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Abstract: We present a strategy for designing an α-β-η-θ filter, a fixed-gain moving-object tracking
filter using position and velocity measurements. First, performance indices and stability conditions
for the filter are analytically derived. Then, an optimal gain design strategy using these results
is proposed and its relationship to the position-velocity-measured (PVM) Kalman filter is shown.
Numerical analyses demonstrate the effectiveness of the proposed strategy, as well as a performance
improvement over the traditional position-only-measured α-β filter. Moreover, we apply an α-β-η-θ
filter designed using this strategy to ultra-wideband Doppler radar tracking in numerical simulations.
We verify that the proposed strategy can easily design the gains for an α-β-η-θ filter based on
the performance of the ultra-wideband Doppler radar and a rough approximation of the target’s
acceleration. Moreover, its effectiveness in predicting the steady state performance in designing the
position-velocity-measured Kalman filter is also demonstrated.

Keywords: α-β-η-θ filter; tracking filter design; velocity measurements; Kalman filter; α-β filter;
UWB Doppler radar

1. Introduction

Monitoring systems for robots and intelligent vehicles that employ remote sensors, such as
cameras and radar, require the tracking of moving objects. Adaptive tracking techniques such as
Kalman and extended Kalman filters [1–5] and particle filters [6,7] are commonly used for this purpose
because of their accuracy. An alternative option is fixed-gain tracking filters, which have also been
studied and used extensively for two reasons [8–12]:

• Simple implementation and low computational overhead: Optimal gain calculation is not required
in the fixed-gain filters. Thus, the number of matrix operations is small compared with the Kalman
filter and its variants [11].

• Applicability to the analytical evaluation of the Kalman filter: Fixed-gain filters are also useful
for analytical evaluations of the Kalman filter because they can be characterized as steady state
Kalman filters [12].

For these reasons, fixed gain filters are still being widely used in applications that strongly require
real-time capability and simple implementation, such as tracking in ultrasonography in medicine [13],
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motor position control [14], human fall detection [15] and vehicular radar [16]. Additionally, the analysis of
the Kalman filters assuming the steady state (fixed gain) is conducted to predict their tracking performance
in the filter design process. The simplest second-order fixed-gain tracking filter is known as an α-β filter,
which have been deployed in various tracking systems [12,17–22]. The design of the α-β filter has been
discussed based on an efficient design parameter known as the tracking index [10,12,22].

However, α-β filters only consider position measurements and hence cannot make full use
of modern sensors that can also measure velocity, such as ultra-wideband (UWB) Doppler radars,
which have recently come into use [23–25]. In the near-field, these radars can achieve accurate
sensing of moving objects, such as humans and cars. In [23,24], position and velocity estimates for
pedestrians were achieved with centimeter and cm/s accuracy, respectively (see [25] for hardware
implementation). Moreover, sensor fusion based on the Internet of Things technology also enables the
simultaneous measurement of position and velocity possible (e.g., sensor data fusion based on the
communication between radars and speedometers embedded in targets). Consequently, tracking filters
for such systems have become an important area of research [26–29]. However, almost all conventional
position-velocity-measured (PVM) trackers have been based on Kalman or particle filtering, whereas
fixed-gain PVM filters have not seen wide use. This is because the computational performance is
sufficient to drive PVM Kalman/particle filters in many applications. Additionally, the empirical design
of these filters without steady state analyses can realize tolerable tracking performance. However,
reiterating, fixed gain filter techniques are still important for various applications and analytical
performance evaluation of tracking systems to find better parameter settings.

To address the above problem, we have proposed third-order fixed-gain (α-β-γ) PVM filters and
have verified their performance [11]. However, a simpler second-order tracker such as an α-β filter is
often required when the number of components and/or the size of hardware is quite limited and the
complexity of target motion is predicted to be relatively small (i.e., a constant velocity model assuming
a second-order tracker is sufficient). To this end, we also have investigated the fundamental properties
of a PVM α-β filter [30]. However, this filter assumes an unrealistic assumption; specifically, correlated
errors of position and velocity do not exist in the filtering process. As a realistic second-order fixed
gain filter, Sudano [31] proposed a fixed-gain, position-velocity-measured, second-order tracking filter,
described as an α-β-η-θ filter. This filter corresponds to the α-β filter in position-only-measured tracking
problem, and the relationship between α-β-η-θ and the PVM Kalman filters is similar to that between
the α-β and Kalman filters. Therefore, we believe that although the α-β-η-θ filter is underutilized at
present, this filter will be widely used like the α-β filter after the spread of PVM systems such as the
UWB Doppler radar. Thus, clarifying the analytical properties and design strategy of the α-β-η-θ filter
is important for tracking technology in the near future. Although Sudano investigated the relationship
of this filter with the PVM Kalman filter using a random-acceleration model based on the tracking
indices, he did not discuss their performance or any design strategies. In addition, although Crouse [8]
described a general solution for optimal fixed-gain trackers with steady state Kalman gains, he too did
not discuss filter performance or a design strategy.

In this paper, a gain design strategy to compose an optimal α-β-η-θ filter is proposed, and efficient
performance indices are derived. The strategy is based on the method presented in [4] for Kalman
filters, which optimizes an analytical performance index for the tracking filter. The proposed strategy
provides the easy design of filter gains and accurate tracking of the α-β-η-θ filter compared with the
conventional empirical design methods. Furthermore, another important objective of this paper is
to demonstrate, using numerical simulations, the effectiveness of the α-β-η-θ filter obtained with the
proposed strategy for a realistic UWB Doppler radar application. In this application, we show its
effectiveness in the design of the PVM Kalman filter that has better steady state performance.

