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Abstract: Phytoplankton such as diatoms or desmids are useful for monitoring water quality.
Manual image analysis is impractical due to the huge diversity of this group of microalgae and
its great morphological plasticity, hence the importance of automating the analysis procedure.
High-resolution images of phytoplankton cells can now be acquired by digital microscopes, which
facilitate automating the analysis and identification process of specimens. Therefore, new systems
of image analysis are potentially advantageous compared to manual methods of counting for
solution identification. Segmentation is an important step in the analysis of phytoplankton images.
Many standard techniques like thresholding and edge detection are employed in the segmentation
of diatoms and other phytoplankton, which are crucial organisms in microscopy images. However,
in general, they require several parameters to be fixed beforehand by the user in order to get the
best results. This process is usually done by comparing results and looking for the best parameters.
To automatize this process, we propose an automatic tuning method to find the optimal parameters
in an iterative procedure, called Parametric Segmentation Tuning (PST). This technique compares
successive segmentation results, choosing the ones that gets the maximal similarity. In this paper,
tuning is formulated as an optimization problem using a similarity function within the solution space.
This space consists of the set of binary images that are generated by the segmentation technique to be
tuned, where these binary images are seen as a function of the original images and the segmentation
parameters. The PST technique was tested with two of the most popular techniques employed to
segment phytoplankton images: the Canny edge detection and a binarisation method. The results of
the thresholding technique were validated by comparing them to those of the Otsu method and the
Canny method with a ground truth. They show that PST is effective to find the best parameters.

Keywords: diatom; segmentation; tuning; thresholding; phytoplankton

1. Introduction

Segmentation is a crucial step in the analysis and identification of diatoms and other
phytoplankton organisms because it allows for the separation of the cells from the background.
Image segmentation is commonly addressed by standard techniques, such as thresholding and edge
detection, in which some parameters are usually required to be fixed beforehand. Moreover, there is
not an automatic method that does not require prior knowledge of the employed technique to tune the
segmentation procedure. Many segmentation methods have been proposed, but the problem cannot
be completely solved, as image segmentation is an ill-posed problem without a clear unique solution.

Appl. Sci. 2017, 7, 762; doi:10.3390/app7080762 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4986-630X
http://dx.doi.org/10.3390/app7080762
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 762 2 of 16

Therefore, users have to tune parameters by comparing the results obtained with different parameter
values to get the best ones. This task is time-consuming and subjective, given that there is not an ideal
ground-truth image.

The few works published in this domain are mainly related to a particular segmentation technique.
In this way, Howe [1] developed a stability heuristic criterion that helps to tune a method to binarise
documents. Susukida [2] proposed an evaluation criterion of segmentation, based on a measure of
image entropy, to automatically optimize the granularity of a graph-based segmentation technique
for mammography. Pignalberi et al. [3] used genetic algorithms to tune range image segmentation.
Martin et al. [4] proposed a method to tune the key parameters thanks to a preliminary supervised
learning stage. Khan et al. [5] introduced an automatic feedback-based image processing method
that uses a fuzzy formulation of a priori knowledge of the characteristics of the objects of interest
to adapt the segmentation parameters. However, after a literature review, tuning techniques for
diatom segmentation methods were not found. Several methods have been employed for diatom
segmentation. Fisher et al. [6] find two optimal segmentation thresholds heuristically. Koster et al. [7]
developed a toolbox, which includes several segmentation techniques, such as the Canny [8] edge
detector and the Otsu [9] threshold. These techniques are tested by users to build a workflow for the
segmentation and feature extraction of diatoms. Jalba et al. [10] developed a method-based on the
watershed segmentation [11]. These techniques need several parameters to be fixed heuristically, given
that there is not a tuning technique that helps finding the best parameters. Therefore, in this paper,
a formal and complete definition of a tuning segmentation technique is introduced. It is shown how
this technique can be employed to find the best parameters for diatom segmentation.

