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Abstract: In this paper, a new time-frequency analysis method—Synchrosqueezing Generalized 
S-transform (SSGST)—is proposed to meet the needs of high-resolution seismic signal processing 
and interpretation. The basic wavelet of the generalized S-transform (GST) in the paper is a 
modulated harmonic wave with four undetermined parameters that can be constructed by 
adjusting the four parameters to make the GST more suitable for seismic signals processing. The 
SSGST method squeezes and reconstructs the complex coefficient spectra of GST results along the 
frequency direction so that the energy distributions on the time-frequency spectra are concentrated 
around the real instantaneous frequency of the signal; thus, the time-frequency resolution can be 
improved. Based on mathematical theory, the basic principle of the new transformation method is 
given, and the mathematical expressions of the positive transformation and lossless inverse 
transformation of the method are strictly deduced. The experimental results of numerical signals 
illustrate that the proposed method can correctly decompose signals with different spectral 
characteristics into a high time-frequency resolution spectrum and can recovery the original signal 
from the time-frequency spectrum with satisfying reconstructing accuracy. Application on field 
seismic data shows the superiority of the new method in seismic time-frequency analysis for 
hydrocarbon detection. 

Keywords: time-frequency decomposition; synchrosqueezing transform; generalized S-transform; 
seismic signal; hydrocarbon detection 

 

1. Introduction 

Time-frequency analysis, a powerful tool for seismic data analysis, plays a significant role in oil 
and gas exploration and development. It maps a 1D signal in the time domain into a 2D 
time-frequency spectrum, which can effectively reveal important details of seismic data and provide 
valuable information for reservoir characterization. 

The commonly used methods for seismic time-frequency analysis include short-time Fourier 
transform (STFT), wavelet transform (WT), and S-transform (ST). STFT suffers from a fixed 
time-frequency resolution caused by a preselecting window length. To overcome this disadvantage, 
wavelet-based methods have been adopting and show obvious superiority in spectral resolution 
(e.g., [1]). Although WT leads to a more flexible trade-off between frequency and time resolution due 
to the variable length of the mother wavelet, it still displays spectral smearing due to the finite size of 
the operator. The S-transform (ST) proposed by Stockwell et al. [2] can be interpreted as a special 
case of the Continuous Wavelet Transform (CWT) based on Morlet wavelet, but with minor phase 
and amplitude adjustments.. It eliminates the limitation of fixed window length in STFT and also has 
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the multi-resolution ability of WT. In other words, ST can effectively avoid the existing deficiencies 
of the above two methods [3]. Nevertheless, the fixed changing trend of the basic wavelet in ST 
limits its practical application. Therefore, many researchers have proposed a variety of forms of 
generalized S transform (GST) on the basis of ST by introducing variable window parameters to 
improve the flexibility and adaptability of the wavelet window [4–9]. The method based on 
Empirical Mode Decomposition (EMD) [10] or its extended algorithms (e.g., ensemble empirical 
mode decomposition (EEMD), complete ensemble empirical mode decomposition (CEEMD)) are 
other time-frequency transforms, which have also been applied in seismic data and have achieved 
excellent time-frequency resolution (e.g., [11–14]). Although EMD-based methods are useful for 
many applications, there is still a lack of mathematical foundation and a high computational cost. 

