(Safety specifications for power-driven vehicles operating on
roads. China), for a PBS, the delay time of a certain loop can be defined as follows,{

∆del_up = tγp_up − tstart_up

∆del_down = tγp_down − tstart_down
, (1)

where ∆del_up and ∆del_down are respectively the delay time in brake process and brake release process.
tstart_up is the time when the brake pedal starts to move to begin the brake process, while tstart_down
is the time when the brake pedal starts to move to begin the brake release process. Both of these are
measured by a TD sensor. tγp_up and tγp_up are the times when the pressure in the brake chamber
reach 75% and 15% of the steady value, and their corresponding pressures are marked as γp_up and
γp_down, respectively. For a clear description, the working procedure of a PBS is displayed in Figure 8.Appl. Sci. 2017, 7, 799 9 of 19 
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4.1. Hysteresis Effect of 8 Axle

The experimental results obtained under the testing condition of group 1 are shown in Figure 9,
including the original data curve and the calculated delay time of eight axles based on Formula (1).
The standard deviation is used to weigh the random error. Moreover, the delay times of eight axles
under the testing conditions of all the testing groups are calculated as shown in Table 3. From this
table, we know that the delay time of each loop is different from each other in both the brake process
and brake release process. The asynchronous response of the multi-axle vehicle leads to different
braking torques on different axes at the same braking moment, which may seriously affect the braking
stability. The hysteresis effect in brake release process is relatively more obvious. This effect may lead
to an unexpected once-more brake action due to a slow gas exhaust of the loop, which will result in
difficult restarting of the vehicle. Therefore, when developing the hysteresis compensation control
strategy for multi-axle vehicle, different delay times of every loop both in the brake process and brake
release process should be taken into consideration.
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Figure 9. Hysteresis characteristic of PBS under the testing condition of group 1. (a) Original data 
curves; (b) Delay time of eight loops in the brake process; (c) Delay time of eight loops in the brake 
release process. 
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Table 3. Delay time of eight loops under the testing condition of all the groups.

Testing Groups

Loop
1 2 3 4 5 6

Up Dw Up Dw Up Dw Up Dw Up Dw Up Dw

Delay
Time/∆del

A 0.38 0.48 0.42 0.62 0.48 0.72 0.58 0.88 0.67 1.02 2.49 2.66
B 0.31 0.45 0.34 0.51 0.42 0.73 0.50 0.84 0.62 0.93 2.41 2.63
C 0.37 0.47 0.36 0.55 0.45 0.72 0.52 0.83 0.61 0.95 2.42 2.67
D 0.39 0.53 0.42 0.65 0.49 0.78 0.61 0.86 0.66 1.04 2.47 2.71
E 0.47 0.55 0.52 0.67 0.55 0.81 0.68 0.92 0.72 1.10 2.56 2.73
F 0.41 0.54 0.45 0.62 0.52 0.75 0.65 0.89 0.70 1.04 2.50 2.68
G 0.42 0.53 0.46 0.63 0.53 0.76 0.67 0.91 0.72 1.06 2.52 2.69
H 0.48 0.59 0.55 0.69 0.57 0.83 0.69 0.97 0.78 1.12 2.57 2.75

Note: In this table, ∆del_up is denoted as “up”, ∆del_down is denoted as “dw”.

4.1.1. Relationship between Pedal Opening and Delay Time

The swing angle of the pedal arm or the linear displacement of the brake’s master cylinder is
usually used for evaluating the pedal opening [25]; the latter is adopted in this paper because of the
easily measured moving displacement of the servo drive device. Thus, the pedal opening can be
denoted as:
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0 ≤ ψ =
l

lmax
≤ 100%, (2)

where l is the measured displacement and lmax is the rated moving displacement, here lmax = 15 mm,
and ψ is the pedal opening. When analyzing the experimental results from group 1 to group 5 in
Table 3, we know that the delay time of each loop was not the same due to different pedal opening
though the pedal’s moving speeds being approximately equal. For the full eight loops, the delay time
of the rear four loops (E, F, G and H) are higher than the front four loops (A, B, C and D). For a certain
loop, the higher the pedal opening, the longer the delay time. In order to explore the quantitative
relationships between them, polynomial fitting is carried out for both the brake process and the brake
release process using least squares method.{

∆del_up = K1_upψ2 + K2_upψ + Wup

∆del_down = K1_downψ2 + K2_downψ + W
down

, (3)

where K1_up, K2_up, K1_down, K2_down are coefficient matrixes and Wup, Wdown are constant matrixes.
The fitting results are shown in Figure 10, and the corresponding fitting parameters are shown in Table 4.