The technique was tested with two of the most popular techniques to segment phytoplankton
images [7]: the Canny edge detection [8] and a binarisation method. Results of the binarisation
algorithm were compared to those obtained by the Otsu method and those obtained by applying
Canny with a ground truth. They show that the proposed tuning method is effective and useful to find
the optimal parameters.

The paper is organized as follows: Section 2 introduces the formulation and mathematical
definition of the proposed method. Section 3 provides experiments and results. Lastly, some
conclusions and perspectives of this work are given.

2. Materials and Methods

To develop the proposed method, 50 diatom images taken from the public data Automatic Diatom
Identification and Classification (ADIAC) project were used [12]. The mathematical algorithms to
tune the segmentation methods were developed using Matlab. The software was implemented in an
Intel core i7-4500U 1.8GHz computer with 1.6 GB RAM running under Windows 8.1. The method
will become publicly available through the lab webpage http://www.gatv.ssr.upm.es/~jmm/PST_
8989776.zip.

The methods commonly used to segment phytoplankton usually require some parameters to
be fixed by the user before their analysis and classification. The segmentation result is generally a
binarised image where the background appears in black and the foreground in white or vice versa.
The resulting images, obtained with different values, are usually compared between them or with a
ground truth image, i.e., the image produced by an expert. This comparison is made to find values
that make it possible to obtain the best segmentation.

As shown in Figure 1, by varying a parameter within a range of values in a segmentation
method (Canny), results move from under-segmented images (Figure 1B,C) to over-segmented ones
(Figure 1E,F), passing through an intermediate value where the best possible result is obtained
(Figure 1D). It can be seen that changes between successive under-segmented and over-segmented
images are more abrupt compared to those produced between images closer to the optimal result.
This behaviour is expected because the optimal result seeks to get closer to what is actually seen in the
original image. The under-segmented and over-segmented results correspond to the farthest values

http://www.gatv.ssr.upm.es/~jmm/PST_8989776.zip
http://www.gatv.ssr.upm.es/~jmm/PST_8989776.zip
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from the optimum. In these results, true edges or regions are eliminated (under-segmentation) or false
ones are produced (over-segmentation), introducing the abrupt changes observed between them.

Therefore, if two successive under-segmented images are compared, the first one will be less
under-segmented than the next one. Assuming that the first image is the ground truth, we will have
a high number of false positives and a low number of false negatives. Similarly, when comparing
two successive over-segmented images, the first one will be less over-segmented than the second one.
In this case, if the first image is the ground truth, we will then have a low number of false positives and
a high number of false negatives. It must be mentioned that this observation is valid in diatom and
phytoplankton typical images, where segmentation is developed to detect the shapes of the organisms.
However, this is not valid in images where textures or complex background are observed. Based on
this premise, the following method for tuning parameters is proposed.
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Figure 1. (A) Original image taken from the public data Automatic Diatom Identification and
Classification (ADIAC) project. Outcomes are of the variation of a parameter (hmax) within a range of
values (0, 1) with the Canny edge detector, where results move from under-segmented images (B,C) to
over-segmented ones (E,F), passing through an intermediate value where the best possible result is
obtained (D).

Let T
(

I,
→
p
)

represent the transformation of an image I into a binary one as a result of a

segmentation algorithm given a certain number r of parameters, i.e.,
→
p = {p1, p2, . . . pr}. In the binary

image, level 1 represents the object of interest, and level 0 the background. Therefore, an r-dimensional
solution space Pr ⊆ Rr generated by the transformation T

(
I,
→
p
)

can be defined. In the solution space,
each coordinate is given by a parameter and each point of the space represents a binary image.

