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Abstract: Reverse osmosis (RO) concentrate from wastewater reuse facilities contains concentrated
emerging pollutants, such as pharmaceuticals. In this research, a paper-like composite sheet consisting
of titanium dioxide (TiO2) and zeolite was synthesized, and removal of the antipruritic agent
crotamiton from RO concentrate was studied using the TiO2/zeolite composite sheet. The RO
concentrate was obtained from a pilot-scale municipal secondary effluent reclamation plant. Effective
immobilization of the two powders in the sheet made it easy to handle and to separate the
photocatalyst and adsorbent from purified water. The TiO2/zeolite composite sheet showed excellent
performance for crotamiton adsorption without obvious inhibition by other components in the
RO concentrate. With ultraviolet irradiation, crotamiton was simultaneously removed through
adsorption and photocatalysis. The photocatalytic decomposition of crotamiton in the RO concentrate
was significantly inhibited by the water matrix at high initial crotamiton concentrations, whereas
rapid decomposition was achieved at low initial crotamiton concentrations. The major degradation
intermediates were also adsorbed by the composite sheet. This result provides a promising method
of mitigating secondary pollution caused by the harmful intermediates produced during advanced
oxidation processes. The cyclic use of the HSZ-385/P25 composite sheet indicated the feasibility of
continuously removing crotamiton from RO concentrate.

Keywords: paper-like composite sheet; zeolite; photocatalysis; reverse osmosis concentrate;
pharmaceutical; inhibitory effect; intermediate

1. Introduction

Reverse osmosis (RO) is a well-established technology for water desalination, the production of
potable water, and more recently, tertiary wastewater treatment [1,2]. With increasing global water
demand, it is predicted that the global market value of RO system components will reach 8.1 billion
USD by 2018 [3]. Along with the purification of wastewater, the RO process produces a concentrate
containing high levels of rejected pollutants (about 15–20% of the influent volume) [4]. Some of
the emerging pollutants, such as pharmaceuticals and personal care products, are very persistent in
sewage effluent, resulting in raised awareness of the environmental risk of RO concentrates [1,5,6].
Genotoxicity evaluation using the SOS/umu test has provided direct evidence that RO concentrates
have much higher toxicological risk than RO influents [7]. Therefore, suitable technology needs to be
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developed for treating RO concentrates before discharging them into receiving water or recycling for
other purposes. This requirement is especially important for large-scale RO treatment systems [8].

In a number of recent studies, TiO2 photocatalysis has been used to treat pharmaceuticals in
wastewater [9]. The nonselective oxidation ability of hydroxyl radicals enables effective degradation
of various organic pollutants. However, the photocatalysis of target compounds can be inhibited
by coexisting materials, such as inorganic ions and organic matter, in the wastewater [10–12]. In
addition, toxic intermediates may be produced during photocatalysis, and the effects of pharmaceutical
degradation products in the environment are of concern. Furthermore, when TiO2 or nano-TiO2

powder in water is exposed to ultraviolet (UV) radiation, radicals that are harmful to aquatic organisms
are produced [13]. Therefore, the effective recovery of catalyst powder after wastewater treatment
should be taken into consideration.

Wastewater treatment frequently involves adsorption processes, and various types of adsorbents
have been developed to remove different pollutants [14–19]. The high-silica Y-type zeolite HSZ-385,
which is a hydrophobic zeolite, has been used to remove sulfonamide antibiotics from wastewater
and selectively removes sulfonamides even in the presence of high concentrations of coexisting
materials [20]. However, after adsorption, the contaminants are permanently transferred to the sorbent
and not destroyed, which can lead to problems with saturation of the adsorbent.

