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Abstract: In insulation joints, elastomeric U-shaped monolithic seals (UMSs) are replacing O-ring 
systems because of their enhanced sealing capabilities for the oil and gas industries. UMSs are 
compressed axially during assembly and radially when pressurized in operation. The reliability of 
UMSs due to the displacement imposed during assembly and the internal pressure in operation is 
influenced by the axial compression ratio, thickness ratio (TR), and geometric complexity. In this 
study, the hyperelastic behavior of elastomeric UMSs under axial and radial compressions is 
investigated using axisymmetric finite-element analysis. Twelve examples of UMSs with three 
geometric restraints (open grooves on both sides (type 1), an open groove on one side only (type 2), 
and no groove (type 3)) and four thickness ratios (TR = 0.25, 0.50, 1.00, and 1.50) are evaluated. To 
analyze nonlinear elastomeric materials, neo-Hookean constitutive equations are applied and the 
UMSs are considered as being a nearly incompressible hyperelastic material with a Poisson’s ratio 
of 0.499. The failure and detachment risks of UMSs are analyzed in terms of the equivalent stress, 
gap distance, contact pressure, and strain energy density. It is advantageous that the smaller the TR, 
the smaller the stress distribution. However, the generation of broader detachment regions is 
observed. Type 1 symmetrically shows the lowest stress distribution and the smallest detachment 
region, whereas type 3 symmetrically shows the highest values. Type 3 (TR = 0.25) shows the 
broadest detachment region in the arc-length range from −15.7 to 15.7 mm, whereas the largest gap 
of 0.7 mm is observed in type 2 (TR = 0.5). For all types, the detachment region disappears 
completely at TR = 1.0 or higher, which implies that full sealing is occurring. The average contact 
pressure increases exponentially during axial compression (in assembly) and linearly during radial 
compression (in operation). The largest contact pressure of 31.5 MPa is observed in type 3  
(TR = 1.5), while the lowest is observed in type 1 (TR = 0.25). As for the strain energy density, type 
3 at TR = 0.25 shows the largest increase in the strain energy density with 1.75 MJ/m3, while type 1 
shows the most stable values of all cases. In conclusion, the lowest risk of failure of a nonlinear 
hyperelastic UMS was investigated numerically with minor equivalent stress and detachment region 
with higher contact pressure, which can be taken into account to ensure the reliability of the UMS. 

Keywords: U-shaped monolithic seal; hyperelastic material; insulating joint; strain energy density; 
contact pressure 
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1. Introduction 

An unexpected failure of the sealing system in an insulating joint can create serious problems in 
oil and gas pipelines. Insulating joints are critical components installed in underground natural-gas 
and oil pipelines. Installed at appropriate intervals between the pipes, insulation joints can reduce 
the amount of current flowing in the pipelines and maintain the electrical potential difference 
between pipe sections, thereby preventing pipe corrosion due to electrical or chemical reactions and 
increasing the service life of pipelines. Furthermore, they can provide electrical protection from the 
risk of explosion by static electricity or lightning. 

Elastomeric O-ring seals are widely used in various environments and surface conditions 
because they can provide sealing in many static or dynamic applications at industrial sites.  
In particular, O-ring sealing systems have traditionally been used in insulating joints. Figure 1 shows 
a three-dimensional (3D) schematic, with a 1/4 cross-sectional cut, of an insulating joint based on an 
O-ring sealing system. To structurally separate the external pipes that are connected at either end, 
insulating spacers (laminate thermoset or high-density epoxy resin and glass-fiber shape-composite 
material) and insulating fillers (epoxy resin or cold curling resin), which consist of nonmetal 
materials, are installed inside the pipelines. Elastomeric O-ring seals (Viton rubber, fluorine rubber, 
or nitrile butadiene rubber) are mounted to prevent leaks of gas or oil between the metal and 
insulation components. 

 
Figure 1. Example of insulating joint with a double-O-ring sealing system. 

To prevent undesired failures of a sealing system, a number of studies have been conducted on 
elastomeric O-ring sealing systems using finite-element analysis (FEA). These have been focused on 
predicting the behavioral characteristics of O-ring seals in diverse and complex compression and 
pressure environments [1]. Wu et al. [2] suggested an analytical stress-distribution model to describe 
the stress distribution of O-ring seals by adapting two-stress complex functions. The sealing 
performance of O-ring seals was described by the analytic stress-distribution functions under various 
squeeze rates and internal pressures. Chen et al. [3] introduced end-face deformation of the combined 
contact model of the flexible ring and O-ring based on numerical simulations. In the combined seals, 
fractional compression of the O-ring and the elasticity modulus of the flexible ring had the largest 
effect on the end-face deformation. Yamabe et al. [4] exposed a rubber O-ring to cyclic high-pressure 
hydrogen gas to investigate the fracture behavior. The crack damage due to degradation of the 
mechanical properties of the O-ring was characterized in terms of the hydrogen pressure, using a 
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developed durability tester. To summarize the previous studies, the sealing capability of O-rings 
depends on: 

 the magnitude of stress acting on the O-ring; 
 the contact stress between the O-ring and the wall; 
 the contact area (or length) for sealing between the O-ring and the wall. 