The fitting coefficient of determination R2 can be calculated as follows,

R2 = 1− ∑n
a=1 (ya − y′a)

2

∑n
a=1 (ya − y)2 , (4)

where ya is the original data, y′a is the obtained fitting data, y is the average value of the original data, and
n is the number of original data. Each calculated R2 is close to 1, indicating that the fitting is very good.
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Figure 10. Relationships between pedal opening and delay time of eight loops. (a–h) refer to, respectively,
loop A, B, C, . . . , H. The curve with marker “o” is ∆del_up, and with marker “�” is ∆del_down.
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Table 4. Fitting parameters.

Loop
K1 K2 W R2

Up Down Up Down Up Down Up Down

A 0.597 0.290 −0.238 0.621 0.378 0.192 0.997 0.996
B 0.759 0.158 −0.423 0.746 0.356 0.109 0.998 0.985
C 0.754 0.117 −0.520 0.778 0.447 0.130 0.980 0.993
D 0.393 0.321 0.026 0.497 0.308 0.287 0.975 0.990
E 0.353 0.407 0.026 0.473 0.401 0.299 0.958 0.997
F 0.355 0.653 0.115 0.087 0.299 0.394 0.975 0.999
G 0.397 0.533 0.081 0.298 0.316 0.324 0.971 0.999
H 0.601 0.450 −0.243 0.409 0.488 0.352 0.977 0.998

4.1.2. First-Order Plus Time Delay Model

There is an obvious hysteresis of the PBS according to the above analysis. In this paper, a
simplified model of the system is proposed to benefit the further development of brake controller.
Considering the inherent hysteresis characteristics obtained in Section 4.1.1 and [26,27], the system can
be approximately fitted to a first-order plus time delay model. This model relates the opening of the
treadle valve and the pressure transient in the brake chamber. The governing equation of the model
can be described like this,

T
dP(t)

dt
+ P(t) = Ku(t− τ), (5)

where T is the time constant of the system, K is the gain, and τ is the delay time. P(t) and u(t) are the
output and input of the system. Here, they refer to the pressure transients in the brake chamber and
the opening of the brake pedal, respectively. Taking the Laplace transform of the Equation (5), we
obtain the transfer function of the system.

G(s) =
Ke−τs

(Ts + 1)
, (6)

Figure 11 shows a schematic description of the first-order plus time delay model of the PBS. Past
research on the PBS has shown that the moving displacement of treadle valve plunger has a linear
relationship with the desired braking pressure. Therefore, according to Formula (2) we assume that
the relationship between pedal opening and the desired braking pressure can be expressed in Formula
(7). As for the parameter τ, it can be defined as Formula (8).

Pd = aψ + b, (7){
τup = ∆del_up − T̃up

τdown = ∆del_down − T̃down
, (8)

where a, b are constants, related to the type of the used treadle valve and brake pedal. τup, τdown are
the pure time delay of the system in brake process and brake release process, respectively. T̃up, T̃down
are the time constants related to T. Where T̃up is the time spent when the pressure in the chamber
varies from 0 to 75% of the steady value in brake process, T̃down is the time spent when the pressure in
the chamber varies from the steady value to 15% in the brake release process.

With the method of system identification, the simulation model of the system can be established.
In view of the deviation of hysteresis characteristics of each loop, eight loops correspond to eight
different models, as shown in Figure 12, and their relevant parameters are listed in (9). We find that
the models approximately coincide with the experimental results.
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T = [ 0.124 0.118 0.075 0.170 0.114 0.171 0.169 0.184 ]

T̃up = [ 0.170 0.160 0.100 0.240 0.150 0.240 0.230 0.250 ]

T̃down = [ 0.210 0.200 0.130 0.300 0.200 0.310 0.300 0.330 ]

, (9)

Figure 13 shows the variation of the brake chamber pressure in the loop A when the brake pedal
opening is set at 67% and 93%, respectively. It can be observed that the simulation results agree
reasonably well with the experimental data in both the brake process and brake release process, which
validate the accuracy of the model. Models of other loops are validated as well.
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Figure 13. The variation of the brake chamber pressure with different pedal openings. (a) =67%ψ ;(b)

=93%ψ . 
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4.1.3. Relationship between Moving Speed and Delay Time

When concentrating on the results of group 5 and group 6 in Table 3, we know that when the
pedal openings are the same, the faster the pedal is driven, the shorter the delay time is, and this law
exists in both the brake process and brake release process. According to literature [28], the moving
speed of brake pedal is easily influenced by driver’s driving habits, so it is not advisable to be used as
the parameter for recognizing driver’s braking intention directly. Therefore, this paper does not pay
much attention to the relationship between moving speed and delay time.