Attempts have been made to synthesize TiO2-adsorbent composites that perform both
photocatalysis and adsorption to remove pharmaceuticals from wastewater [21–23]. This synergistic
effect has been confirmed for TiO2 and zeolite in a TiO2/zeolite composite powder that was used
to remove sulfonamide antibiotics [23]. Wu et al. condensed nano-TiO2 on the surfaces of carbon
spheres through hydrothermal treatment to generate core–shell structures, and found that visible light
absorption was enhanced compared with pure TiO2 because of the interface formed between the two
materials [21]. The activated carbon fiber felt (ACFF) in the TiO2/ACFF porous composites significantly
enhances the photocatalytic property of toluene by hindering the recombination of electron-hole pairs,
reducing the TiO2 band gap energy, and accelerating toluene adsorption [24]. Using a papermaking
technique, Fukahori et al., prepared a paper-like composite sheet from TiO2 and zeolite powder [25].
Under UV irradiation, bisphenol A was effectively degraded through the synergistic effect of the TiO2

photocatalyst and zeolite adsorbent in these sheets [25]. In addition, the degradation intermediates
of bisphenol A, which may be harmful to the environment, were temporarily captured by zeolite in
the composite sheet and eventually decomposed through photocatalysis [26]. However, these studies
were conducted using ultrapure water as the solvent, and the inhibitory effects of other components of
the wastewater matrix have not been investigated.

In this study, we synthesized a TiO2/zeolite composite sheet to remove of crotamiton from RO
concentrate, and to recover the catalyst and adsorbent after water treatment. Crotamiton is a scabicide
and antipruritic agent that has frequently been detected in sewage effluent in Japan because of its
stable nature and wide consumption [27–29]. The effect of coexisting matter from the wastewater
matrix on inhibiting crotamiton degradation was evaluated. In addition, the behavior of crotamiton
degradation intermediates during photocatalysis was investigated.

2. Materials and Methods

2.1. Materials

HSZ-385 (surface area 600 m2/g, mean particle size 4 µm, SiO2/Al2O3 ratio 100:1) was purchased
from Tosoh Ltd. (Tokyo, Japan). TiO2 powder (P-25, 50 m2/g, anatase) was purchased from Degussa
(Dusseldorf, Germany) and F-type zeolite powder (F9, SiO2/Al2O3 ratio 2.1:1) was purchased from
Wako Pure Chemical Industries, Ltd. (Tokyo, Japan). Crotamiton (purity > 97%) and isotope-labelled
surrogate crotamiton-d7 (purity 94.5%) were purchased from Sigma-Aldrich (St Louis, MO, USA)
and Hayashi Pure Chemical (Osaka, Japan), respectively. Crotamiton-d7 was dissolved in methanol
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(purity > 99.8%; Kanto Chemical Co., Inc., Tokyo, Japan) to prepare an internal standard solution,
which was stored at −20 ◦C. All other chemicals used were of reagent grade.

Composite sheets consisting of TiO2 and zeolite (HSZ-385 or F-9) were prepared using a
papermaking technique. TiO2, zeolite (3.125 g each), and polyethylene terephthalate fiber (6.25 g)
were suspended in water (1 L); a cationic flocculant [poly-(amideamine) epichlorohydrin, 0.05% of
total solid] and an anionic flocculant (anionic polyacrylamide, 0.084% of total solid) were sequentially
added and the final suspension was stirred. Hand sheets with a grammage of 200 g/m2 were prepared
according to JIS P8222 [30]. The sheets were dried at 120 ◦C. The mass ratio of TiO2 to zeolite in the
composite sheet was 1:1. The TiO2/zeolite composite sheet used in this study contained 4 mg/cm2 of
TiO2 and zeolite. Characterization of the TiO2/zeolite composite sheet was performed by scanning
electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS: ProX; Phenom World) as shown
in Figure 1. The SEM and EDS images revealed the uniform distribution of TiO2 and zeolite powder in
the composite sheet.
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RO concentrate was collected from a nanofiltration/RO pilot-scale plant for municipal secondary
effluent reclamation on 7 March 2017 in Japan, and stored at 4 ◦C. The RO concentrate was analyzed and
the results are as shown in Table 1. Details of the quantitative analyses are given in the Supplementary
materials. To clarify the mechanism for removing of crotamiton with the composite sheet, crotamiton
solutions were prepared using either RO concentrate or ultrapure water (Millipore, Tokyo, Japan).

Table 1. Water quality analysis of the reverse osmosis concentrate.

Parameter Value Ion mg/L

pH 7.8 Na+ 223

Conductivity (mS/m) 170
NH4

+ 25.7
K+ 26.4

TOC (mgC/L) a 10.1
Mg2+ 22.2
Ca2+ 45.5

CODcr (mg/L) b 22 Cl− 316

UV absorbance (λ = 365 nm) (1/cm) c 0.049
NO2

− 15.6
NO3

− 46.8
Alkalinity (mgCaCO3/L) 158 SO4

2− 87.5
a TOC, total organic carbon; b CODcr, chemical oxygen demand; c UV, ultraviolet.