O-ring seals used in oil and gas pipelines are exposed to extreme environments such as large 
changes in temperature, pressure, and conveyed fluid [5]. Furthermore, depending on the geometry 
of O-ring seals, they are exposed to highly complex operating conditions as they are compressed and 
constrained. In such situations, it has been reported that leakage can start when the pressure acting 
on an O-ring is greater than the contact stress or when there is a gap in the contact length [6]. In this 
regard, even though O-ring sealing systems have been used extensively in industry, they have the 
following shortcomings: 

 Their resistance to high-pressure environments is limited because they have low contact stress 
because of the small cross-sectional area of the O-rings. 

 They are susceptible to damage such as explosive decompression, swell-ups, and tear-off 
because they cannot effectively withstand when subjected to pressure cycles and fast pressure 
changes because of the geometrical limitation of the O-rings. 

 They cannot maintain proper mechanical sealing if the insulating joints undergo deformations 
(e.g., bending, elongation, compression, or torsion) from external loads because of the short 
contact length of the O-rings. 

To resolve the disadvantages of O-rings, some different geometries have been proposed by 
researchers. Cui et al. [5] applied nonlinear theory to investigate the performance of Y-ring seals 
under the influence of hydraulic pressure. Based on the failure criterion (i.e., von Mises stress), the 
location showing the maximum contact stress and the largest deformation was suggested, which 
could cause aggravated wear. Bernard et al. [6] investigated the contact behavior of an X-ring seal 
under a uniform squeeze rate and internal pressure. Both contact and internal stresses were analyzed 
using the hybrid photoelastic experimental method, in which the sealing performance was 
investigated based on the maximum shear failure criterion. Zhang et al. [7] performed FEA to obtain 
distribution curves of sealing contact pressure of bud-shaped composite sealing rings in a diverse 
pressure environment. The analytic 3D pressure distributions were compared experimentally using 
a pressure-sensitive film. In spite of their improved sealing performance compared to O-rings, these 
methods still have limitations over a broad range of operating conditions and surface finishes because 
of the geometric constraints. 

Another solution has recently been introduced to improve the disadvantages of O-ring sealing 
systems, namely the U-shape monolithic seal (UMS) or double seal. The UMS shows a high contact 
stress, with a substantially longer contact length and a larger cross-sectional area compared to 
conventional O-ring systems. Accordingly, it has the potential for widespread use, irrespective of the 
size and pressure ranges of pipelines. The structural advantages of the UMS are that it can maintain 
sealing even if subjected to structural deformations such as bending, elongation, compression, or 
torsion. Although the application scope of UMSs has been increasing, their exact behavior in the 
manufacturing process and different pressure environments is not yet fully understood for the 
following reasons. Firstly, compared to conventional O-ring sealing systems, because of a more 
complex geometry and highly restrained deformation conditions, it is difficult to predict analytically 
the nonlinear hyperelastic behavior of a UMS. In the case of hyperelastic materials, the dramatic 
change between softness and stiffness under various loading conditions because of the Mullins effect 
makes analysis difficult. Secondly, the bulk moduli of UMSs are very large compared to their shear 
moduli. As a result, they show incompressible behavior, thus causing a sharp increase in stress 
compared to the strain in a compression environment. Thirdly, they exhibit different behaviors 
depending on whether they are in a uniaxial, biaxial, or planar axial deformation state [8–11]. Many 
researchers have proposed various mathematical constitutive models to predict the nonlinear 
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response of hyperelastic materials under various deformation conditions [12–16]. Thus, it is necessary 
to predict the behavior of nonlinear hyperelastic UMS by a finite-element method (FEM) in the design 
stage, which can economically and effectively realize the integrity of the UMS. 

The aim of the present study was to analyze the hyperelastic behavior of a UMS numerically for 
various compression and pressure conditions, from assembly to use, in insulating joints. To overcome 
the difficulty of analyzing the nonlinearity of the UMS, a nonlinear constitutive equation was applied 
and a two-dimensional (2D) axisymmetric model was introduced to the analysis. Under different 
thickness ratios of the UMS and various geometric constraints of the housing in which the UMS were 
installed, the contact stress, von Mises stress, contact length, and strain energy density were analyzed 
in axial and radial compression environments. Because the nonlinear behavior of the elastomeric 
UMS could be taken into account in this study, methods to optimize the UMS at the design stage 
could be suggested by taking minor equivalent stresses with higher contact stress into account. 