Considering image segmentation as an optimization problem, the best solution can be found by
maximizing a similarity function or minimizing a distance used as cost function Ψ in Pr. In this way,
the best solution can be found by sweeping the solution space, while evaluating the cost function
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between each pair of successive binary images. Each binary image IB

(→
p
)
= T

(
I,
→
p
)

is obtained by

modifying at least one parameter of the segmentation algorithm T
(

I,
→
p
)

. For the sake of simplicity,
we will now consider the number of parameters equal to one, i.e., r = 1. In this case, the technique
consists of an iterative process that attempts to minimise the error by comparing two successive
segmented images IB(p = m) = T(I, p = m) and IB(p = m− 1) = T(I, p = m− 1), i.e., when the
parameter takes the values m and m − 1.

2.1. Definition of the Segmentation Tuning as an Optimisation Problem

To compare each pair of successive images in the space of parameters, it is necessary to formalize
the properties of the binary images. In addition, some definitions and operators are established to be
applied in our tuning technique.

A binary image I of size N×M, where N and M are the width and height of the image respectively,
can be represented as a binary vector α of size u = N × M.

Definition 1. Let the binary set be represented by Z2 = {0, 1}, then the u-dimensional binary space is given by:

Zu
2 = Z2 × Z2 × . . . × Z2 u-times.

Definition 2. An element α of Zu
2 is a u-upla formed by α = (α1, α1, . . . αu) , with αi ∈ Z2 . This is:

Zu
2 = {α = (α1, α1, . . . αu), |, α ∈ Z2 × Z2 × . . .× Z2 ∧ αi ∈ Z2}.

Definition 3. If α ∈ Zu
2 , the complement α is defined as the vector obtained by inverting all the elements of α:

α = (α1, α2, . . . αu) where αi = 0 if αi = 1 and αi = 1 if αi = 0.

Definition 4. If α ∈ Zu
2 , the length of α is defined as a function ` of the binary u-dimensional space to the

positive integers Z+ :

` : Zu
2 −→ Z+ function is defined as : `(α) = ∑u

i=1 αi.

Definition 5. If α ∈ Zu
2 , the norm of α is defined as a function N of the binary u-dimensional space to the

positive real numbers R+

N : Zu
2 −→ R+ function is defined as : N (α) = ‖α‖ =

√
∑u

i=1 α2
i =

√
∑u

i=1 αi =
√

l(α).

Operations between the elements defined in the space Zu
2 .

Definition 6. Let α, β represent two elements of the space Zu
2 . The dot operation

⊙
is defined as:

α
⊙

β = < α, β > = α·β = α1.β1 + α2.β2 + . . . αu.βu = ‖α‖‖β‖cosφ.

Definition 7. Difference Operation 	
Let α, β represent two elements of the space Zu

2 . The difference operation is defined as a function 	 :
Zu

2 × Zu
2 − > {−1, 0, 1}.
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It takes two binary images of α, β ∈ Zu
2 , compares their elements αi, βi and assigns them a third

image α 	 β, given by the difference between the elements in the following way:

OPERATION 	

	 ffi

1 0

βi
1 0 −1
0 1 0

Order rules between elements of the space Zu
2 .

If α, β ∈ Zu
2 , an order rule indicating the similarity between the elements α, β is defined as:

R(α, β) =


[α > β] : f alse negative
[α < β] : f alse positive
[α = β] : true negative

or true positive.

The following operations are necessary to define the order rules:
If R(α, β) = [αi = βi], then 	 = αi − βi = 0. If αi = βi = 1, they are true positives. If αi = βi = 0,

they are true negatives.
If R(α, β) = [αi > βi], then 	 = αi − βi = 1, i.e., αi = 1 and βi = 0. Therefore, there is a

false negative.
IfR(α, β) = [αi < βi], then 	 = αi − βi = 11 (2’s complement), i.e., αi = 0 and βi = 1. Therefore,

there is a false positive.

Definition 8. Matches operation4
Let α, β represent elements of the space Zu

2 . The matches operation is defined as a function

4 : Zu
2 × Zu

2 → Z+.