2.2. Quantitative Analyses

To determine the concentration of crotamiton in the RO concentrate solution, solid phase extraction
(SPE) was carried out. The cartridges (Oasis HLB, 60 mg, 3 mL, Waters, Milford, MA, USA) were
conditioned with 2 mL of methanol, followed by 2 mL of ultrapure water. Aqueous samples spiked
with the internal standard solution were then loaded onto the cartridges. Next, the cartridges were
washed with 2 mL of ultrapure water and dried with a GL-SPE vacuum manifold system (GL Science,
Tokyo, Japan) for 30 min. The analyte was eluted first with 1 mL of 10% methanol and then with 4 mL
of methanol. The average recovery rate of crotamiton was 97 ± 1.7% (mean ± standard deviation,
n = 3).

The concentrations of crotamiton were determined with the internal standard addition method
using liquid chromatography tandem mass spectrometry (LC/MS/MS, Acquity UPLC-Xevo TQ;
Waters) after SPE. The intermediates were identified from the mass spectral patterns obtained by
LC/MS/MS.

2.3. Methods

Adsorption experiments were carried out by submerging the TiO2/zeolite composite sheets
(2 × 5.5 cm2) at a depth of 4 cm in 50 mL of the crotamiton solution (10 mg/L or 120 µg/L) at pH
7.0 ± 0.1 without ultraviolet irradiation (Figure S1). The mixture was stirred at a moderate speed at
25 ◦C. After a set treatment time, the treated solutions were passed through a DISMIC-13HP 0.2-µm
membrane filter (Toyo Roshi Kaisha, Tokyo, Japan) to determine the crotamiton concentrations in the
aqueous phase (Ct).

For the adsorption and photocatalytic degradation experiments, UV irradiation was applied
perpendicular to the sheet surface (Figure S1) with a FL287-BL365 UV lamp (Raytronics, Tokyo, Japan),
which had a maximum output wavelength of 365 nm. The UV intensity at the center of the reactor
was controlled at 1000 µW/cm2 using a UV-340C light meter (Custom, Tokyo, Japan). The other
experimental conditions were the same as for the adsorption experiment. After a set irradiation time,
the treated solutions were passed through 0.2-µm membrane filters, and the crotamiton concentrations
(Ct) were then determined.

To measure the mass of crotamiton in the sheet, the composite sheet was soaked in methanol
(purity > 99.8%). After ultrasonication for 60 min (38 kHz, 120 W; US-3KS; SND Co., Ltd., Nagano,
Japan), the treated solutions were filtered through 0.2-µm membrane filters and analyzed by
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LC/MS/MS (Ct’). The recovery rate for desorption was 107 ± 1%. The mass of crotamiton in
the treated solution (Min water) was calculated using Equation (1), in which V is the solution volume.

Min water = Ct × V (1)

Similarly, the mass of crotamiton in the composite sheet (Min sheet) was calculated using Equation (2).

Min sheet = Ct
′ × V (2)

The total mass of crotamiton remaining in the system (Min system) was calculated using Equation (3).

Min sheet = Ct
′ × V (3)

3. Results and Discussion

3.1. Adsorption of Crotamiton by the HSZ-385/P25 Composite Sheet

The HSZ-385/P25 composite sheet was applied to the adsorption of crotamiton in the RO
concentrate. In preliminarily experiments, we confirmed that crotamiton was rapidly adsorbed
by HSZ-385 zeolite powder (Figure S2). We also confirmed that crotamiton was not adsorbed by
P25 [31]. The crotamiton concentrations were plotted against time (Figure 2). Similar performances of
the sheet in RO concentrate and ultrapure water revealed that other components in the RO concentrate
(Table 1) did not obviously affect the adsorption of crotamiton by the composite sheet within the 24-hr
treatment period.
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Figure 2. Adsorption of crotamiton using the HSZ-385/P25 composite sheet. Results are means± standard
deviations (n = 2).