2. Materials and Methods 

2.1. Hyperelastic Sealing Material 

In this study, the production of a UMS using FKM, one type of rubber class designated in 
American Society for Testing and Materials (ASTM) D1418, as a hyperelastic material was 
considered. FKM is a sealing material that is widely used in the oil and gas industries [17]. It consists 
of 80% or more of fluoroelastomer, which is a synthetic rubber with very high thermal and chemical 
stability. Unlike Hooke’s law, which is used for general linear elastic behavior, a hyperelastic material 
shows nonlinear behavior in its stress–strain relationship. 

Therefore, the stress–strain relationship of a hyperelastic material is defined using the strain 
energy density function, W. By differentiating the strain energy density function with respect to 
strain, a corresponding stress component can be obtained. The strain energy density function can be 
expressed in various ways: statistics-based, invariant-based, or stretch-based mechanics. Various 
hyperelastic material models are introduced in the literature [18]. In this study, the invariant-based 
hyperelastic material model based on continuum mechanics was applied. The general form of an 
isotropic hyperelastic material model can be expressed as follows [18,19]: ܹ = ෌ ଵܫ)௜௝ܥ − 3)௜(ܫଶ − 3)௝ஶ௜,௝ୀ଴ , (1) 

where ܫଵ and ܫଶ are the first and second invariants of the stretch tensor, respectively, and ܥ௜௝ is the 
material constant. Although hyperelastic materials are theoretically incompressible, they actually 
show a slightly compressible behavior in reality. To implement this behavior into the analysis, the 
strain energy density was assumed to be composed of two different strain energy densities [18,20–22]: ܹ = ௗܹ௜௦௧௢௥௧௜௢௡ + ௗܹ௜௟௔௧௔௧௜௢௡, (2) 

where ௗܹ௜௦௧௢௥௧௜௢௡  is the distortional (or shear) strain energy density, representing the constant 
volume in shape, and ௗܹ௜௟௔௧௔௧௜௢௡ is the dilatational (or hydrostatic) strain energy density, indicating 
the change in volume. It is noted that the distortional energy density, ௗܹ௜௦௧௢௥௧௜௢௡, is related to the 
tangential component of the stress vectors, showing a linear correlation with the first invariant ܫଵ. 
The volumetric dilatation of isotropic materials can be affected only by the normal component of the 
stress vectors. Thus, the volumetric strain energy density, ௗܹ௜௔௟௔௧௜௢௡, is related to the compressibility. 

Nonlinear elastomeric materials are generally known to have very high bulk moduli compared 
to shear moduli. This implies that their volume changes very little, even if the material is elongated 
or shrunk in the event of shear deformation. In other words, the material shows almost-
incompressible behavior under volumetric compression. If an elastomeric material is assumed 
theoretically to be completely incompressible (bulk modulus ݇ = ∞), with complex shape or load 
conditions, it can be difficult to obtain calculated results because of element locking when predicting 
the material behavior through numerical analysis [17,23]. However, this ideal condition is not found 
in practice, and even if the material is theoretically incompressible, it shows slightly compressible 
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behavior. Therefore, the compressibility of the UMS was defined as nearly incompressible, and the 
Poisson’s ratio was set at 0.499. 

The nonlinear elastomeric behavior of FKM was described using the neo-Hookean model, which 
is one of the simplest hyperelastic models. For numerical analysis, in the case of the neo-Hookean 
constitutive equations, the Poisson’s ratio of 0.499 can be applied to describe the nearly 
incompressible behavior of an elastomeric material [1,17]. In addition, this model shows very good 
conformity with experimental values up to approximately 40% strain under uniaxial tension [1,17]. 
Modifying Equation (2) using the neo-Hookean model, the strain energy density can be expressed as 
follows [20]: 

ܹ = ଵଶܫ)ܩଵ − 3) + ଵଶ ሿଶ(௘௟ܬ)ሾlnߣ − ߤ ln(ܬ௘௟), (3) 

where G is the shear modulus, ܫଵ denotes the first strain invariant of the elastic right Cauchy–Green 
deformation tensor ܫଵ(ܥ௘௟), and ߣ and ߤ are the first and second Lamé parameters, respectively. ܬ௘௟ 
is the volume change ratio; note that volume change due to thermal effects was not included. 
Considering the material to be nearly incompressible, the strain energy density function can be 
written using the isochoric invariant ܫଵ(ܥ௘௟) as follows [20]: 

ܹ = ଵଶܩ൫ܫଵ − 3൯ + ଵଶ ௘௟ܬ)ߢ − 1)ଶ, (4) 

where ܩ is the shear modulus of the material and ߢ is the bulk modulus. The material was assumed 
to be isotropic. A bulk modulus of ݇ = 	10 GPa was applied for the elastomeric material [17,24]. 