Synchrosqueezing transform (SST) is a relatively new technique based on the combination of 
time-frequency methods followed by a reassignment step [15,16] that can be also regarded as an 
alternative to the EMD method considering their similar time-frequency resolution. SST can 
improve the energy concentration of time-frequency representation by applying a post-processing 
reallocation to the original representation. At each time or space location, the SST reassigns values of 
the initial representation based on their local oscillation. However, differing from EMD, the 
transformation process of SST is generated by strict mathematical derivation, which is beneficial to 
the understanding of the method and can be improved according to the specific application. At 
present, the synchrosqueezing algorithm has been extended to time-frequency representations based 
on the STFT [17–19], the wave packet transform [20], the curvelet transform [21], the ST [22], or the 
CWT [23,24], which is used in the synthetic examples of this paper. SST was originally applied to 
the audio signal analysis. Subsequently, many efforts have been made to use this method for seismic 
data processing and interpretation. In 2014, Herrera et al. [25] identified channels from seismic data 
using SST successfully and highlighted the advantages of this method over EMD and EEMD. In 
2015, they also used SST to separate the P and S waves of microseismic data [26]. Later, Mousavi et 
al. (2016) [27] used it for microseismic detection. Mousavi and Langston (2017) [28] showed that SST 
can be used to improve the denoising of seismic data. Tary et al. (2017) [15,29] used it for attenuation 
estimation. 

The generalized S-transform (GST) introduced by Gao et al. [6] overcomes the dilemma of the 
fixed wavelet in ST by introducing four undetermined parameters (amplitude, energy decay rate, 
energy delay time, and video rate) to construct the basic wavelet adaptive to the non-stationary 
signal characteristics in practical application. Due to having no restriction of the time window 
length, GST can obtain real time-frequency spectra with excellent time-frequency resolution, which 
provides more possibility and higher accuracy for the detailed information extraction of complicated 
non-stationary signals than ST. Since seismic signals are non-stationary and non-linear and show the 
characteristics of broadband and multi-frequency, using the GST instead of ST for seismic 
time-frequency analysis has been proven to be advisable. 

In this paper, inspired by the theory of SST and the advantages of the GST over ST, we propose 
a novel time-frequency analysis method that we have named synchrosqueezing generalized 
S-transform (SSGST). The rest of this paper is organized as follows: Section 2 gives a brief review of 
GST and SST and then deduces the mathematical formulas of the newly proposed method in detail. 
In Section 3, three synthetic examples are employed to explore the performance of the SSGST 
method. Section 4 illustrates the effectiveness of the proposed method in the field seismic data 
analysis for hydrocarbon detections. Conclusions are drawn in Section 5. 

2. Principles 

2.1. Generalized S-transform (GST) with Four Parameters 

Standard S-transform (ST) is proposed by Stockwell et al. [2]. This transform is defined as, 

  2 2| |
( , ) ( ) exp 2 2

2x

f
ST f x t t f i ft dt  






     (1)
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The basic wavelet function in standard ST is, 

   2 2exp 2 2
2f

f
w t t f i ft


   , (2)

where ( )x t  represents a signal, xST  denotes the ST of ( )x t . f  is frequency, t  is time and   
denotes the time shift. 

The inverse transform of the standard ST is obtained by, 

   ( ) ( , ) exp 2xx t ST f d i ft df  
 

 
    (3)

Although ST inherits the advantages of STFT and WT, its application is limited because of its 
fixed basic wavelet function. Gao et al. use a modulated harmonic wave with four undetermined 
parameters to replace the basic wavelet in ST to overcome the disadvantage caused by the fixed 
basic wavelet function. The modulated harmonic wave is written as, 

   2

0exp 2fw t A f ft i f f t        
, (4)

where A  is amplitude of the basic wavelet,   is energy attenuation ratio    0 ,   is energy 

delay time and 0f  is video frequency of the basic wavelet. 
So the generalized S-transform (GST) with four parameters of a signal ( )x t  is, 

        GST f    



     

2

0, = exp exp 2x f A x t f t i f ft dt , (5)

where xGST  denotes the result of the GST with four parameters. Its inverse transform is, 

   0
0

1 ,x
tx GST f d t
f A


 







  
        

= f IFT , (6)

where IFT  represents the inverse transform of Fourier transform. 

It is obvious that the four-parameter GST is degenerated into a standard ST when = 1A , 
1

=
2

, 

 = 0  and 0 = 1f . 