It has been reported that inorganic ions and organic materials affect the adsorption of
pharmaceuticals [32]. Nevertheless, the adsorption of sulfonamide antibiotics from livestock urine and
bisphenol A from landfill leachate by HSZ-385 was not affected by coexisting ions [14,20]. Meanwhile,
even if the organic carbon content of porcine urine was two orders of magnitude higher than those of
the sulfonamides, the sulfonamides were also effectively removed [20]. For bisphenol A, the removal
efficiency decreased slightly when more than 50 mg/L humic acid was added [14]. Umar et al.,
reported that humic-like and fulvic acid-like matter in the RO concentrate were the major contributors
to the color of the concentrate [33]. The RO concentrate used in this research appeared to be light
brown. In the present study, when the HSZ-385/P25 composite sheet was used to adsorb the raw RO
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concentrate without crotamiton spiking, only approximately 10% of the total organic carbon (TOC)
was removed. Therefore, in the RO concentrate, crotamiton would be removed by adsorption on the
composite sheet prior to the raw organic matter. In addition, the removal results for different initial
crotamiton concentrations in the RO concentrate were similar, which implies that crotamiton can be
adsorbed by the HSZ-385/P25 composite sheet over a wide range of initial concentrations.

We previously investigated the mechanism involved in the adsorption of sulfonamides to HSZ-385.
We found that HSZ-385 adsorbed neutral sulfonamides more effectively than non-neutral sulfonamides,
and that hydrophobic interactions played important roles in the adsorption process [34]. Crotamiton
is hydrophobic (logKOW = 2.73) and has no ionizable functional groups. Therefore, hydrophobic
interactions may play an important role in the adsorption of crotamiton by the HSZ-385/P25
composite sheet.

3.2. Photocatalytic Degradation of Crotamiton by the F9/P25 Composite Sheet

To clarify the photocatalysis of crotamiton by the F9/P25 composite sheet, the composite sheet was
synthesized to be similar to the HSZ-385 composite sheet. Both F9 zeolite and the F9/P25 composite
sheet did not remove crotamiton by adsorption (Figure S2). The F9 zeolite is a hydrophilic zeolite,
whereas the Y-type zeolite HSZ-385 is a hydrophobic zeolite. This is further evidence that crotamiton
is removed by HSZ-385 mainly through hydrophobic interactions.

The photocatalytic degradation of crotamiton over time by the F9/P25 composite sheet is shown in
Figure 3. Direct photolysis of crotamiton was not observed [31]. The removal efficiency of crotamiton
from the RO concentrate was much lower than that from the ultrapure water. After 24 hr of UV
irradiation, the majority of the crotamiton in the ultrapure water was degraded. In contrast, ca. 50%
of the crotamiton was degraded in the RO concentrate. Linear relationships were found between
ln (Ct/C0) and UV irradiation time (t) (Figure 3). Therefore, the first-order kinetic model shown
in Equation (4) was used to evaluate the photocatalysis of crotamiton. In that equation, k1 is the
pseudo-first-order rate constant. The k1 value for crotamiton removal from the RO concentrate by the
F9/P25 composite sheet was 0.048 hr−1, and was only half of that in the ultrapure water (0.092 hr−1).
Obviously, the lower rate constant reflects the effect of other components in the RO concentrate on the
photocatalytic degradation of crotamiton.
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are means ± standard deviations (n = 2).



Appl. Sci. 2017, 7, 778 7 of 16

ln (Ct/C0) = −k1t (4)

UV absorbance is an important parameter affecting photocatalysis [10,35]. The maximum output
wavelength of the UV lamp in our study was 365 nm, and the RO concentrate had an absorbance
of 0.049 cm−1 at 365 nm (Table 1). Based on the Beer-Lambert law and the distance from the reactor
surface to the sheet, the light transmittance was 82.1%. Therefore, after passing through the RO
concentrate in the batch reactor, the light intensity at the sheet surface decreased by 17.9%, which is
called the screening effect [36]. This effect contributed to the decrease in the photocatalytic degradation
efficiency. Furthermore, the RO concentrate was light brown, and the color of the composite sheet
surface changed from white to light brown after treatment of the RO concentrate. This color change
could be caused by adsorption of coexisting materials on the sheet surface, and this could negatively
affect the performance of TiO2 photocatalysis through occupation of the active sites on the surface of
TiO2 [37].