2.2. Axisymmetric Model 

Figure 2a shows a 3D schematic, with a 1/4 cross-sectional cut, of an insulating joint mounted 
with a UMS. Considering the cylindrical geometry of the UMS, the insulating joint was configured 
as a 2D axisymmetric model. The center of the UMS was constrained by a rigid insulating spacer, 
while the outside surface was surrounded by the left and right pipe pups and the retainer. For the 
models, a second-order Lagrangian element was applied to discretize the geometry. 

 
Figure 2. Schematic of the insulation joint installed with a U-shaped monolithic seal (UMS). SOP: 
symmetric open groove; ASOP: asymmetric open groove; SNO: symmetric no groove. 



Appl. Sci. 2017, 7, 792  6 of 15 

 

For the model analyzed in this study, as shown in Figure 2c, three geometric housing restraints 
in which the UMS could be installed were considered: open grooves on both sides (type 1), an open 
groove on one side only (type 2), and no groove (type 3). Type 1 represents a symmetric open groove 
(SOP), type 2 an asymmetric open groove (ASOP), and type 3 a symmetric non-groove (SNO).  
In addition, values of the UMS thickness ratio (TR) of 0.25, 0.50, 1.00, and 1.50 were considered to 
examine the behavior of the UMS according to the thickness difference for each type. In this study, 
the TR is defined as follows: TR = ௧್೚೏೤௧೗೐೒ , (5) 

where ݐ௟௘௚ denotes the thickness of the UMS leg, which was fixed to 15 mm. ݐ௕௢ௗ௬ represents the 
thickness of the UMS body; values of 3.75, 7.50, 15.00, and 22.50 mm were applied to realize TR = 0.25, 
0.50, 1.00, and 1.50, respectively. The other geometric dimensions were applied with identical 
conditions to all 12 cases. 

The axial compression of a UMS during assembly and its subsequent radial compression by 
internal pressure were implemented numerically in this study. Figure 3a shows an initially inserted 
UMS in the insulating joints prior to assembly. Figure 3b indicates the axially compressed UMS by 
axial displacement during assembly. The axial compression of the UMS was conducted until the UMS 
leg was compressed from 0% to 40% in thickness in intervals of 10%. During assembly, the UMS was 
compressed symmetrically by the left and right displaced pipe pups while the retainer ring remained 
stationary. The insulating spacer in the middle of the UMS was allowed with radial deformation. 
After assembly, the insulating joint was under radial compression by the internal pressure during 
operation, as shown in Figure 3c. The internal pressure was applied gradually from 0 to 10 MPa in 
intervals of 2.5 MPa. The results were analyzed in terms of the stress distribution, contact stress, gap 
distance, and strain energy density after each step. 

 

Figure 3. U-shaped sealing assembly process: (a) insertion of UMS; (b) axial compression due to 
displacement in assembly; and (c) radial compression due to internal pressure in operation. 

2.3. Numerical Analysis Procedure 

The bulk modulus of the UMS was considered to be 10 GPa with a Poisson’s ratio of 0.499. 
Subsequently, its Young’s modulus and Lamé’s parameters were derived. For the pipe pups and the 
retainer ring, made from ASTM A596-F65, Young’s modulus and Poisson’s ratio were 201 GPa and 
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0.3, respectively. The insulating spacer, ASTM D709-G10, was chosen with Young’s modulus of 17.2 
GPa and Poisson’s ratio of 0.36. All the materials were assumed to be homogeneous and isotropic. 

The analysis was performed in two stationary steps. Firstly, axial compressive displacement was 
applied to examine the nonlinear hyperelastic behavior of the UMS under axial compression during 
assembly. The constrained displacement condition was applied, and the UMS was compressed 
gradually at 10%, 20%, 30%, and 40% of the thickness of the UMS leg, ݐ௟௘௚. As a result, the pipe pups 
were displaced by 1.5, 3.0, 4.5, and 6.0 mm, respectively. Secondly, internal pressure was applied to 
the already-compressed UMS to examine the nonlinear hyperelastic behavior of the UMS under 
radial compression during operation. The pressure was increased gradually to 2.5, 5.0, 7.5, and 10 
MPa, respectively. To achieve more rigorous and accurate solutions, an adaptive meshing technique 
was applied. 