It takes two binary images of α, β, compares their elements αi, βi and assigns them a value, written
as α4 β. From the matches operation, it can be observed that:

α4 β is the number of matches when αi = βi = 1
α4 β is the number of matches when αi = βi = 0
α4 β is the number of matches when αi = 0, βi = 1
α4 β is the number of matches when αi = 1, βi = 0.

If Zu
2 is a u-dimensional binary space (see Definition 1) and T is a transformation of image I in a

binary image IB (IB ⊂ Zu
2 ), depending on

→
p , then the transformation T generates a group of binary

images IBn = T
(

I,
→
p n

)
depending on each

→
p n in all the space of Pr.

Given IBn = T
(

I,
→
p n

)
and IB(n−1) = T

(
I,
→
p (n−1)

)
, a similarity function can be defined as

Ψ : Zu
2 × Zu

2 −→ [0, 1].

So that (Ψ
(

IBn, IB(n−1)

)
compares IBn with IB(n−1) in all the space of P3 (see Definition 8).

If IBn is congruent with IB(n−1), then I <Bn ∼= IB(n−1) = I∗Bn is the segmented optimum image,

which depends on the optimum parameter
→
p
∗
=
[
p∗1 , p∗2 , p∗3

]
, i.e.,

→
p
∗
= [p∗1 , p∗2 , . . . p∗r ]← arg

{
optimumΨ

(
[IBn

(→
p n

)
] , [IB(n−1)

( →
p (n−1)

)])}
(1)
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subject to IBn, IB(n−1)Zu
2 and

→
p n,

→
p (n−1) ∈ Pr.

The Ψ function is an index associated to each pair of successive binary images
(

IBn, IB(n−1)

)
of

Zu
2 × Zu

2 . From the argument of the optimum of Ψ, the best binary segmented image is found I∗Bn.

2.2. Similarity Functions

Similarity functions [13], also called indexes or indicators based on qualitative (binary) attribute
data, were first used in ecology for grouping of either biotical communities or ecologically related
species. The literature refers to over 50 similarity or dissimilarity indexes. The following indexes are
derived from Definition 8.

Definition 9. Similarity function
A similarity function or indicator Ψ(α, β) is a measure of the degree of similarity between two vectors α, β

of the u-dimensional binary space. Ψ(α, β) has the following properties:

Ψ(α, β) =

{
0 ≤ Ψ(α, β) < 1 if α 6= β

1 if α = β

Ψ(α, β) = Ψ(β, α).

The operation4 is used to define different similarity functions between α, β such as:

1. Co-linearity indicator

The co-linearity indicator is proposed based on the R(α, β) = [αi = βi] relation with matches
< α, β >, or true positive relations.

Ψ ICo(α, β) = λ =
< α, β >√
N (α)

√
N (β)

(2)

If λ = 1, then α, β are co-linear. If λ = 0, then α, β are orthogonal.

2. Maximum sensitivity area indicator

This indicator relates the true positive rate (TPR) and the false positive rate (FPR). The relation
between the TPR and the FPR is represented by the well-known receiver operating characteristic (ROC)
curve [14]. If the TPR tends to 1 and the FPR tends to 0, then the correlation between α, β is high.
The following relations define the metrics of the indicator:

TPR =
1

1 + k1
FPR=

1
1 + k2

k1 =
< α , β >

< α, β >
k2 =

< α, β >

< α, β >

ΨIS(α, β) = Ψarea−max(α, β) = 0.5
(

1 +
1

1 + k1
− 1

1 + k2

)
(3)

If k1 approaches 0 and k2 approaches infinite, then ΨIS(α, β) tends to 1.
If the false negative relation < α, β > tends to 0, then k1 tends to 0. This is if β tends to α, then:

< α , β > = < α , α, > = 0.

If the false positive relation < α, β > tends to 0, then k2 tends to infinite. Thus, if β tends to α then:

< α, β > = < α, α > = 0.
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If ΨIS(α, β) approaches 1 (maximum area), then the results obtained in the classification is accurate
(Figure 2A).