The remainder of this paper is organized as follows: Section 2 defines the tracking problem dealt
with in this paper. Section 3 reviews the α-β-η-θ filter of Sudano [31]. Its definition, relationship
to conventional filters and design problems are described. Section 4 analytically derives the filter’s
performance indices and stability conditions for an appropriate gain design. Section 5 proposes our
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design strategy and explores its relationship to the Kalman filter. Section 6 analyzes the performance
of α-β-η-θ filters designed with this strategy and compares it with the conventional filters. Section 7
presents a numerical application to realistic UWB Doppler radar tracking, and Section 8 offers
concluding remarks.

2. Definitions of Problem and Symbols

This paper mainly considers the one-dimensional second-order moving object tracking filter
assuming that only position and velocity measurements are considered. For the one-dimensional
problem, only tracking along the x-axis is considered. Note that for the performance evaluation,
assuming the realistic situation presented in Section 7, an actual two-dimensional tracking in the
x-y plane is considered, and the one-dimensional tracking filter being considered is implemented for
each axis in this simulation.

The inputs of the filter are measured target position xo and velocity vo. This assumes that the
observed data are both position and velocity. Note that many conventional studies on the tracking
system adopt a position-only analysis, whereas assuming position/velocity measurements is one of the
features of our study. The errors in xo and vo conform to white Gaussian noise, and their correlations
are not considered for simplicity. We assume that the variance of the position measurement errors Bx

and that of the velocity measurement errors Bv are known.
The outputs are predicted target position xp and velocity vp and smoothed (estimated) target

position xs and velocity vs. The focus of this paper is the optimization of the steady state accuracy
in xp. To achieve this, the inputs xo and vo are filtered by some gains. This study assumes that these
gains are unknown parameters that we must design. Thus, the purpose of this paper is the design of
the tracking filter gains that minimizes the errors in the predicted target position.

The detailed definitions and explanations of the tracking filters and their design methodology
that we focus on are presented in the rest of this paper. Table 1 lists the symbols used in this paper.
Furthermore, each symbol is defined at its first appearance.

Table 1. List of symbols.

Variables Description Unit

T Sampling interval (s)
k Discrete sampling index Dimensionless
(),k Parameter at index k
xp Predicted position (m)
vp Predicted velocity (m/s)
xs Smoothed (estimated) position (m)
vs Smoothed (estimated) velocity (m/s)
xo Observed (measured) position (m)
vo Observed (measured) velocity (m/s)
α Filter gain for xs with respect to xo Dimensionless
β Filter gain for vs with respect to xo Dimensionless
η Filter gain for xs with respect to vo Dimensionless
θ Filter gain for vs with respect to vo Dimensionless
(̃) Forecasts
(̂) Estimates
()T Transpose of matrix
()−1 Inversion of matrix

x State vector of target composed of position and velocity
z Measurement vector
F Transition matrix from k to k + 1
P Error covariance matrix with respect to x
Q Covariance matrix of process noise
K Kalman gain matrix
B Covariance matrix of measurement noise
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Table 1. Cont.

Variables Description Unit

Bx Error variance of xo (m2)
Bv Error variance of vo (m2/s2)

Qra Process noise matrix in random-acceleration (RA) model
q Variance of random-acceleration (RA) process noise (m2/s4)

Rxv Ratio of Bx to T2Bv Dimensionless
E() Mean with respect to k
σ2

p Smoothing performance index (m2)
efin Tracking performance index (m)
ac Acceleration assumed in the derivation of efin (m/s2)

εrms Root-mean-square (RMS) index (m)
µ Evaluating function in the proposed gain design strategy Dimensionless

aD Design parameter for the proposed strategy Dimensionless
Qgen Arbitrary process noise matrix

a (1,1) element of Qgen (m2)
b (1,2) (or (2,1)) element of Qgen (m2/s)
c (2,2) element of Qgen (m2/s2)
ε RMS prediction error of Monte Carlo simulations (m)

3. The α-β-η-θ Filter

3.1. Definition

The α-β-η-θ filter proposed by Sudano [31] is a second-order fixed-gain PVM tracker. It can be
considered to be an extension of the α-β filter, which uses position measurements only. The α-β-η-θ
filter iterates prediction and smoothing (update) processes. The prediction process is conducted
under the assumption that the target’s velocity is constant over the sampling interval and yields a
position prediction:

xp,k = xs,k−1 + Tvs,k−1, (1)

vp,k = vs,k−1, (2)

where xs,k is the smoothed target position at time kT, T is the sampling interval, xp,k is the predicted
position, vs,k is the smoothed velocity and vp,k is the predicted velocity. The smoothing process is
defined as in [31]:

xs,k = xp,k + α(xo,k − xp,k) + Tη(vo,k − vp,k), (3)

vs,k = vp,k + (β/T)(xo,k − xp,k) + θ(vo,k − vp,k), (4)

where xo,k is the measured position, vo,k the measured velocity and α, β, η and θ are fixed filter gains
that we must design.

3.2. The α-β Filter

The α-β filter is well known and popular in tracking because of its simplicity and utility in
real-time applications. Its prediction steps are the same as for the α-β-η-θ filter. The smoothing process
is defined as in [10]:

xs,k = xp,k + α(xo,k − xp,k), (5)

vs,k = vp,k + (β/T)(xo,k − xp,k). (6)
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When η = θ = 0, the α-β-η-θ filter is identical to the α-β filter. Thus, the difference between
the two lies in whether measured velocities are used. Sudano verified the better performance of the
α-β-η-θ filter compared with the α-β filter using velocity measurements [31].

The α-β filter is widely used in the position-only-measured tracking systems, and its performance
has been sufficiently analyzed [12]. Various useful relationships between gains α and β and the design
strategy based on a design parameter known as a tracking index have been applied in its design [10].
The α-β filter is derived from the Kalman filter equations in the limit k→ ∞. Thus, it is useful in the
steady state performance analysis of the Kalman filter tracking. Similar properties of the α-β filter are
expected for the α-β-η-θ filter, and clarifying these is useful for the PVM tracker design.