Numerical techniques to solve nearly incompressible hyperelastic finite-element models are 
known to be quite complicated because the Poisson’s ratio ν is close to 0.500. Thus, in the present 
analysis, a parametric continuation solving technique was applied to improve the convergence of the 
results during axial and radial compressions due to the imposed displacement during assembly and 
internal pressure in operation, respectively. Contact conditions were applied to the inner surface 
between the UMS and insulating spacer, the outer surface between the UMS and one pipe pup, the 
outer surface between the UMS and the other pipe pup, and the outer surface between the UMS and 
retainer ring. 

The friction between the UMS and other parts, including the pipe pups, retainer ring, and 
insulating spacer, was applied as contact boundary conditions. Because of the deformable-to-rigid 
contact conditions between the UMS and other components, it was important yet difficult to analyze 
the forces transferred across the contact area. We consider both normal and shear stresses transmitted 
across the contact surfaces. An isotropic spring foundation with spring constant ݇௧௢௧ was applied to 
stabilize the unconstrained contacts, which were gradually eliminated during auxiliary pressure sweeps. 

To achieve smooth and precise results, quadrilateral and second-order Lagrangian mesh 
elements were used to discretize the axisymmetric geometry. A mesh optimization procedure was 
conducted until the smallest change in the errors became less than 0.1% as the results converged. The 
minimum and average element qualities to define the mesh distribution were maintained over 0.200 
and 0.700, respectively. The results of the FEA are presented in terms of equivalent stress, contact pressure, 
gap distance, and strain energy density. The correlations among the results are also analyzed. 

3. Results and Discussion 

3.1. Deformation and Equivalent Stress under Axial Compression 

Based on an axisymmetric FEA analysis, the sealing behavior of the UMS during assembly and 
the loading conditions are investigated. During assembly, the UMS housed in its surrounding parts 
was subjected to axial compression by the displacement of the pipe pups. Figure 4 shows the von 
Mises equivalent stress distributions with the deformed shape of the UMS due to the applied axial 
displacement up to 8 mm from the left and right pipe pups, which corresponds to a compression ratio 
of 40%. The deformation scale was set to 1:1 for a true description of the shape. 
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Figure 4. UMS deformation and equivalent stress distribution at 40% of axial compression during 
assembly. SOP: symmetric open groove; ASOP: asymmetric open groove; SNO: symmetric no groove. 

Because of its near incompressibility, the UMS was deformed by an amount that was equal to 
the amount of compressed volume by the imposed axial displacement during assembly, and a 
gradual filling of the space that was empty before compression could be confirmed in general. 
However, the deformation of the UMS showed different trends according to type and TR. In type 1, 
the open grooves on both sides, which were empty before compression, were filled first and then the 
empty space in the leg was subsequently filled. In type 3, which had no open groove, the empty space 
of the leg was filled the most and it showed the largest deformation among three types.  
In type 2, the leg with an open groove and the leg with no open groove showed trends similar to the 
deformations of types 1 and 3, respectively, resulting in asymmetrical deformations. Within the same 
type, a greater deformation was generated as the TR and the UMS volume increased. The greatest 
deformation was observed at TR = 1.50. 

Together with the deformation of the UMS, the change in the von Mises equivalent stress of the 
UMS due to axial compression during assembly was examined. In general, the larger the UMS 
deformation, the greater the distribution of von Mises stress. Type 1 showed the lowest stress 
distribution, whereas type 3 showed the highest stress distribution. Within the same type, the 
deformation and stress distributions were symmetrical when the geometric restraints were 
symmetrical under the same TR conditions, as was the case for types 1 and 3. However, asymmetric 
deformation and stress distribution occurred in the asymmetric geometric restraint of type 2. 

In the case in which the stress distribution acted on the UMS leg region, the same stress 
concentration was observed at the end where the inner surface of the UMS met the insulating spacer 
(see circles a and b in Figure 4), regardless of the type. In type 1 with open grooves on both sides, 
stress concentration was also observed at the corner where the outer surface of the UMS met the open 
groove (see circles c and d in Figure 4). In type 3 with no open groove, a stress concentration was 
observed in the inner corner where the inner surface of the UMS met the insulating spacer (see circles 
e and f in Figure 4). In type 2, the characteristics of types 1 and 3 were observed asymmetrically in 
each leg. Regardless of the type, as the TR increased, the stress distribution acting on the UMS leg 
and body regions gradually increased. The greater the TR in axial compression, the greater the 
compressive force in the UMS. This was because the increased compressive force could not contribute 
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to the volume compression of the nearly incompressible UMS, and most of the imposed forces 
affected the distortion of the UMS. 