The TiO2 photocatalysis could be inhibited via the scavenger effect by coexisting ions [10,38–40].
The ions Cl− and HCO3

− have been found to inhibit photocatalysis through the hydroxyl radical and
valence band hole scavenging [10,40]. Rioja et al., reported a marked deactivation effect caused by
added salts for two tested acidic drugs [41]. Furthermore, Tokumura et al., suggested that coexisting
matter could mitigate the generation of hydroxyl radicals through direct reactions with holes in
the valence band and electrons in the conduction band of the photocatalyst [37]. As reported by
Song et al., Cl− can cause agglomeration of TiO2 particles in a slurry by suppressing the stabilizing
effect of electrostatic repulsion, reducing the effective contact surface between the photocatalyst and
the pollutants [42]. In this research, the TiO2/zeolite composite sheet was used instead of TiO2 powder.
Therefore, even if the RO concentrate contained 316 mg/L Cl− (Table 1), agglomeration of TiO2 and its
associated issues should be eliminated. However, the mechanism for this should be investigated in
future research.

Organic matter in secondary effluent also competes with target pharmaceuticals during
photocatalysis [43]. When the F9/P25 composite sheet was used to degrade raw RO concentrate
without crotamiton spiking, approximately 15% of the initial TOC (10.1 mgC/L) was degraded after
24 h of UV irradiation. The TOC concentration in the RO concentrate was 10.1 mgC/L, and the TOC
concentration for the 10 mg/L crotamiton solution in ultrapure water was 7.67 mgC/L theoretically.
The coexisting organic matter may compete with crotamiton for consumption of the oxidizing agent
during photocatalysis by the F9/P25 composite sheet.

Mineralization during photocatalytic degradation was evaluated by plotting TOC/TOC0 against
time at an initial crotamiton concentration of 10 mg/L (Figure 4). The TOC concentration provided by
the residual crotamiton was also determined by performing stoichiometric calculations. During
the photocatalytic degradation of crotamiton by the F9/P25 composite sheet in both ultrapure
water and RO concentrate, the solution TOC did not obviously decrease with the degradation of
crotamiton. This result implied that crotamiton was degraded step by step and that the intermediate
compounds accumulated at the same time. Kuo et al., investigated the photocatalytic mineralization
of methamphetamine in a UVA/TiO2 system and found that TOC disappeared more slowly than
methamphetamine because the methamphetamine intermediates took some time to be mineralized [44].
A more detailed discussion on the degradation intermediates is given in Section 3.4.

3.3. Adsorption and Photocatalytic Degradation of Crotamiton by the HSZ-385/P25 Composite Sheet

In our previous research, we found that P25 was effective for photocatalytic degradation of
crotamiton [31]. The HSZ-385/P25 composite sheet prepared in the present study combines adsorption
and photocatalysis processes, which makes it possible to regenerate the adsorbent during treatment.

To clarify the adsorption and degradation performance of crotamiton by the HSZ-385/P25
composite sheet, the mass of crotamiton in the composite sheet (Min sheet) was determined together
with the mass of crotamiton in the aqueous phase (Min water). The mass of crotamiton in the system
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(Min system) was calculated as the sum of the residual mass of crotamiton in both the aqueous phase and
in the sheet, which was the mass of undecomposed crotamiton remaining in the system.
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Figure 4. Removal of TOC in the solutions and the TOC derived from the residual crotamiton during
the treatment by the F9/P25 composite sheet with ultraviolet irradiation in ultrapure water (a) and RO
concentrate (b). Results are means ± standard deviations (n = 2).

The masses of crotamiton in different phases were plotted against time (Figure 5) for solutions
with initial crotamiton concentrations of 10 mg/L in ultrapure water (Figure 5a), 10 mg/L in RO
concentrate (Figure 5b), and 120 µg/L in RO concentrate (Figure 5c). Although similar trends were
observed for Min water in ultrapure water and RO concentrate (Figure 5a,b) with an initial crotamiton
concentrations of 10 mg/L, the trends for Min sheet were very different. The highest value of Min sheet
(ca. 0.12 mg) was observed after 3 hr treatment of crotamiton in the ultrapure water, and this then
decreased with time (Figure 5a); at most, only 23% of the initial crotamiton was accumulated in the
sheet, and all the crotamiton was eventually degraded by photocatalysis.