3.3. Relationship to Kalman Filters

Kalman filters are optimal tracking filters and are based on the adaptive calculation of a gain
matrix. The α-β-η-θ filter (and the α-β filter) is equivalent to steady state Kalman filters [31]. Thus,
we derive the optimal gains for the motion model under consideration from the Kalman filter
equations [4]:

x̃k = Fx̂k−1, (7)

P̃k = FP̂k−1FT + Q, (8)

Kk = P̄k HT(HP̃k HT + B)−1, (9)

x̂k = x̃k + Kk(zk − Hx̃k), (10)

P̂k = P̃k − Kk HP̃k, (11)

where x is a state vector, forecasts and estimates are denoted by tildes and hats, respectively, superscript
“T” and “−1” denote transpose and inversion, z is a measurement vector, F is the transition matrix, Pk
is the error covariance matrix at time kT, Q is the covariance matrix for process noise, Kk is the optimal
gain (Kalman gain) at time kT and B is the covariance matrix for the measurement noise.

The α-β-η-θ filter is obtained by substituting into Equations (7) and (10) vectors x̃k = (xp,k vp,k)
T,

x̂k = (xs,k vs,k)
T, zk = (xo,k vo,k)

T, and matrices:

F =

(
1 T
0 1

)
, (12)

H =

(
1 0
0 1

)
, (13)

Kk =

(
α Tη

β/T θ

)
, (14)

B =

(
Bx 0
0 Bv

)
(15)

(see [31]), where Bx and Bv are the error variances of xo,k and vo,k, respectively. With k → ∞ for Kk,
the appropriate gains of the α-β-η-θ filter are calculated as the Kalman filter predicts the state with the
minimum error for the assumed target model.

3.4. Optimal Filter for a Random-Acceleration Model and Its Problems

The optimal α-β-η-θ filter has been derived as the steady state Kalman filter under a general
random-acceleration (RA) model [31]. In this model, it is assumed that the process noise consists of
random accelerations with Q expressed as in [10]:
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Qra =

(
T4/4 T3/2
T3/2 T2

)
q, (16)

where q is the variance of the process noise. By calculating the limit of the Kk using Equation (16),
we have the optimal gains of the α-β-η-θ filter presented in [31]. For example, the relationship between
the optimal β and η is:

η = Rxvβ, (17)

where:
Rxv ≡ Bx/T2Bv, (18)

corresponds to the ratio of the measurement accuracies in position and velocity. The other gains are
expressed using tracking indices (see Equations (24)–(27) of [31]).

However, this filter is not optimal for other models, such as the frequently-used random-velocity
model [9] and the diagonal Q, which does not include correlations in process noise [1,2]. Other process
noise can be incorporated using arbitrary process noise; see [4]. The performance of this α-β-η-θ
filter was evaluated in [31] only in terms of several simple numerical calculations, and strategies for
designing tracking indices were not discussed. These problems must be solved to establish a design
strategy and to properly evaluate the filter’s performance.

4. Derivation of Performance Indices and Stability Conditions

To evaluate the performance of the tracking filter, steady state errors for the reduction of
measurement noise and the tracking of accelerating targets are used [11,12]. These indices are more
effective in evaluating steady state tracking accuracy than the error covariance matrix in the Kalman
filter equations, as discussed by Ekstrand (see Section 9.8 of [12]). Moreover, a comprehensive
performance index for measurement-error smoothing and tracking of an accelerating target based
on these indices is presented in [4]. This comprehensive index is used for our proposed gain design
strategy. Consequently, this section derives these performance indices of the α-β-η-θ filter. Stability
conditions are also derived for practical filter designs.

4.1. Smoothing Performance Index

An important function of a tracking filter is the reduction of random errors caused by measurement
noise. One such performance index is the steady state error for a target undergoing the same motion
as in the motion model, but taking into account sensor noise. We assume that xo,k contains noise
with variance Bx, that vo,k contains noise with variance Bv and that the target moves with constant
acceleration. The variance of the predicted target position in a steady state is calculated from:

σ2
p = lim

k→∞
E[(xp,k − xts,k)

2], (19)

(see [11,12]), where xts,k is the true target position, used to evaluate the smoothing performance and
E[ ] denotes the mean. The quantity σ2

p is called the smoothing performance index.
The smoothing performance index for the α-β-η-θ filter is derived as:

σ2
p(α, β, η, θ) =

g2(α, β, η, θ)Bx + g3(α, β, η, θ)T2Bv

g1(α, β, η, θ)
, (20)
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where:

g1(α, β, η, θ) = (βη − αθ − β)(αθ − βη − α− θ)(4− 2α− β− 2θ + αθ − βη), (21)

g2(α, β, η, θ) = α3θ(θ − 2)(θ − 1) + α2β(2− 2η − 2θ + 6ηθ − 3ηθ2)

+ α2θ2(2− θ) + 2αβθ(η − 2)(θ − 2)

+ αβ2(1 + 2η − θ − 3η2 + 3η2θ) + β3η(1− η)2

+ β2{η(2− η)(θ − 2)− θ + 2}, (22)

g3(α, β, η, θ) = αθ(2η2 + 2ηθ + θ2 − θ)

+ βη(2η + 2θ − 2η2 − θ2 − 2ηθ) + θ2(2− θ). (23)

The derivation of σ2
p(α, β, η, θ) is given in Appendix A. Note that when η = θ = 0,

σ2
p(α, β, 0, 0) =

2α2 + 2β + αβ

α(4− 2α− β)
Bx. (24)

This is the smoothing performance index of the conventional α-β filter [12].