2.2. Synchrosqueezing Transform (SST) 

SST is a new reassignment technique and a powerful tool for precisely decomposing and 
analyzing a signal. It can provide a sharpened time-frequency representation by applying a 
post-processing reallocation to the original representation. Thus, the SST algorithm can be divided 
into two step: (1) computing the instantaneous frequency using the original time-frequency 
coefficients and (2) squeezing and reassigning step. So far, many researchers have developed SST 
algorithms combining a reassignment step and different time-frequency decomposing methods such 
as continuous wavelet transform, short-time Fourier transform, curvelet tranform, S-transform, and 
wavelet packet transform.  

Among these algorithms, synchrosqueezing continuous wavelet transform (SSCWT) is used for 
comparison with the new method proposed in this paper. It was proposed by Daubechies et al. [24] 
and can obtain higher resolution time-frequency spectra by squeezing and reconstructing the values 
of continuous wavelet transform (CWT) in the frequency direction. Thus, taking this method as an 
example, we briefly introduce the principle of SST. 

First, we calculate the CWT of a signal ( )x t  as,  

   1,x
t bWT a b x t dt

aa






  
  

 
 , (7)
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where xWT  denotes the continuous wavelet transform of a signal ( )x t . a  is the scale factor, and 

b  is the time translation factor.   t  is a mother wavelet and   is the complex conjugate of 

  t . 

Then, the instantaneous frequency at any time-scale location  ,a b  is, 

       
 


 

     
 

1 ,
, , 0,

, = 0

x
x x

x

WT a b
iWT a b WT a ba b b

WT a b
 (8)

Secondly, we reassign values of the time-frequency representation based on its local oscillation. 
The result of SST is, 

   
 

3
2

: ,
2

1, ,
i i l

x l x i i i

a a b

SST b WT a b a a


 







 

 
  , (9)

where ia  is the i th  scale value and   1=i i ia a a . l  denotes the l th  frequency point. The 

Equation (9) means that the CWT spectra values between    
 

    
 

1 1,
2 2l l  are squeezed to the 

l  frequency point along the frequency direction. Thus, the time-frequency resolution becomes 
better. 

The inverse transform of SST is written as 

   1Re ,x l
l

x b C SST b   
  

 
  (10)

In Equation (10),      
   1

0

1 ˆ
2

C d ,   ˆ  is the complex conjugate of the Fourier 

transform of the mother wavelet   t . 

2.3. Synchrosqueezing Generalized S-transform (SSGST) 

In this part, we give the basic principle of SSGST and derive the mathematical expressions of 
the positive transformation and lossless inverse transformation based on the mathematical theory. 

First, the Equation (5) can be reformulated as, 

   

      
xGST f 

  




 

           
0

2

0

, exp 2

exp exp 2

f b A i f fb

x t f t b i f f t b dt
 (11)

Let              0exp exp 2t A t i f t , then Equation (11) is expressed as, 

       0, exp 2f b f i f fb x t f t b dt 



    xGST , (12)

where,   t  represents the complex conjugate of   t . 

According to the Parseval theorem and transformation properties of scale and translation in 
Fourier Transform, the Equation (13) can be derived as follows:  

       1
0

1 ˆ ˆ, exp 2
2

ib
x f b i f fb x f e d    



 


  GST , (13)

where,  x̂  denotes the Fourier Transform result of the signal  x t .   ˆ  is the complex 

conjugate of the Fourier Transform result of   t . Especially, if   0 ,   ˆ =0 . 
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Then, we can calculate the instantaneous frequency of the signal  x t  by using Equation (14): 

   1
0

,
( , ) [ 2 , ]x

G f b
f f b f f i G f b

b
 


 


x

x

ST
ST  (14)

Now, we testify the feasibility and rationality of Equation (14) using an example of a harmonic 
wave   1 1= cos 2x t A f t . The Fourier transform result  x̂  of the signal  x t  is given as, 

  1 1 1ˆ ( 2 ) ( 2 )x A f f              , (15)

where 1A  and 1f  denote, respectively, the amplitude and frequency of the harmonic wave  x t . 