In removing of crotamiton from the RO concentrate, much more crotamiton (0.34 mg) was
accumulated in the composite sheet after 6 h treatment (Figure 5b). After that, the mass of crotamiton
in the sheet gradually decreased, and finally 0.25 mg remained in the sheet at 24 hr. The higher
removal rate obtained with adsorption compared with photocatalysis led to the accumulation and
long retention time of crotamiton in the composite sheet. In the treatment of both RO concentrate
and ultrapure water, crotamiton could be effectively removed from the aqueous phase, thus purifying
the water. The adsorption process was not greatly affected by the water matrix, but inhibition
of photocatalysis resulted in low crotamiton degradation in the RO concentrate when using the
HSZ-385/P25 composite sheet.

Removing of crotamiton from the RO concentrate with an initial crotamiton concentration of
120 µg/L was investigated (Figure 5c). The Min sheet values were maintained at a low level throughout
the treatment, and the maximum accumulation of crotamiton in the sheet was only 6.7% of the initial
crotamiton mass in the aqueous phase. A rapid decrease was observed in Min system, showing that rapid
decomposition of crotamiton occurred with the low initial crotamiton concentration. Inhibition of the
degradation process with high initial crotamiton concentrations may be attributed to competition from
intermediates produced by crotamiton degradation [37]. Jang et al., found that the target material
(trichloroethylene) saturated the composite catalyst surface and reduced photon efficiency, leading
to photocatalyst deactivation [45]. Kuo et al., showed that the degradation rates of codeine and
methamphetamine increased with increasing initial concentration (100–250 µg/L) [44,46]. With the
initial concentration at microgram per liter levels, the degradation rate may not be limited by the
availability of catalytic sites but by contaminant concentration.
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Figure 5. Removal of crotamiton using the HSZ-385/P25 composite sheet with ultraviolet irradiation
for solutions of (a) 10 mg/L crotamiton in ultrapure water; (b) 10 mg/L crotamiton in RO concentrate;
and (c) 120 µg/L crotamiton in RO concentrate. Results are means ± standard deviations (n = 2).

The TOC/TOC0 ratios plotted against time in the HSZ-385/P25 composite sheet experiment are
shown in Figure 6. With removal of crotamiton in the ultrapure water by the HSZ-385/P25 composite
sheet, TOC was gradually removed and the removal efficiency reached up to 84% after 24 hr (Figure 6a),
whereas the TOC removal efficiency was stable at ca. 51% after 6 hr of crotamiton treatment in the
RO concentrate by the HSZ-385/P25 composite sheet (Figure 6b). The photocatalytic degradation of
crotamiton was significantly inhibited by the other components in the RO concentrate. Furthermore,
the low TOC removal by individual adsorption or degradation for the organic matter in the original
RO concentrate is another important reason. After 24 hr treatment by the HSZ-385/P25 composite
sheet, the majority of the crotamiton was removed, which was similar to that in the experiment using
the F9/P25 composite sheet. A rather lower TOC/TOC0 ratio was observed in the treatment using
the HSZ-385/P25 composite sheet compared with the F9/P25 composite sheet. It has been assumed
that accumulation of degradation intermediates in the experiment using the F9/P25 composite sheet
resulted in the high residual TOC concentration in the aqueous phase (Figure 4a). The much lower
TOC/TOC0 in the treatment using the HSZ-385/P25 composite sheet indicated other TOC derived
from degradation intermediates in the aqueous phase has been removed because of the function of the
HSZ-385 in the composite sheet (Figure 6a). That is to say, not only crotamiton in the solution but also
the degradation intermediates of crotamiton were removed by the HSZ-385 in the composite sheet.
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Figure 6. Removal of TOC in the solutions and the TOC derived from the residual crotamiton during
the treatment by the HSZ-385/P25 composite sheet with ultraviolet irradiation in ultrapure water
(a) and RO concentrate (b). Results are means ± standard deviations (n = 2).

3.4. Behavior of the Degradation Intermediates during Photocatalysis

The degradation intermediates were characterized following the methods described in our
previous study [31]. We proposed that P25-catalyzed photodegradation of crotamiton could initially
occur via hydroxylation of the aromatic ring, the double bond of the propenyl group, or the ethyl
group. These reactions formed intermediates that we labeled as P189, P217, and P219. The peak areas
of the intermediates were measured in the selected ion recording mode of LC/MS/MS.