3. Minimum distance indicator

This indicator measures the minimum distance between the points (TPR, FPR) and (0,1) in the
ROC space, as shown in Figure 2B.

Ψdmin(α, β) =

√(
1−

(
1

1 + k1

))2
+

(
1

1 + k2

)2
(4)

If k1 approaches 0 and k2 approaches infinite, then Ψdmin(α, β) tends to 0 (minimum distance).
The conditions for k1 and k2 are identical to those of the previous indicator.

4. Coverage indicator of the segmented area

The coverage or superposition indicator compares the reference set α with the segmented one
β, and presents the one-to-one correspondence between the sets pixels. The coverage indicator of
segmented area ΨIC(α, β) is defined as [13]:

ΨIC(α, β) =
2< α, β >

‖α‖+ ‖β‖ (5)

where 0 ≤ Ψ(α, β) < 1 if α 6= β and 1 if α = β.
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2.3. Parameter Segmentation Tuning Technique (PST)

The optimal values of the r parameters of a segmentation method can be found by using the PST
technique illustrated in Figure 3. A similarity indicator is employed to compare binary successive
images, i.e., IBn, IB(n−1).



Appl. Sci. 2017, 7, 762 8 of 16

Appl. Sci. 2017, 7, 762  7 of 16 

( , ) = 2 < , >‖ ‖ + ‖ ‖ (5) 

where 0 ≤ ( , ) < 1	if	 ≠  and 1	if	 = . 

Figure 2. (A) A receiver operating characteristic (ROC) curve obtained from tuning the Canny edge 
detector with Figure 1A. The index of sensitivity was obtained from the ROC curve. It represents a 
relationship between the true positive rate (TPR) when it tends to 1 and the false positive rate (FPR) 
when it tends to 0. (B) Minimum distance between the perfect segmentation point (0,1) and the point 
(FPR, TPR). 

2.3. Parameter Segmentation Tuning Technique (PST) 

The optimal values of the r parameters of a segmentation method can be found by using the PST 
technique illustrated in Figure 3. A similarity indicator is employed to compare binary successive 
images, i.e., , ( ). 

Input parameters
 image I, parameters P

Variables 
maxΨ =  0 

Segmentation algorithm 
 T(I,P(n))  T(I,P(n-1))

 Ψ(IB(P(n)), IB(P(n-1)))  > 
max Ψ

n = n+1

 max Ψ  =  Ψ(IB(P(n)), IB(P(n-1)))
P* = Pn

yes

n = max n

out P*

yes

 IB(P(n))

IB(P(n-1))

no

no

 

Figure 3. Flowchart of the Parametric Segmentation Tuning technique. The iterative process is carried 
out by modifying the segmentation parameters of the technique to be tuned, which is used to create 
the space of binary images. They will be compared to get the best result using as criteria a similarity 
indicator. 

Figure 3. Flowchart of the Parametric Segmentation Tuning technique. The iterative process is
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similarity indicator.

The corresponding algorithm works, in essence, by modifying each one of the parameters in
steps, getting the segmented images and comparing them by pairs to find the parameters that produce
the closest similarity between them as follows.

The PST technique pseudo-code

Input:
I: image to segment
→
p : Segmentation parameters
T: Segmentation technique to be tuned
Functions:
sim(a,b): similarity function Ψ between binary images a and b.
Definitions:
p10, p20, . . . pr0: initial values of the parameters
p1 f , p2 f , . . . pr f : final values of the parameters in

→
p

Creates space of segmented images and compares successive images:
→
p ← { p1 ← p10, p2 ← p20, . . . pr ← pr0 } Initialisation of the parameters

min_sim← very high value. Initialisation of the minimum similarity index

IB ← T
(

I,
→
p
)