As the von Mises’ equivalent stress in the UMS gradually increased, the stress was transmitted 
to the insulating spacer that was in contact with the inner surface of the UMS, causing an increased 
stress in the insulating spacer. This increase in stress was large enough to cause deformation of the 
insulating spacer (TR = 1.50 for type 2, and TR = 1.00 and 1.50 for type 3). This phenomenon occurred 
because the stiffness of the insulating spacer was the lowest among the surrounding parts of the UMS. 

3.2. Contact Pressure and Gap Distance under Axial Compression 

Contact pressure is one of the most important variables for distinguishing the sealing capacity 
of a sealant. The distribution of the contact pressure along the outer area of a UMS was investigated. 
As shown in Figure 5, the contact-pressure distributions along the interface between the outer area 
of the UMS and the surrounding area were compared using line profile plots. 

(a) (b) 

(c) 

Figure 5. Contact-pressure distributions along the interface between the outer area of the UMS and 
the surrounding area at 40% of the axial compression in assembly: (a) type 1; (b) type 2; and (c) type 
3. SOP: symmetric open groove; ASOP: asymmetric open groove; SNO: symmetric no groove. 

In general, the contact pressure tended to increase as the TR increased. Figures 5a and c show 
symmetrical changes in contact pressure around the arc length at 0 mm, whereas Figure 5b shows 
asymmetric changes in contact pressure. Type 1 showed a narrow and sharp increase in contact 
pressure because of the geometrical effect of the open grooves (Figure 5a). In particular, the contact 
pressure increased to its highest value of 43.8 MPa at TR = 0.50. Type 3, with no open groove, showed 
a wide and slow increase in contact pressure at both ends of the UMS, with its highest value of 47.1 
MPa at TR = 1.50 (Figure 5b). Type 2 showed the characteristics of both types 1 and 3. The leg with 
an open groove showed a sudden increase in contact pressure, with a maximum value of  
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43.5 MPa at TR = 0.25, whereas the leg with no groove showed a gradual increase, with its highest 
value of 32.5 MPa at TR = 1.50. 

Using the stress–strain curve suggested in the literature [25], the approximate stress of the 40%-
deformed FKM material was experimentally reported to be about 1.5–2.0 MPa at constant volume 
assumption. Referring to the suggested equations in another literature [1], it was reported that when 
elastomeric seals were compressed by 40%, the contact pressure of the axially and radially restrained 
grooves would exponentially increase by about 20–25 times greater than those of the unrestrained 
geometry. Thus, taking these references together, one can estimate that contact pressure obtained in 
this study was likely to be about between 30.0 and 50.0 MPa for validity, which corresponded to the 
results shown in Figure 5. In addition, as shown in the literature, the exponential behavior of elastomeric 
materials under compressive condition was consistent with our findings. 

In Figure 5, particular intervals showing 0 MPa of contact pressure exist in the arc-length range 
from −22.5 to 22.5 mm, which corresponds to the UMS body area. This implies that there was no 
contact pressure because the outer surface of the UMS was detached from the surrounding surface of 
the retainer. To examine the detachment characteristics in more detail, further analysis was 
conducted on the gap-distance profile, as shown in Figure 6. 

(a) (b) 

(c) 

Figure 6. Gap-distance profile along the interface between the outer area of the UMS and the 
surrounding retainer at 40% of axial compression during assembly: (a) type 1, (b) type 2, and (c) type 
3. SOP: symmetric open groove; ASOP: asymmetric open groove; SNO: symmetric no groove. 

In the case of type 1, as shown in Figure 6a, a symmetric detachment region occurred in the arc-
length section from −10.8 to 10.8 mm at TR = 0.25, with a maximum gap of 0.12 mm. As the TR ratio 
increased to 0.5, the detachment region reduced from −6.2 to 6.2 mm, with a decreased gap of 0.03 
mm. In the case of type 2, as shown in Figure 6b, the gap was the largest of the three types. Because 
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of the asymmetric geometry of type 2, the detachment region was distributed asymmetrically. The 
detachment region and the gap were broad and large in the direction in which there was no open 
groove. On the other hand, they were narrow and small in the direction where there was an open 
groove. The broadest detachment region was from −16.2 to 10.1 mm at TR = 0.25, with the largest gap 
of 0.7 mm at an arc length of 7.3 mm. At TR = 0.5, the detachment region decreased slightly from −15.8 
to 8.2 mm, with a reduced gap of 0.46 mm. In the case of type 3, as shown in Figure 6c, the detachment 
region was the broadest of the three types. At TR = 0.25, the symmetrical detachment region was the 
broadest from −15.7 to 15.7 mm, with a maximum gap of 0.6 mm at the arc length of 7.3 mm. The 
detachment region and gap decreased gradually at TR = 0.5. 