With the degradation of crotamiton, the intermediates gradually accumulated and reached their
highest levels in the treatment using the F9/P25 composite sheet (Figure 7). Intermediate P219,
which was produced by hydroxylation of the aromatic ring of crotamiton, was the most noticeable
degradation intermediate. The peak area of P219 was higher than those for P189 and P217. After
24 hr of treatment, most of the P189 and P217 had disappeared. In contrast, the peak area of P219 was
still high after 24 hr of treatment with the F9/P25 composite sheet. This result corresponded well to
the high TOC/TOC0 level revealed in Figure 4a, validating the assumption of the accumulation of
degradation intermediates during the treatment by the F9/P25 composite sheet.
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Figure 7. Changes in the peak areas of the major intermediates over time in ultrapure water when
crotamiton was photocatalytically degraded using the F9/P25 composite sheet (C0 = 10 mg/L).
The squares are P189 (retention time 5.2 min) and the circles are P217. The diamonds with a dashed
line are P219 (retention time 5.0 min, secondary y-axis).

Treatment with the HSZ-385/P25 composite sheet (Figure 8) was compared with that using the
F9/P25 composite sheet. The peak areas for the three intermediates obtained with the HSZ-385/P25
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composite sheet were clearly lower than those obtained with the F9/P25 composite sheet throughout
the treatment, especially for intermediate P219. After 24 hr of treatment with the HSZ-385/P25
composite sheet, the majority of all three intermediates had disappeared. The lower peak areas of
degradation intermediates as well as the lower TOC/TOC0 ratios (Figure 6a) confirmed that the
HSZ-385/P25 composite sheet captured the degradation intermediates.Appl. Sci. 2017, 7, 778  11 of 16 
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Figure 8. Changes in the peak areas of the major intermediates over time in ultrapure water when
crotamiton was photocatalytically degraded using the HSZ-385/P25 composite sheet (C0 = 10 mg/L).
The squares are P189 (retention time 5.2 min) and the circles are P217. The diamonds with a dashed
line are P219 (retention time 5.0 min, secondary y-axis).

Moreover, changes in the peak areas for the major intermediates in the HSZ-385/P25 composite
sheet were evaluated through desorption treatment for the composite sheet after the adsorption and
photocatalysis experiment. The methanol solution with the composite sheet after ultrasonic treatment
contained crotamiton, as well as large amounts of degradation intermediates, retained in the composite
sheet (Figure 9). The peak area for P219 was higher in the composite sheet during treatment than
that in the aqueous phase when using the HSZ-385/P25 composite sheet shown in Figure 8. Even if
the efficiency of desorption of the intermediates from the sheet could not be confirmed without the
standard of every detected intermediate, the high peak areas for the intermediates provided direct
evidence of the adsorption of intermediates on the composite sheet.
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Figure 9. Changes in the areas of the peaks for the major intermediates over time in the HSZ-385/P25
composite sheet after desorption when crotamiton was photocatalytically degraded using the
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are P217, and the diamonds with a dashed line are P219 (retention time 5.0 min).
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In conclusion, the HSZ-385/P25 composite sheet is effective not only for removing crotamiton,
but also for capturing degradation intermediates produced by photocatalysis. This method mitigates
the negative impact of harmful degradation intermediates produced by advanced oxidation processes.

3.5. Cyclic Use of the HSZ-385/P25 Composite Sheet

To effectively apply the HSZ-385/P25 composite sheet to remove crotamiton from RO concentrate
in practical treatment processes, it is essential that the composite sheet can remove pollutants even after
several cycles of reuse. The efficiency of removing crotamiton from RO concentrate achieved by the
HSZ-385/P25 composite sheet after 24 hr ultraviolet irradiation in three circles of reuse were all over
95% (Figure 10). The crotamiton amount in the composite sheet after three cycles of reuse was 0.40 mg,
which was ca. 27% of the total amount of three cycles of treated crotamiton (C0 = 10 mg/L, V = 50 mL),
demonstrating continuous crotamiton photocatalytic degradation. The TOC removal efficiency slightly
decreased with an increase in the cycles of reuse. It can be concluded that the HSZ-385/P25 composite
sheet is feasible for the cyclic removal of crotamiton in RO concentrate.
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Figure 10. The removal efficiency of crotamiton and TOC in RO concentrate using the HSZ-385/P25
composite sheet after cyclic use. Results are means ± standard deviations (n = 2).