The GST of the harmonic wave  x t  can be calculated by substituting Equation (15) into 

Equation (13) and is given as, 

     11
0 1 1ˆ, exp 2 2

2
A

f b i f f f b f f       xGST  (16)

According to Equation (14), the instantaneous frequency of the harmonic signal  x t  is,  

   

     
   

x
x

ST
ST

   

   








 



        
      

1
0

1
1 1 0 0 1 1

0 1
11

0 1 1

,
( , ) [ 2 , ]

ˆexp 2 2

ˆ2 exp 2 2
2

x

G f b
f f b f f i G f b

b
iA f f f i f f f b f f

f f f
A

i i f f f b f f

 (17)

Therefore, the instantaneous frequency can be estimated by Equation (14). SSGST is defined as 
the Equation (18) according to the theories of synchrosqueezing. 

     
 

1 1
0

: , 2

, , exp 2
k

k x k l

x l f x k k k
f f f b f f

SSGST f b L GST f b i f f b f f 

 

  , (18)

where, lf  is the frequency of the SSGST result. fL  is the half length of frequency range 

 [ , ]l f l ff L f L  centered on the frequency point lf . kf  denotes the discrete frequency points in 

frequency ranges of the GST, and   -1=k k kf f f . 
The Equation (18) represents that the time-frequency spectra values among the frequency range 

 [ , ]l f l ff L f L  are superimposed on the frequency point lf , so that the SSGST has higher accuracy 

of time-frequency decomposition ability. 
Next, the inverse transform of SSGST is derived as follows:  
We integrate over frequency f on both sides of Equation (13), and obtain the Equation (19) by 

replacing 1f  with  . 

         1 1
00 0 0

1 1ˆ ˆ, exp 2 exp
2x f b i f fb f df d x ib d       



      GST  (19)

Let      
   1

0

1 ˆ
2

C d , (19) can be rewritten as, 

       1 1
00 0

1 ˆ exp , exp 2xx ib d C f b i f fb f df   


    GST  (20)

Because the signal  x t  is the real signal, we extract the real component  x b  from the 

Equation (20) as the following reconstructed signal: 
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         1 1
00 0

1 ˆRe exp Re , exp 2xx b x ib d C f b i f fb f df   


              GST  (21)

Through discretizing the equation on the right-hand side of Equation (21) and combining 
Equation (18), the inverse transform of SSGST is given as,  

   1Re ,x l f
l

x b C f b L
 

   
 SSGST  (22)

Therefore, we can recover the original signal from the SSGST spectrum by using the Equation 
(22). 

3. Synthetic Examples 

In this section, to clarify the superiority of the proposed SSGST method, two signals that are 
commonly used for testing the performance of time-frequency distribution have been adopt. We 
also designed a synthetic signal to further illustrate the effectiveness of the proposed method for 
separating different frequency components from complicated signals and signal reconstruction. In 
processing numerical signals, comparisons are made between SSGST and the other time-frequency 
methods, such as CWT, GST, and SSCWT. 

3.1. The Double Linear Chirped Signal 

Linear frequency-modulated (FM) signal is a generally accepted model that is used to test the 
performance of time-frequency distribution. The double linear chirped signal shown in Figure 1 is 
composed of two crossing linear chirps whose main frequencies are linearly increasing and 
decreasing with time, respectively. 

 
Figure 1. The double linear chirped signal. 