4.2. Tracking Performance Index

The filter is required to track complicated motions. In second-order trackers, when tracking a
target moving with constant acceleration, steady state bias error occurs as a result of the difference
between the motion model and the actual target motion. This provides an index of the tracking
performance for an accelerating target. When the true target position xtt,k = ac(kT)2/2 (ac denotes a
constant acceleration) and measurement errors are not considered, the steady state predicted error is
expressed as [11]:

efin = lim
k→∞

(xtt,k − xp,k). (25)

which is called the tracking performance index.
For the α-β-η-θ filter, the tracking performance index becomes:

efin(α, β, η, θ) = lim
z→1

(1− z−1)Ep(z) =
2− 2η − θ

2(αθ − βη + β)
acT2. (26)

The derivation of efin (α, β, η, θ) is given in Appendix B. Note that when η = θ = 0,

efin(α, β, 0, 0) = acT2/β, (27)

which is the tracking performance index of the conventional α-β filter [12].

4.3. RMS Index

The smaller the tracking and smoothing performance indices are, the better a tracking filter is.
However, there are trade-offs between these indices. To consider these trade-offs and practical
performance evaluations, a comprehensive performance index in smoothing and tracking was
proposed and its effectiveness for the Kalman filter verified in [4]. This index corresponds to the
root-mean-square (RMS) prediction error for a constant-acceleration target (considering sensor noise)
and is calculated as:

εrms =
√

σ2
p + e2

fin. (28)

We refer to this as the RMS index.
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4.4. Stability Condition

To apply the α-β-η-θ filter to real systems, it must be stable. Hence, stability conditions are now
derived. As shown in Equations (A19) and (A20) of Appendix B, the characteristic polynomial of
the α-β-η-θ filter is fαβηθ(z) = z2 + (α + β + θ − 2)z + αθ − ηβ− α− θ + 1. Applying Jury’s stability
test [32] to fαβηθ(z), we obtain stability conditions:

(1−η)β+αθ > 0 and 4−2α−β−2θ+αθ−ηβ > 0 and |αθ−ηβ−α−θ+1| < 1. (29)

5. Optimal Gain Design Strategy

5.1. Optimal Gain Design Using the RMS Index

Conventional gain design strategies based on tracking indices [10,22] have the following difficulties:

• The selection of an appropriate model (e.g., RA, random-velocity) is not considered. Thus,
this selection is conducted empirically [4].

• There are no general rules for the determination of a tracking index [12]. Sudano did not discuss
how to set the tracking indices for the α-β-η-θ filter [31].

To resolve these problems, we have adapted the strategy based on optimizing the RMS index
presented in [4] to the α-β-η-θ filter. Given Equations (20) and (26) and the normalization of the RMS
index in Equation (28) and substituting Equation (17), we define the index for the gain design as:

µ(α, β, θ, Rxv, aD) ≡ ε2
rms/Bx

=
g2(α, β, θ, Rxv) + g3(α, β, θ, Rxv)/Rxv

g1(α, β, θ, Rxv)
+ a2

D

(
2− 2Rxvβ− θ

2(αθ − Rxvβ2 + β)

)2
, (30)

where:

a2
D ≡ a2

c T4/Bx (31)

is the important dimensionless parameter for the proposed strategy because µ depends on aD.
Although µ also depends on Rxv, it is determined from known measurements of the noise parameters
(Bx, Bv) and sampling interval T as indicated in Equation (18). Thus, the optimal gains are determined
by aD, and its appropriate presetting is essential for the proposed strategy. Note that Equation (17) is
always satisfied for α-β-η-θ filters derived from the Kalman filter (see Appendix C). The optimal gains
are calculated by solving the minimization problem:

arg min
α,β,θ

µ(α, β, θ, Rxv, aD)

sub. to stability conditions Equation(29) are satisfied. (32)

With Equation (32), optimal gains are determined for each Rxv and aD. Rxv can be set from
the performance of the sensors. Therefore, the main design parameter for the proposed strategy is
aD. As given in Equation (31), aD is determined by the target’s acceleration. Hence, presetting aD

appropriately is important in practical applications, and the value should be a typical value of the
target acceleration (e.g., mean or maximum). The choice of aD for the UWB Doppler radar application
is discussed in Section 7.

5.2. Procedure and Notes of the Proposed Strategy

Our proposed strategy can be summarized as follows:

1. Set Rxv from the sensor performance.
2. Design aD based on the approximate target acceleration.
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3. Determine α, β and θ by solving Equation (32).
4. Determine η with Equation (17).

With respect to the proposed strategy, note that:

• Equation (32) can be solved by simple gradient descent with several initial values [33]. This is
because the range of parameter searching is not so wide due to the stability conditions.

• This design process is conducted only once before using the filter. Although the computational
costs of the above optimization process are not small, this does not affect the simple tracking
process of the α-β-η-θ filters.

5.3. Relationship with Steady State PVM Kalman Filters

As described in Section 1, one of the reasons for considering the α-β and α-β-η-θ filters in
practical use is the analytical performance predictions of the Kalman filter (and its variants). However,
the proposed gain design strategy does not use the Kalman filter, and the relationship between
the designed α-β-η-θ and Kalman filters is therefore unclear. This section clarifies this relationship
analytically. Indeed, the proposed strategy corresponds to an optimization of the elements of the
covariance matrix of the process noise with respect to the RMS index. To prove this, we now derive
the relationship between steady state Kalman gains and the arbitrary covariance matrix of process
noise. The covariance matrix is expressed as [4]:

Qgen =

(
a b
b c

)
, (33)

where a > 0, b > 0, c > 0 and the dimensions of a, b and c are m2, m2/s and m2/s2,
respectively. For example, substituting (a, b, c) = (qT4/4, qT3/2, qT2) into Equation (33) gives the
Qra of (16); substituting (a, b, c) = (qvT2, qvT, qv) (qv is the variance of the velocity noise) yields the
random-velocity model [9]; and b = 0 leads to a diagonal Q, which is also a well-used setting in real
applications [1,2].