Type 1 showed the best contact with the retainer ring at TR = 0.25, and the detachment was small 
and narrow. However, types 2 and 3 showed a significant detachment region. As the TR increased, 
the detachment region tended to decrease. At TR = 0.50, the detachment of type 1 disappeared almost 
completely, but the detachment regions of types 2 and 3 were still observed broadly. In particular, 
the detachment region of type 2 was unstable because of its asymmetrical geometry. For all types 1, 
2, and 3, the detachment disappeared completely at TR = 1.0 or higher, which implied that full sealing 
was occurring. It appeared that unstable contact at the retainer was observed at TR = 0.25 as deformed 
wrinkles that were generated during axial compression because of the thinner UMS and its lower 
stiffness. This phenomenon caused a large deformation in the UMS with no open groove or 
asymmetric grooves during compression. 

3.3. Deformation and Equivalent Stress under Radial Compression 

Figure 7 shows deformations and equivalent stress distributions when an internal pressure of 
10 MPa was applied to a UMS that had been compressed axially by 40% during assembly. Among 
the 12 cases in total, the UMS deformation and stress distribution at TR = 0.5 are plotted in Figure 7 
as representative examples. Compared to Figure 4, after an internal pressure was applied to the 
axially compressed UMS, almost no deformation was observed, but the stress distribution was 
increased. This change of stress distribution was the lowest in type 1 and the largest in type 3. In 
particular, type 3 showed that the von Mises stress increased significantly in the UMS body region. 
Furthermore, the stress was transmitted to the insulating spacer with the smallest stiffness among 
the surrounding surfaces and caused changes in the deformation and stress. 

 

Figure 7. UMS deformations and equivalent stress distributions under radial compression due to an 
internal pressure of 10 MPa for TR = 1.0: (a) type 1; (b) type 2; and (c) type 3. SOP: symmetric open 
groove; ASOP: asymmetric open groove; SNO: symmetric no groove. 

In Figure 6, types 2 and 3 show large detachments in the UMS body region at TR = 0.25 and 0.50 
during the 40% axial compression. However, in Figure 7, TR = 0.5 shows stable contact with almost 
no gap distance after radial compression, regardless of the type. The radial compression caused by 
internal pressure could enhance the sealing capacity of the UMS by reducing the gap distance. 
Furthermore, as the UMS was pressurized radially, the empty space in the open groove was filled to 
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almost no gap. In the radial compression environment by internal pressure, types 1 and 3 maintained 
symmetric deformation and equivalent stress distributions, whereas type 2 showed asymmetric 
distributions. 

3.4. Average Contact Pressure from Axial to Radial Compression 

In Figure 8, the change in the average contact pressure is presented as a function of both axial 
compression, due to imposed displacement, and radial compression due to internal pressure. The 
contact-pressure changes are plotted and analyzed for compression ratios of 10%, 20%, 30%, and 40% 
during assembly and internal pressures of 2.5, 5.0, 7.5, and 10 MPa during operation. Overall, the 
average contact pressure increased exponentially as the axial compression increased up to 40% 
during assembly. By contrast, it increased linearly as the radial compression increased up to 10 MPa 
during operation. 

 
Figure 8. Changes in average contact pressure with axial and radial compressions. The yellow area 
indicates axial compression from 10% to 40% of the compression ratio during assembly. The blue area 
represents radial compression from 2.5 to 10.0 MPa of the internal pressure during operation:  
(a) TR = 0.25; (b) TR = 0.50; (c) TR = 1.00; and (d) TR = 1.50. 

As shown in Figure 8, type 3 showed the largest contact pressure at all TRs, whereas type 1 
showed the lowest contact pressure. In the case of type 1, the contact pressure did not change rapidly 
under axial compression and internal radial pressure, even when the TR increased. At an internal 
pressure of 10 MPa, type 1 showed contact pressures of 15.5 and 19.0 MPa at TR = 0.25 and 1.50, 
respectively. However, in the case of type 3, the contact pressure increased sharply with increase of 
TR. The maximum contact pressure at TR = 1.50 was observed as 31.5 MPa, about 1.5 times greater 
compared to type 1. This observed difference between types 1 and 3 could be caused by the effect of 
the open groove. 

3.5. Average Strain Energy Density from Axial to Radial Compression 
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Similar to Figure 8, Figure 9 shows the average strain energy density as a function of the axial 
compression and the radial compression. The strain energy density represents the energy stored in 
an object per unit volume. When external forces are applied to an object, the energy given to the object 
from the outside is stored as potential energy inside the object. Since the strain energy density is not 
evenly distributed in an object, the mean value per unit volume was used for analysis in this study. 