The CWT, GST, SSCWT, and SSGST methods are applied to this signal, and the relative results 
analysis are shown in Figure 2. As can be seen, although all energy centers around the true 
instantaneous frequencies of the signal, the energy of the CWT and GST results smears heavily 
(Figure 2a,b). In contrast, due to the effect of the “squeezing,” SSCWT and SSGST squeeze all 
time-frequency coefficients into the time-frequency trajectory, which makes the spectra more 
energy-concentrated, as displayed in Figure 2c,d. In other words, SSCWT and SSGST show higher 
time-frequency resolution than CWT and GST. Furthermore, compared with the result of SSCWT, 
SSGST shows that the signal energy is much more concentrated around the ridge and that the 
time-frequency resolution performs better. The arrows show that there is no distinct “steps” in the 
SSGST result compared with the result of SSCWT. 
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(a) (b) 

(c) (d) 

Figure 2. Time-frequency spectra of the double linear chirped signal based on (a) Continuous 
Wavelet Transform (CWT), (b) Generalized S-transform (GST), (c) Synchrosqueezing continuous 
wavelet transform (SSCWT), and (d) Synchrosqueezing generalized S-transform (SSGST). 

3.2. The Double Hyperbolic Chirped Signal 

In order to futher verify the effectiveness of the SSGST method in dealing with non-stationary 
signal whose time-frequency characteristics is more complicated, we apply it to the double 
hyperbolic chirped signal (Figure 3), whose main frequency hyperbolic increases. 

 
Figure 3. The double hyperbolic chirped signal. 
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The results generated by the CWT, GST, SSCWT, and SSGST methods are shown in Figure 4. 
The time-frequency represents in Figure 4a,b resulted from the CWT and GST show poor energy 
concentration. However, as can be seen from Figure 4c,d, both SSCWT and SSGST provide higher 
resolution time-frequency result than CWT and GST, and they are good approximations of the 
signal’s instantaneous frequency. Compared with the SSCWT result, the SSGST representation 
shows an obviously higher energy concentration (see Figure 4c,d). 

(a) (b) 

(c) (d) 

Figure 4. Time-frequency spectra of the double hyperbolic chirped signal based on (a) CWT, (b) GST, 
(c) SSCWT, and (d) SSGST. 

According to the comparison of the SSGST method with the CWT, GST, and SSCWT methods, 
we find that the SSGST method has better performance in improving time-frequency resolution and 
accuracy of time-frequency resolution. Moreover, there is no spurious frequency in the 
time-frequency spectrum of SSGST; thus, high-resolution time-frequency analysis results can be 
obtained accurately by the SSGST method. 

3.3. A Synthetic Seismic Signal 

Next, we apply CWT GST, SSCWT, and SSGST to a synthetic seismic signal for illustrating the 
effectiveness of separating the different frequency components of seismic signals. The synthetic 
signal is comprised of a cosinusoid signal 1sig , two intermittent signal 2sig  and 3sig , and a 
simulated attenuate seismic signal 4sig , which is composed of four different frequency Ricker 
wavelets at 0.2 s, 0.4 s, 0.6 s, and 0.8 s of 100 Hz, 80 Hz, 65 Hz, and 55 Hz, respectively (Figure 5). 

1 1.5cos(16 )sig t  (23) 
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 
 


2

cos(80 ), [0 ,0.5]
0, otherwise

t t
sig  (24) 

3

0, otherwise
cos(100 ), (0.5 ,1]

sig
t t


 


 (25) 

 
Figure 5. The components of the synthetic signal. 

The results of the synthetic signal obtained by CWT, GST, SSCWT, and SSGST are presented in 
Figure 6. As can be seen in Figure 6, all methods can separate the frequency components well, and 
the time-frequency representation generated by the SSCWT and SSGST methods provide clearer 
time-frequency resolution than the CWT and GST methods. Comparing Figure 6b with Figure 6d, 
SSGST and SSCWT show similar frequency resolution. However, SSGST can depict the 8Hz cosine 
signal with higher resolution than SSCWT. 

(a) (b) 
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(c) 
 

(d) 

Figure 6. Time-frequency spectra of the synthesized signal based on (a) CWT; (b) GST; (c) SSCWT; 
(d) SSGST. 