The relationship between steady state Kalman gains and Qgen is derived as:

a =
T2Bv

1− Rxvβ2 − (1− θ)α− θ
{(β2α + 2β3 + β2 + (θ − 1)θβ)R2

xv

+ α2((1− θ) + 2αβ(1− θ) + β2θ + β(−θ2 + 3θ − 2))Rxv

+ αθ(1− θ) + θ(θ − 1)}, (34)

b =
β3R2

xv + (α(β(1− θ)− θ2 + θ) + β2θ + βθ + θ2 − θ)Rxv

1− Rxvβ2 − (1− θ)α− θ
TBv, (35)

c =
(αβθ + β2(θ + 1)− βθ)Rxv + αθ(−β− θ) + βθ + θ2

1− Rxvβ2 − (1− θ)α− θ
Bv. (36)

The derivation of these is given in Appendix C.
Equations (34)–(36) transform the optimal gains of the α-β-η-θ filter as elements of the covariance

matrix of the process noise of the PVM Kalman filter and hence are useful in their design. In substituting
these optimal designed gains into Equations (34)–(36), we obtain a Kalman filter having the same
steady state performance. Similarly, solving Equations (34)–(36) with respect to (α, β, θ) and using
a set Qgen, we find the steady state gains of the designed PVM Kalman filter and its performance
using Equations (20), (26) and (28). Moreover, optimization of the proposed strategy of Equation (32)
with respect to (α, β, θ) is equivalent to optimization of the RMS index with respect to (a, b, c) using
Equations (34)–(36).
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The tracking filters and their design strategies that this paper considers are summarized in Table 2.
In the following subsections, the performance of the α-β-η-θ filter realized with the proposed strategy is
investigated and is compared with that of the conventional α-β filter and RA model-based filter design.

Table 2. Summary of the conventional and proposed tracking filters and design strategies.

Tracking Filter Input Design Strategy Preset Parameter k → ∞

α-β filter Position Based on RA model [12] q or tracking index [10] Kalman filter
Proposed strategy aD of Equation (31)

α-β-η-θ filter Position Based on RA model [27] q or tracking index [10] Position-velocity-measured
and velocity Proposed strategy aD of Equation (31) (PVM) Kalman filter

6. Steady State Performance Analysis

This section presents theoretical performance analyses of the α-β-η-θ filter using the proposed
design strategy. We compare the RMS index calculated using Equations (20), (26) and (28) for the
following filters:

• Proposed filter: the α-β-η-θ filter with the proposed strategy.
• RA filter: the α-β-η-θ filter with the RA model using optimal q (from Equation (16)) with respect

to the RMS index.
• Best α-β filter: the conventional α-β filter obtained with the proposed strategy, assuming

η = θ = 0.

Comparison with the RA filter indicates the effectiveness of the proposed strategy
(i.e., considering Qgen), and comparison with the best α-β filter illustrates the effectiveness of the
velocity measurements. Note that the analysis in this section investigates the steady state performance,
and this also corresponds to the steady state Kalman filter analysis. We assume that Bx and T are
normalized to one.

6.1. Relationship between Performance and aD

Figure 1 shows the relationship between the design parameter aD and the RMS index εrms for
Rxv = 1 and 10. From Figure 1a, the proposed filter realizes the best performance for relatively large aD.
This result verifies that the proposed strategy determines gains corresponding to a better covariance
matrix of process noise than the RA filter. The proposed filter also achieves better performance
compared with the best α-β filter, including small aD, and even for Rxv = 1, which means that the
measurement accuracy of the position and velocity is the same. Furthermore, when the velocity
measurement accuracy is high, the proposed filter achieves greater accuracy than the best α-β filter
(Figure 1b). In addition, although the difference between the RA and proposed filters is small for
Rxv = 10, the proposed filter also achieves the best performance.

Figure 1. Relationship between aD and εrms for (a) Rxv = 1 and (b) Rxv = 10; RA: random-acceleration.
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6.2. Relationship between Performance and Rxv

Figure 2 shows the relationship between Rxv and εrms for a2
D = 0.01 and 0.1, and both cases exhibit

the same trend. For both proposed and RA filters, better performance is achieved with better velocity
measurement accuracy. The performance of the proposed filter is better than that of the best α-β filter
including relatively small Rxv (the velocity measurement accuracy is low). In contrast, the performance
of the RA filter is worse than that of the best α-β filter for small Rxv, because the covariance matrix
of the RA filter is limited to Equation (16). Moreover, by comparing Figure 2a,b, we see the superior
effectiveness of the proposed filter for relatively large aD. These results indicate that the proposed filter
is effective when the velocity measurement accuracy and/or target acceleration is relatively high.

Figure 2. Relationship between Rxv and εrms for (a) a2
D = 0.01 and (b) a2

D = 0.1.

7. Application to UWB Doppler Radar Simulation

This section provides examples of the α-β-η-θ filter designed with the proposed strategy for
a realistic application to UWB Doppler radar tracking. Numerical simulations show the effectiveness
of the proposed strategy. We consider two scenarios:

• Medium maneuvering target assuming simple near-field sensing.
• High maneuvering target assuming the target executes an abrupt motion.

7.1. Tracking of Medium Maneuvering Target

7.1.1. Simulation Setup

First, we show the application examples for a maneuvering target that assumes near-field radar
remote sensing for surveillance and robot monitoring systems. We simulate the UWB Doppler radar
tracking [23–25] of a maneuvering target and compare the tracking errors of the filters assumed in the
previous section and the PVM Kalman filter. For one-dimensional tracking assumed in the previous
sections, the steady state performances of the PVM Kalman and the proposed filters are the same.
However, for two-dimensional tracking assumed in this section, a difference in their tracking accuracy
occurs because the Kalman filter considers correlations between the x − y positions and velocities.
Therefore, a comparison between the α-β-η-θ filters and the PVM Kalman filter is also necessary.