 
Figure 9. Changes in average strain energy density stored in the UMS model with axial and radial 
compressions. The yellow area indicates axial compression from 10% to 40% of the compression ratio 
during assembly. The blue area represents radial compression from 2.5 to 10.0 MPa of the internal 
pressure during operation: (a) TR = 0.25; (b) TR = 0.50; (c) TR = 1.00; and (d) TR = 1.50. 

In general, the average strain energy density increased exponentially with increasing axial 
compression, and then linearly with increasing radial compression. However, the strain energy 
density showed a different behavior compared to the contact pressure during radial compression. As 
shown in Figure 9, types 1 and 3 showed the largest difference in the strain energy density at  
TR = 0.5, unlike the contact pressure in Figure 8, and the difference between the two values tended to 
decrease gradually as TR increased. Of all cases, type 3 at TR = 0.25 showed the largest increase in 
strain energy density. For example, at an internal pressure of 10 MPa, the strain energy density of 
type 3 at TR = 0.25 is 1.75 MJ/m3 in Figure 9a. During radial compression, the strain energy density of 
type 3 tended to decrease gradually as TR increased to 1.00 and 1.50. In contrast, in the case of type 
1, the maximum values were in the range of 0.9–1.0 MJ/m3 at TR = 0.25–1.00, showing no large changes 
in strain energy density during radial compression. 

As mentioned above, the strain energy density can be divided into dilatational and distortional 
strain energies. The distortional strain energy density is related to the von Mises’ failure criterion. In 
other words, a ductile material could fail if the distortional strain energy density exceeds a critical 
value, which, in the present case, can vary according to the design criteria, such as the safety factor, 
yield stress, or ultimate tensile strength. Here, under the four TR conditions, type 1 shows the lowest 
values of strain energy density for all cases, which implies the lowest risk of material failure. 

In this study, critical features such as equivalent stress, gap distance, and contact pressure were 
determined during both assembly and internal pressurization. It was confirmed that axial 
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compression during the assembly process plays an important role in an exponential increase of 
critical values related to the reliable sealing capacity of the UMS system. Radial compression during 
operation caused linear changes in the above values. The factors required for the sealing system to 
maintain its features are no failure and no detachment. These could be predicted through the 
equivalent stress distribution, gap distance, contact pressure, and strain energy density. Therefore, 
the major conditions for determining the stability of a UMS system can be suggested as follows:  

 the smallest stress distribution; 
 the narrowest and smallest detachment region at low TR; 
 the most stable values of contact pressure and strain energy density for changes in TR, and 
 no deformation in the insulating spacer even at high TR. 

Considering these conditions in general, type 1 with its symmetric open grooves showed the 
best results. However, type 1 is limited by the rapid concentration of stress on the open groove. To 
solve this problem, the change in geometry near the open groove should be applied more smoothly 
through chamfering, etc. In other words, the stress peaks of an elastomeric UMS that is to be subjected to 
mechanical loads could be reduced by adapting the design of the component accordingly. 

4. Conclusions 

The mechanical behavior of a nonlinear hyperelastic UMS during axial and radial compressions 
was analyzed using 12 different axisymmetric numerical analysis models. The axial compression 
during assembly was confirmed to be the most important variable in determining the sealing 
capability and stability of the UMS. The risks of the UMS failing or detaching were analyzed by 
changing the characteristics of the equivalent stress, gap distance, contact pressure, and strain energy 
density acting on the UMS during axial and radial compressions. It was advantageous that the 
smaller the TR, the smaller the stress distribution, but the occurrence of a detachment region was a 
disadvantage. A TR value of 1.0 or higher should be applied because the detachment region 
disappears in that case. Type 1 with open grooves showed the lowest stress distribution and the 
smallest detachment region. Furthermore, symmetric open grooves showed more advantageous 
results in terms of stress distribution and detachment than did asymmetric open grooves. For the 
contact pressure, type 3 with no open groove showed the highest value. However, one disadvantage 
of type 3 was that the stress distribution increased excessively, even causing a deformation in the 
insulating spacer. As for the strain energy density, type 1 with open grooves showed the most stable 
values of all cases. In conclusion, based on the analysis results of this study, type 1 with open grooves 
showed the lowest equivalent stress distribution, the smallest detachment region, and the most stable 
contact pressure and strain energy density, which implies the lowest risk of failure for the UMS 
system. The results of this study may be an important input for designing elastomeric UMS-based 
insulating joints, and could improve the reliability of the sealing system. 
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