3.4. Comparative Quantification and Reconstruction Analysis 

To quantify the performance of the SSGST and the other algorithms for generating TF 
representations of synthetic examples, we choose Rényi Entroy [30] as a quantitative performance 
index. The Rényi entropy is an objective indicator to evaluate the energy concentration of a 
time-frequency result; a lower Rényi entropy value denotes a more energy-concentrated 
time-frequency representation. The corresponding Rényi entropies are listed in Table 1. As can be 
seen in Table 1, in terms of the first and second synthetic examples, the SSGST result has the lowest 
Rényi entropy compared with the other time-frequency transforms. In the synthetic seismic signal 
processing, the Rényi entropy of the SSGST result ranks behind only the SSCWT. Therefore, in 
summary, compared with the other methods mentioned above, the SSGST method is more likely to 
obtain an energy-concentrated time-frequency result. 

Table 1. The Rényi Entropies of three synthetic examples based on the Continuous Wavelet 
Transform (CWT), Generalized S-transform (GST), Synchrosqueezing continuous wavelet transform 
(SSCWT), and Synchrosqueezing Generalized S-transform (SSGST) methods. Signal1 is the double 
hyperbolic chirped signal. Signal2 is the double hyperbolic chirped signal. Signal3 is the synthesized 
signal. 

Rényi Entropy CWT GST SSCWT SSGST
Signal1 5.1846 6.0156 2.3329 1.1779 
Signal2 6.6262 4.9479 1.6304 0.8297 
Signal3 7.0540 5.0889 1.2518 1.4250 

We adopted the mean square error (MSE) to validate the reconstruction ability of the SSGST 
method. The corresponding MSE of the SSGST and the other algorithms are listed in Table 2. As 
shown in Table 2, the MSE values of SSGST are in the range of acceptable reconstruction error while 
taking the MSE values of other time frequency transforms as references. 

Table 2. The mean square error (MSE) values of synthetic examples based on the Synchrosqueezing 
Generalized S-transform (SSGST) and the other algorithms. 

MSE CWT GST SSCWT SSGST 
Signal1 0.0121 3.6979 × 10−27 2.3060 × 10−5 1.8626 × 10−5 
Signal2 0.0181 3.2963 × 10−27 0.0214 0.0083 
Signal3 0.0221 5.0622 × 10−26 7.5347 × 10−8 1.0925 × 10−4 
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Therefore, the SSGST method improves the resolution of time-frequency and also has a good 
reflection of strong or weak amplitude and high or low frequency. The newly proposed method can 
also reconstruct the original signal well with a lower reconstruction error. 

4. Field Data Examples 

When seismic waves propagate through hydrocarbon reservoirs, waves induced by fluid flow 
can lead to abnormal attenuation of energy and frequency (e.g., [31,32]). The phenomenon of 
abnormal attenuation mainly shows the loss of high-frequency energy and the conservation of 
strong low-frequency energy (e.g., [33–37]). Spectral decomposition technology can be utilized to 
identify hydrocarbon reservoirs by analyzing the different frequency response characteristics among 
different scale geological bodies (e.g., [38]). Here, we apply the SSGST method to seismic field data 
from the ZhongJiang Gas Field located in the western Sichuan Basin, China, in order to identify 
hydrocarbon reservoirs by analyzing the abnormal instantaneous frequency and energy. 

The seismic section consists of 304 traces with 1126 sampling points and a sampling interval of 
2 ms, which is shown in Figure 7. The green curve in the horizontal direction at around 1.35 ms is a 
seismic horizon and the green vertical line represents a gas well. The area within the blue ellipse is 
a gas-bearing reservoir, which is our study area. Figure 8 is a histogram based on comprehensive 
analysis of log data. There are two sets of hydrocarbon reservoirs in the study area: the first set of 
reservoirs (JS33-1) is located in near a depth of 2560 m and thickness of about 22 m, and the second set 
of reservoirs (JS33-2) is located in near a depth of 2600 m and thickness of about 18 m. 