: output segmented image for a given selection of parameters
→
p

repeat for every parameter in
→
p until p1 = p1 f , p2 = p2 f , . . . , pr = pr f

{
pn ← pn+1 increase a parameter pn in

→
p

IB ← T
(

I,
→
p
)

:

Compare segmented images IB , IB−1
min_sim_temp← sim (IB , IB−1)
If (min_sim_temp < min_sim)

{
min_sim ← min_sim_temp
→
p * ← →

p
}

IB−1 ← IB
}

Output:
→
p *: best parameters.
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The optimum of the similarity function Optimum Ψ
(
[IBn

(→
p n

)
] , [IB(n−1)

( →
p n−1

)])
, in the space

of parameters Pr ⊆ Rr, converge to a region of minimum locals. This means that, although infrequent,
it is possible to find more than one solution, i.e., the Canny edge detector, to the segmentation problem.
Those solutions are very close, and are visually almost identical, as can be observed in Figure 4.Appl. Sci. 2017, 7, 762  9 of 16 
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2.4. Validation of the PST Technique

To validate the PST approach, two segmentation techniques were tuned: the Canny edge
detector [8] and a binarisation procedure. These techniques are usually used as steps in the analysis
and identification of diatoms and the detection of other phytoplankton organisms [7]. Figure 5 shows
nine images taken from the employed dataset [12]. A different kind of diatoms were chosen.

1. Canny edge detection technique

The Canny edge detector [8] is denoted as IB = TC(I, [ hmin, hmax, σ]). It employs three parameters:
→
p = [hmin, hmax, σ], where σ is the standard deviation of a convolution mask given by the first
derivate of the Gaussian function, and hmin and hmax are the thresholds used in the hysteresis process.
The purpose of this process is to reduce the appearance of false contours and local maximum values
produced by noise.

2. Binarisation technique

To test the PST technique in a thresholding method, we developed our own thresholding algorithm.
This segmentation technique consists of separating pixels on the image into two classes, high- and
low-intensity pixels. This technique transforms a greyscale image into a binary one IB. This makes it
possible to differentiate objects in the background by identifying a threshold t. In this case, the pixels
labelled with 1 belong to the object, while the pixels labelled with 0 belong to the background.

We propose the following method to find the optimal threshold t∗ using similarity functions.

IB = T(I, t(κ)) =

{
1 if I(x, y) > t
0 in other case
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The optimal threshold value t∗ is the argument of the maximum of the similarity function, and it
is subject to one of the following conditions:

i f {arg(max(Ψ(In, In−1)))} ≤ µ⇒ t∗ = arg(max(Ψ(In, In−1))) + κσ

i f {arg(max(Ψ(In, In−1)))} > µ⇒ t∗ = arg(max(Ψ(In, In−1)))− κσ

where µ is the mean and σ the standard deviation of the image, and κ is a normalisation factor to
be tuned. κ was found by the PST in the range: 0.6 < κ < 5. The value κσ defines the quality of
the binarisation.
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3. Results and Discussion

The results of the binarisation algorithm were validated by comparing them with those of the
Otsu method, one of the most popular and efficient thresholding techniques, and those of Canny with
a ground truth.

3.1. Tuning of the Parameters of the Canny Edge Detector

Figure 6 shows the results obtained by tuning the Canny detector with the PST and by an expert
in a blind test obtained with the PST. As shown, the best manual segmentation took around 25 min to
be found, while the PST took around 42 s.

Table 1 presents the optimal values obtained from the PST and the expert. As can be seen in
Figure 6, the results are very similar, even though the values from the user are sometimes far from
those obtained from the PST.
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Table 1. Segmentation results.