Figure 3 shows the simulation scenario and the true acceleration of a target. The true target
position is (xt,k, yt,k) = (0.5 + 0.3kT sin(2πkT/10), 1.5 + 0.1(kT)1.2 cos(2πkT/12)). Two-dimensional
tracking in the x-y plane of the point target is assumed. We consider two Doppler radars located at
(x, y) = (0.5 m, 0) and (1.0 m, 0). The sampling interval T is 100 ms, and the observation time is
4 s. The transmitted signal is a UWB pulse with a center frequency of 26.4 GHz and a bandwidth of
500 MHz. The received radar signals are calculated using ray tracing with the addition of Gaussian
white noise. The radars measure position using ranging results [24] and measure velocity using the
Doppler shift with the method presented in [25]. We determine a standard derivation for this noise to
set Bx = 0.0302 m2 and Bv = 0.102 m2/s2. These values are the averages along the two axes (x and y)
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and are set based on the experimental results in [23,24]. Thus, the Rxv of the assumed radar system
is 9.0. For simplicity, we use this value for both axes. In addition, to evaluate the performance for
smaller Rxv, the case Rxv = 1.0 is generated by adding Gaussian white noise to the measured velocity
data. Bv in this instance is 0.302 m2/s2.

The α-β and α-β-η-θ filters are implemented for each axis, for which we use the same gain.
The implementation of the PVM Kalman filter is the same as in [27], and its covariance matrix for
process noise is calculated from the optimal α-β-η-θ filter gains designed with the proposed strategy
using Equations (34)–(36). The initial values of the state vectors and the error covariance matrix of
the PVM Kalman filter are all zero. Using the RMS prediction error calculated from 1000 Monte Carlo
simulations, the performance is defined as:

εk =

√√√√ 1
1000

1000

∑
m=1
{(xt,k − xp,m,k)2 + (yt,k − yp,m,k)2}, (37)

where xp,m,k and yp,m,k are the predicted positions in the m-th Monte Carlo simulation.

7.1.2. Filter Design

The gain design for the UWB Doppler radar using the proposed strategy is presented here.
We design an appropriate aD and evaluate the resultant performance. We presume a rough approximate
prediction of accelerations. For instance, when the maximum acceleration of the target in Figure 3b is
approximately predicted as ac = 0.6 m/s2, a2

D is then 0.04 from Equation (31). Using this a2
D, the above

radar settings of Rxv = 9.0 (T = 100 ms, Bx = 0.032 m2 and Bv = 0.12 m2/s2) and solving Equation (32),
we have the optimal gains α = 0.315, β = 0.00801, η = 0.0721 and θ = 1.15. Optimal gains for other
settings are similarly determined.

Figure 3. UWB Doppler radar simulation scenario: (a) radar positions and true orbit; (b) true acceleration;
UWB: ultra-wideband.

7.1.3. Evaluation Results

Figure 4 shows the simulation results for a2
D = 0.04 ((a) Rxv = 9.0, (b) Rxv = 1.0). Clearly,

the filters using velocity measurements achieve greater accuracy than the best α-β filter in both
cases. For Rxv = 9.0, the mean steady state prediction RMS errors (E[εk] in 2 < kT < 4) of the RA,
PVM Kalman and proposed filters are 2.48, 2.30 and 2.33 cm, respectively. These results indicate that
the proposed filter achieves better accuracy than the RA filter even for realistic situations. Although the
PVM Kalman filter is slightly better than the proposed filter, because it considers the correlated noise in
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the x- and y-axes, their errors are almost the same. This shows that the steady state performance of the
PVM filter is close to that of the α-β-η-θ filter, and the α-β-η-θ filter analysis is effective in performance
predictions of the PVM Kalman filters. The relationship of these filters is similar to the traditional α-β
and position-only-measured Kalman filters. The computational load of the α-β-η-θ filter is considerably
smaller than that of the PVM Kalman filter; the mean calculation times for each k of the α-β-η-θ and PVM
Kalman filters are 14.0 and 38.1 µs using an Intel Core i7-4600U CPU@2.10 GHz 2.70 GHz processor
and Scilab 5.5.0. This is because the α-β-η-θ filter does not require the adaptive calculations of the gains
and error covariance matrices. In addition, although the difference in steady state accuracy between
the proposed and best α-β filters is small (Figure 4b), the proposed filter achieves better accuracy even
for Rxv=1. The mean steady state prediction RMS errors of the RA, PVM Kalman and proposed filters
are 3.84, 3.61 and 3.68 cm, respectively, and these results lead to the same conclusions as those from
Figure 4a. These results are matched to the analysis results presented in the previous section.

We next investigate the performance of the proposed filter for different values of ac to assess
appropriate settings. Table 3 shows the steady state RMS error (E[εk] in 2 < kT < 4) for different values
of ac for Rxv = 9.0; ac = 0.4 m/s2 is assumed as a rough approximation for the mean acceleration of
the target, and ac = 0.1 and 1 m/s2 are considered as the order of the acceleration. The performance of
the proposed filter deteriorates for ac = 0.1 and 1 m/s2. This is because the difference between the
true target accelerations and these very rough approximate accelerations is too large. This means that
the proposed strategy requires some minimum degree of accuracy in target acceleration prediction
to perform adequately. However, the ac = 0.4 and 0.6 m/s2 cases have almost the same accuracy,
implying that strict values of the target acceleration are in practice not required with UWB Doppler
radars. As a method to obtain an approximated acceleration, communications of the tracking systems
and the accelerometers embedded in targets can be considered. Many sensing targets have acceleration
sensors, e.g., the robots and vehicles have inertial sensors, and humans have accelerometers embedded
in smart phones. In the near future, the Internet-of-Things technology will make data communications
between robots, smart phones and radar possible. Thus, we can obtain approximated acceleration
based on this novel technology.