 

Figure 7. The seismic section from the ZhongJiang Gas Field. 
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Figure 8. Histogram from the comprehensive analysis of well data (The red curve on the left is 
acoustic log (AC), and the unit of AC is us/ft. The black curve is natural gamma ray log (GR), and 
the unit of GR is API. The blue curve is true formation resistivity log (RT), and the unit of RT is 
OMM. The red curve on the right is shallow investigate double lateral resistivity log (RS), and the 
unit of RS is OMM.). 

We used the CWT, GST, SSCWT, and SSGST methods respectively to processes the seismic data 
and extract the constant frequency sections at 40 Hz and 50 Hz, as shown in Figures 9–12. The results 
are enlarged, and only the areas with time ranging from 1.2 s to 1.9 s are displayed in these constant 
frequency sections. In the constant frequency sections at 40 Hz (Figures 9a, 10a, 11a and 12a), we can 
see a strong energy in the study area. However, obvious energy attenuation can be seen in each of 
the 50 Hz sections (Figures 9b, 10b, 11b and 12b). This phenomenon is consistent with objective 
reality. Therefore, the four methods are all effective for hydrocarbon detection. 

(a) (b)

Figure 9. Constant frequency sections based on CWT (a) at 40 Hz and (b) at 50 Hz. 
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(a) (b)

Figure 10. Constant frequency sections based on GST (a) at 40 Hz and (b) at 50 Hz. 

(a) (b)

Figure 11. Constant frequency sections based on SSCWT (a) at 40 Hz and (b) at 50 Hz. 

(a) (b)

Figure 12. Constant frequency sections based on SSGST (a) at 40 Hz and (b) at 50 Hz. 

Although the analysis results of the CWT and GST can observe the abnormal attenuation in the 
hydrocarbon reservoir, they offer rough reservoir information due to the poor time-frequency 
resolution of CWT and GST (Figures 9 and 10). Compared with the CWT and GST methods, the 
SSCWT method can improve the time-frequency resolution and obtain the accurate reservoir 
information but cannot identify the boundaries of the two sets of hydrocarbon reservoirs, as shown 
in Figure 11. 
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The constant frequency sections at 40 Hz and 50 Hz obtained by SSGST are shown in Figure 12. 
By comparing these two constant frequency sections, we can conclude that the hydrocarbon 
reservoir is in the elliptical area. To highlight more details about the elliptical area in Figure 12, we 
have locally enlarged the 40 Hz constant frequency section and combined it with the red acoustic 
velocity logging curve to analysis. The strong energy group in the two black-dashed, rectangular 
areas in Figure 13 represent the two hydrocarbon reservoirs, namely JS33-1 and JS33-2, respectively. 
According to the comparison with CWT, GST, and SSCWT, we can find that SSGST can provide 
higher time-frequency resolution and can more accurately extract the abnormal response 
characteristics of seismic signals. Therefore, the SSGST method can locate hydrocarbon reservoirs 
effectively and depicts the reservoir boundary accurately with higher precision. 

 

Figure 13. The details of Figure 12a near hydrocarbon reservoir. 

5. Conclusions 

A more energy-concentrated time-frequency result denotes better time-frequency location and 
better characterization of the time-varying feature. In this paper, the new synchrosqueezing 
algorithm based on the generalized S-transform (GST), namely the SSGST method, squeezes and 
reconstructs the complex coefficient spectra produced by the GST along the frequency direction so 
that the energy distributions on the time-frequency spectra are concentrated around the real 
instantaneous frequency of the target signal, thus showing satisfying time-frequency resolution. 
SSGST is a promising technique for the extraction of time-varying features of seismic signals. Results 
of the three synthetic examples demonstrate that the SSGST method can correctly obtain 
time-frequency representations of the signals and depict instantaneous frequency information better 
compared with CWT, GST, and SSCWT. Moreover, SSGST can reconstruct the original signal with 
small errors. The feasibility and validity of the SSGST method in seismic time-frequency analysis for 
hydrocarbon detection is confirmed via an applied example. Therefore, the SSGST method can be 
used as a new high-precision time-frequency analysis method in seismic signal processing and 
analysis. 
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