Some other composite materials used as adsorbents and photocatalysts for treating organic
pollutants are summarized in Table 2. No previous publications applied composite materials for
the treatment of pollutants in RO concentrate. A few cycles of pollutant removal were carried
out in studies using TiO2–coconut shell powder composite [47], polyacrylic acid-grafted-carboxylic
graphene/titanium nanotube composite [48], multi-walled carbon nanotubes/Fe3O4 composites [49],
multi-walled carbon nanotube/TiO2 composites [50] and nitrogen-doped-TiO2/activated carbon
composite [51] similar to that in this study. The stability of the photocatalyst and reusability of these
materials were confirmed, thus making them promising cost-effective water purification materials.

Except for reusability, some of the composites were designed to promote degradation capability
through improving visible light utilization, photon yield, and so on. The presence of MoS2 in
the TiO2-MoS2-reduced graphene oxide composite worked as a co-catalyst to reduce electron-hole
pairs, and improved the photocatalytic performance of TiO2 for BPA removal [52]. The
nitrogen-doped-TiO2/activated carbon composite was synthesized to regenerate spent powdered
activated carbon using solar photocatalysis for cost-effective application in wastewater treatment [51].
The graphene/TiO2/ZSM-5 composite material showed higher stability, stronger absorption of visible
light, and lower band gap value [53].
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Table 2. Composite materials synthesized for removing organic pollutants.

Composite Target Pollutant Water Matrix Reference

TiO2–coconut shell powder composite Carbamazepine, clofibric
acid, and triclosan Ultrapure water [47]

Polyacrylic acid-grafted-carboxylic
graphene/titanium nanotube composite Enrofloxacin Distilled water and simulated

poultry farm effluent [48]

Multi-walled carbon nanotubes/Fe3O4
composites Bisphenol A Doubly-distilled deionized

water [49]

Multi-walled carbon nanotubes/TiO2
nanocomposite Tetracycline Pharmaceutical wastewater [50]

Nitrogen-doped-TiO2/activated carbon
composite

Bisphenol-A,
sulfamethazine, and

clofibric acid
Ultrapure water [51]

TiO2-MoS2-reduced graphene oxide
composite Bisphenol A Not mentioned [52]

Graphene/TiO2/ZSM-5 composites Oxytetracycline Deionized water [53]

4. Conclusions

TiO2/zeolite composite sheets were synthesized and used to remove crotamiton from RO
concentrate. Crotamiton is effectively adsorbed by the HSZ-385/P25 composite sheet without obvious
inhibition by other components of the RO concentrate. The photocatalytic decomposition of crotamiton
in the RO concentrate is significantly inhibited by the water matrix at high initial concentrations of
crotamiton, whereas rapid decomposition occurs at low initial concentrations. When the HSZ-385/P25
composite sheet is used with UV irradiation for the removal of crotamiton from RO concentrate,
crotamiton is removed by adsorption and photocatalysis. The inhibition of photocatalytic degradation
by other components resulted in crotamiton remaining in the composite sheet. The degradation
intermediates are captured by the HSZ-385/P25 composite sheet, and this capture provides a way to
mitigate the potential negative impact of intermediates from advanced oxidation processes. In addition,
the HSZ-385/P25 can continually remove crotamiton from RO concentrate with repeated uses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/7/8/778/
s1, Figure S1: The experimental set-up of the adsorption and photocatalytic degradation of crotamiton using
the TiO2/zeolite composite sheet. The symbol Φ refers to the diameter of the vial; Figure S2: Removal of
crotamiton from ultrapure water by adsorption using F9 powder, HSZ-385 powder and the F9/P25 composite
sheet (C0 = 10 mg/L, V = 50 mL). The dosage for the powder adsorbent was 0.1 g/L. The F9/P25 composite sheet
was 2 × 5.5 cm2 and submerged at a depth of 4 cm. The composite sheet contained 4 mg F9/cm2.
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