Figure 4. Simulation results for (a) Rxv = 9 and (b) Rxv = 1; PVM: position-velocity-measured.

Table 3. Steady state RMS prediction error of the proposed filter for various ac (Rxv = 9).

ac (m/s2) a2
d Mean Steady State RMS Error (cm)

0.1 0.00111 2.82
0.4 0.0178 2.32
0.6 0.040 2.33
1.0 0.111 2.57



Appl. Sci. 2017, 7, 758 14 of 19

7.2. Tracking of High-Maneuvering Target

Finally, an application to high-maneuvering targets with relatively high accelerations is presented
to clearly show the effectiveness of the proposed filter compared with the RA filter. Given the true
target position of (xt,k, yt,k) = (k2T2, 20 + (kT)1.5 cos(2πkT/10)), the true acceleration is plotted in
Figure 5a. Compared with the previous section, a high acceleration is assumed. We set Bx = 0.32,
Rxv = 1.0, ac = 3 m/s2 and aD = 1.0; other settings are the same as in the previous section.

Figure 5b shows the simulation results for the high-maneuvering target. The difference in
the RMS prediction error between the RA and proposed filters becomes large compared with the
moderate-maneuvering target assumed in the previous section. E[εk] in 2 < kT < 4 s of the
best α-β, RA, PVM Kalman and proposed filters are 0.589, 0.459, 0.190 and 0.201 m, respectively.
Whereas the PVM Kalman filter is slightly better than the proposed filter for the same reason as for a
moderate-maneuvering target, the proposed filter achieves greater accuracy than the RA filter. This is
because the RA model cannot track the abrupt motion of the high-maneuvering target because of
limitations in expressing process noise. In contrast, the proposed filter can set gains corresponding
to the appropriate process noises to accurately track the high-maneuvering target. Our theoretical
analyses presented in Figure 1a show that the performance difference between the assumed filters
becomes large when aD is relatively large. The above simulation results are consistent with these
analyses. In addition, with respect to the steady state accuracy of the PVM Kalman and the proposed
filter, the same result with the moderate-maneuvering target is obtained. Thus, the applicability to
performance predictions of the PVM Kalman filters using the analysis of the α-β-η-θ filter is clearly
indicated with these simulation results.

Figure 5. Simulation assuming a high-maneuvering target: (a) true acceleration; (b) results.

8. Conclusions

We have proposed a gain design strategy for α-β-η-θ filters and applied it to UWB Doppler
radar simulations. Stability conditions and an efficient performance index (the RMS index) for the
α-β-η-θ filter were analytically derived, and a design strategy was presented based on minimization
of the RMS index. We clarified the design parameters of the proposed strategy and examined their
relationship with those of the PVM Kalman filter. Numerical analyses using the derived performance
index showed that the designed α-β-η-θ filter achieved better performance than the traditional α-β

filter, as well as an α-β-η-θ filter designed using the general RA model. Finally, a numerical simulation
assuming a realistic UWB Doppler radar application verified the effectiveness of an α-β-η-θ filter
designed using the proposed strategy and the validity of the theoretical analyses. This simulation
showed that the proposed strategy can be applied to realistic tracking systems by presetting several
simple parameters, specifically an approximate acceleration and the radar measurement accuracy.
Moreover, the possibility of the application to performance predictions for the PVM Kalman filter
design was also indicated.
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Appendix A. Derivation of Equation (20)

The σ2
p of the α-β-η-θ filter is now derived from Equations (1)–(4); xts,k represents the motion of

the constant-velocity target:

xts,k = xts,k−1 + Tvts,k−1, (A1)

where vts,k is the true velocity. With Equations (1) and (A1), the predicted error is calculated as:

σ2
p = E[(xp,k − xts,k)

2]

= E[(xs,k−1 − xts,k−1)
2] + 2TE[(xs,k−1 − xts,k−1)(vs,k−1 − vts,k−1)]

+ T2E[(vs,k−1 − vts,k−1)
2]. (A2)

Thus, it is necessary to derive the error variance and covariance in the smoothing process to
obtain σ2

p.
The quantities xts,k and vts,k can be expressed as:

xts,k = (1− α)xts,k + αxts,k + Tη(vt,k − vt,k), (A3)

vts,k = (1− θ)vts,k + θvts,k + (β/T)(xt,k − xt,k). (A4)

Using Equations (3), (4), (A3) and (A4), we have:

xs,k−xts,k =(1−α)(xp,k−xts,k)+α(xo,k−xts,k)

+Tη((vo,k−vt,k)−(vp,k−vt,k)), (A5)

vs,k−vts,k =(1−θ)(vp,k−vts,k)+θ(vo,k−vts,k)

+(β/T)((xo,k−xt,k)−(xp,k−xt,k)). (A6)

From Equations (1), (2) and (A1) and defining ∆xs,k ≡ xs,k − xts,k, ∆vs,k ≡ vs,k − vts,k, ∆xo,k ≡
xo,k − xts,k and ∆vo,k ≡ vo,k − vts,k, we calculate:

∆xs,k = (1−α)(∆xs,k−1+T∆vs,k−1)+α∆xo,k+Tη(∆vo,k−∆vs,k−1), (A7)

∆vs,k = (1−θ)∆vs,k−1+θ∆vo,k+(β/T)(∆xo,k−(∆xs,k−1+T∆vs,k−1)). (A8)
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Thus, the variances of the errors in the smoothed positions can be calculated using Equation (A7)
as:

E[∆x2
s,k] =(1−α)2(E[∆x2

s,k−1]+T2E[∆v2
s,k−1]+2TE[∆xs,k−1∆vs,k−1])

+T2η2(E[∆v2
o,k]−2E[∆vs,k−1∆vo,k]+E[∆v2

s,k−1])