4.2. Response Time of Subassemblies in a Single Axle

Subassemblies in a single loop consist of treadle valve, control pipeline, relay valve, brake pipeline
and brake chamber. Delay time of a loop is the accumulation of the response time of each subassembly.
Sensors used for measuring the response time are arranged as shown in Figure 7. t(up,down)

res_( f ,r)j (j = 1, 2, 3, 4)
represents the response time of each subassembly in the front (C) or rear (E) loop in brake process
or brake release process. Specifically, t(up,down)

res_( f ,r)1 , t(up,down)
res_( f ,r)2 , t(up,down)

res_( f ,r)3 , t(up,down)
res_( f ,r)4 represents the response

time of treadle valve, controlling pipeline, relay valve and braking pipeline, respectively. Hence, the
delay time of the two loops can be described as,

∆t(up,down)
del_ f =

n
∑

j=1
t(up,down)

res_ f j

∆t(up,down)
del_r =

n
∑

j=1
t(up,down)

res_rj

, (10)

where ∆t(up,down)
del_ f , ∆t(up,down)

del_r are the delay time of the front loop C and rear loop E, respectively. The
original measured data of the two loops under the testing condition of group 1 are shown in Figure 14.

Subsequently, a method for calculating the response time of each subassembly in a single loop is
given as follows. {

∆t(up,down)
del_ f i = t(up,down)

γp_ f i − tstart_(up,down)

t(up,down)
res_ f j = ∆t(up,down)

del_ f i − ∆t(up,down)
del_ f (i−1)

, (11)

{
∆t(up,down)

del_ri = t(up,down)
γp_ri − tstart_(up,down)

t(up,down)
res_rj = ∆t(up,down)

del_ri − ∆t(up,down)
del_r(i−1)

, (12)

where ∆t(up,down)
del_ f i and ∆t(up,down)

del_ri are the delay time of each subassembly in the front and rear loop,

respectively, and they are calculated in the same way as ∆del_(up,down) mentioned in Section 4.1. t(up)
γp_ f i ,
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t(up)
γp_ri are the times when the pressure in a subassembly increase to 75% of its steady value in the brake

process, and t(down)
γp_ f i , t(down)

γp_ri are the times when the pressure in a subassembly decreases to 15% of its
steady value in the brake release process. These times are measured by sensors fi and ri. Finally, the
response times of each subassembly in two loops are acquired, as shown in Figures 15 and 16.
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brake process ; (c) Subassemblies in front loop C in brake release process; (d) Subassemblies in rear loop E
in brake release process; (1—treadle valve; 2—controlling pipeline; 3—relay valve; 4—braking pipeline).

From Figure 17, it can be observed that the response time of the treadle valve and the controlling
pipeline are much longer than that of the controlling pipeline and braking pipeline. The sum response
time accounts for more than 80% of the total delay time of both the two loops in the brake process,
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as well as more than 85% in the brake release process. The results indicate that treadle valve and
controlling pipeline are the main contributors to the hysteresis effect of the service circuit.

5. Conclusions

In this paper, a pneumatic braking system for an eight-axle vehicle is introduced. In order to
accurately study the hysteresis effect of the system in emergency braking situation, a test bench is
built. Not only the delay time of each loop corresponding to each axle but also the response time of
each subassembly in a single loop is detected in real time. Moreover, the driver’s different braking
intensions expressed by opening and moving speed of brake pedal are accurately simulated by a servo
drive device.

The acquired data are processed to search for relationships between the pedal’s opening as well as
moving speed and hysteresis times of eight loops in service brake circuit. The results show that under
the same braking conditions, delay times of the front four loops are shorter than those of the rear four
loops, and the delay times of a certain loop in the brake release process are longer than those in the
brake process Under the different braking conditions, when the braking speeds are similar, the larger
the pedal opening, the longer the delay time, and a quadratic curve relationship exists between the
two. Given this fact, the pressure transients of each loop in the system can be fitted to a corresponding
first-order plus time delay model. When the pedal openings are the same, the faster the braking speed,
the shorter the delay time. In addition, response time of each subassembly in a loop is also obtained.
The sum response time of treadle valve and controlling piping accounts for more than 80% of total
delay time of a loop in both the brake process and brake release process, which indicates that these
two subassemblies are the main contributors to the hysteresis effect of the loop.

For further study of the pneumatic braking system for MHV, the structure of the treadle valve
needs to be optimized to shorten its response time, and more reasonable layout of the system should
be studied for reducing the gas transmission distance. Additionally, the development of an advanced
brake control strategy for the PBS in MHVs based on the established first-order plus time delay models
will be a research challenge.
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