Images PST Parameters Duration Manual Parameters Duration

Original hmin hmax σ Time [s] hmin hmim σ Time [min]

A1 0.095 0.7 0.8 24 0.15 0.7 0.2 16
A2 0.015 0.7 0.8 35 0.05 0.7 0.6 23
A3 0.015 0.5 0.8 25 0.05 0.5 0.4 21
A4 0.095 0.7 0.9 34 0.05 1.0 0.4 22
A5 0.095 0.7 0.9 45 0.05 0.6 0.7 24
A6 0.015 0.3 0.8 57 0.05 0.3 0.9 20
A7 0.095 0.7 0.6 55 0.09 0.8 0.9 35
A8 0.095 0.3 0.9 47 0.17 0.3 0.7 28
A9 0.095 0.4 0.4 59 0.09 0.4 0.3 40

3.2. Tuning of the Binarisarion Algorithm Using PST

To understand how the PST find the optimal parameters, a deeper analysis of the binarisation
algorithm is done. The analysis of the graphic in Figure 7 makes it possible to see the evolution of
the sensitivity and coverage similarity indicators for the image A in Figure 1. It must be noted that
very similar successive segmented images can also be found when certain parameters take very low or
very high values, i.e., values outside the useful range of a parameter. For example, when an image is
thresholded by hand, it is easy to see that if the threshold is too low or too high, the resulting images
will be almost completely white or black, and the changes between two successive binarised images
will be very low. Therefore, the scanning of extreme values should be avoided, which will also speed
up the process of searching for the best parameters values. In any case, if the ranges of useful values
are unknown, the problem is easily solved by excluding the maximum and minimum similarity values
found at the ends of each parameter range, as shown in Figure 7.
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Figure 8 shows the graphics of the four indexes for the image A5 in Figure 9. As it can be observed,
the shape of the sensitivity and the total coverage indexes are very similar and the best threshold is
t = 170. Indexes of minimum distance analysis (Figure 8B) and co-linearity (Figure 8C) vary in a similar
way, and the first local maximum, employed as optimal threshold, is also located close to t = 170.Appl. Sci. 2017, 7, 762  13 of 16 
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Figure 9 and Table 2 compare the threshold outcomes obtained by PST technique with the results
obtained by means of the Otsu algorithm. It can be seen that the results are similar, showing the quality
of the PST in finding an optimum threshold.

Table 2. Thresholding Results.

Images PST Otsu

Original t k to

A1 0.656 1.65 0.651
A2 0.394 3.50 0.490
A3 0.749 2.00 0.745
A4 0.518 3.50 0.576
A5 0.757 1.75 0.749
A6 0.578 2.25 0.588
A7 0.639 2.75 0.694
A8 0.742 3.40 0.529
A9 0.785 2.20 0.517

4. Conclusions

Several methods have been proposed for diatom segmentation. However, they generally require
some parameters to be fixed by hand. To make this procedure automatic a tuning method was
introduced. This technique seems to be the first attempt to achieve this.

In this paper, the problem of image segmentation was posed as an optimization problem, and the
best parameters values were found in the space of feasible solutions contained in the u-dimensional
binary space. The operations and relations among the elements of the binary set were defined, as well
as the objective function. The parameters associated to the algorithm were optimized using the new
Parametric Segmentation Tuning (PST) technique, and through different similarity functions. The PST
generates the u-dimensional binary space and the similarity functions are employed to compare
segmented images to find the optimal one.

To test the technique two segmentation algorithms were tuned by using the PST approach. In the
first one, the Canny edge detection algorithm, made it possible to find diatom edges correctly. In the
second algorithm, the PST was employed to find the best thresholded image and results were in line
with those obtained with the Otsu method, showing the capacity of the PST method. In this way,
the PST was validated by comparing the tuning results of the Canny method, against an expert and
those of the binarisation against the Otsu algorithm. It was found that our method is quicker than the
manual tuning and efficient, getting similar results than those obtained by the expert and the Otsu
method. This makes the PST a convenient tool to find optimal parameters in diatom segmentation
processes, saving time to researchers by automating these techniques. This method can be employed
to tune similar segmentation procedures, used to analyse phytoplankton images.
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