+2α(1−α)(E[∆xs,k−1∆xo,k]+TE[∆vs,k−1∆xo,k])+2Tαη

· (E[∆xo,k∆vo,k]−E[∆xo,k∆vs,k−1])+2Tη(1− α)

−E[∆xs,k−1∆vs,k−1]+TE[∆vs,k−1∆vo,k]−TE[∆v2
s,k−1]). (A9)

Because we have assumed k → ∞, the variances and covariances of errors do not depend on k.
Consequently, we can define the variances and covariances of the smoothing process as:

σ2
sx ≡ E[∆x2

s,k] = E[∆x2
s,k−1], σ2

sv ≡ E[∆v2
s,k] = E[∆v2

s,k−1],

σ2
sxv ≡ E[∆xs,k∆vs,k] = E[(∆xs,k−1∆vs,k−1)]. (A10)

In addition, the following relations are satisfied because the smoothed parameters are a linear
combination of the measured parameters:

E[∆xs,k∆xo,k] = E[∆xs,k∆vo,k] = E[∆vs,k∆xo,k] = E[∆vs,k∆vo,k] = 0. (A11)

Substituting Equations (A10) into (A9) and simplifying by means of Equation (15), we have:

α(2−α)σ2
sx+(1−α−η)T2σ2

sv+2(α−1)(1−α−η)Tσ2
sxv = α2Bx+η2T2Bv. (A12)

We can obtain the following equations similarly by calculating E[∆v2
s,k] and E[∆xs,k∆vs,k]:

− β2σ2
sx + (2− β− θ)(β + θ)T2σ2

sv + 2β(1− β− θ)Tσ2
sxv

= β2Bx + θ2T2Bv, (A13)

β(1− α)σ2
sx + (1− β− θ)(α + η − 1)T2σ2

sv

+ (α + 2β + θ − αθ − 2αβ− ηβ)Tσ2
sxv = αβBx + ηθT2Bv, (A14)

Substituting the solutions of the linear system involving Equations (A12)–(A14) into (A2) and
using Equation (A10), we arrive at Equation (20).

Appendix B. Derivation of Equation (26)

The efin of the α-β-η-θ filter is derived using the final value theorem in the z-domain. Applying a
z-transform to Equations (1)–(4), we obtain:

Xp(z) = Xs(z)/z + TVs(z)/z, (A15)

Vp(z) = Vs(z)/z, (A16)

Xs(z) = Xp(z) + α(Xo(z)− Xp(z)) + Tη(Vo(z)−Vp(z)), (A17)

Vs(z) = Vp(z) + (β/T)(Xo(z)− Xp(z)) + θ(Vo(z)−Vp(z)). (A18)

By simplifying of these equations, the relationship between Xp(z) and (Xo(z), Vo(z)) is
obtained as:

Xp(z) =
(α + β)z + αθ − α− ηβ

fαβηθ(z)
Xo(z) +

(η + θ)z− η

fαβηθ(z)
TVo(z), (A19)
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where:
fαβηθ(z) = z2 + (α + β + θ − 2)z + αθ − ηβ− α− θ + 1. (A20)

Because we have assumed that the target has constant acceleration ac but do not assume the
measurement errors,

Xo(z) = Z[ac(kT)2/2] =
z(z + 1)
2(z− 1)3 acT2, (A21)

Vo(z) = Z[ac(kT)] =
z

(z− 1)2 acT, (A22)

where Z[ ] denotes the z-transform. With Equations (A19), (A21) and (A22), the predicted error in the
z-domain, Ep(z) ≡ Xo(z)− Xp(z), is:

Ep(z) =
z(z+1)(z2+(θ−2)z+1−θ)−2z(z−1)(ηz+θz−η)

2(z− 1)3 fαβηθ(z)
acT2. (A23)

Thus, applying the final value theorem, Equation (26) is derived.

Appendix C. Derivation of Equations (34)–(36)

The relationship between steady state Kalman gains and Qgen is next derived. The k in Equations (7)–(11)
is omitted in the following equations because of the steady state assumption. The i-th row and j-th
column of a matrix P are denoted as Pi,j. With Equations (11) and (33), P̃ is calculated as:

P̃ =

(
P̂1,1 + 2TP̂1,2 + T2P̂2,2 + a P̂1,2 + TP̂2,2 + b

P̃1,2 P̂2,2 + c

)
. (A24)

Equation (9) can also be written as [34]:

K = P̂HTR−1. (A25)

Substituting Equations (13)–(15) into Equation (A25), we have:

K =

(
α Tη

β/T θ

)
=

(
P̂1,1/Bx P̂1,2/Bv

P̂1,2/Bx P̂2,2/Bv

)
, (A26)

which means that:

P̂ =

(
αBx ηTBv

βBx/T θBv

)
. (A27)

With P̂1,2 = P̂2,1 and Equation (A27), we obtain:

η = βBx/T2Bv = βRxv, (A28)

which implies that Equation (17) is satisfied for not only the RA model, but also arbitrary process noise.
Substituting Equations (13) and (14) into Equation (11), we obtain:

P̂ =

(
(1− α)P̃1,1 − TηP̃1,2 (1− α)P̃1,2 − TηP̃2,2

(1− θ)P̃1,2 − (β/T)P̃1,1 (1− θ)P̃2,2 − (β/T)P̃1,2

)
. (A29)
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Substituting Equation (A27) into Equation (A24), substituting Equation (A24) into Equation (A29)
and comparing their elements, we have:

αBx = (1−α)(αBx+2ηT2Bv+T2θBv+a)−Tη(ηTBv+θTBv+b), (A30)

βBx/T = (1− α)(ηTBv + θTBv + b)− Tη(θBv + c), (A31)

θBv = (1− θ)(θBv + c)− (β/T)(ηTBv + θTBv + b). (A32)

Solving the linear system composed of Equations (A30)–(A32) with respect to (a, b, c) using
Equation (A28), we obtain Equations (34)–(36).
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