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Abstract: This paper investigates the effectiveness of four different soft computing methods, namely
radial basis neural network (RBNN), adaptive neuro fuzzy inference system (ANFIS) with subtractive
clustering (ANFIS-SC), ANFIS with fuzzy c-means clustering (ANFIS-FCM) and M5 model tree
(M5Tree), for predicting the ultimate strength and strain of concrete cylinders confined with
fiber-reinforced polymer (FRP) sheets. The models were compared according to the root mean
square error (RMSE), mean absolute relative error (MARE) and determination coefficient (R2) criteria.
Similar accuracy was obtained by RBNN and ANFIS-FCM, and they provided better estimates
in modeling ultimate strength of confined concrete. The ANFIS-SC, however, performed slightly
better than the RBNN and ANFIS-FCM in estimating ultimate strain of confined concrete, and
M5Tree provided the worst strength and strain estimates. Finally, the effects of strain ratio and the
confinement stiffness ratio on strength and strain were investigated, and the confinement stiffness
ratio was shown to be more effective.
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1. Introduction

In recent years, the strengthening of existing concrete structures using externally bonded composite
sheets of fiber reinforced polymer (FRP) has gained significant popularity. One common technique
is wrapping unidirectional FRPs around the circumference of a concrete column to increase its
axial strength and ductility. It is well-known that a concrete core expands laterally under uniaxial
compression, but such expansion is confined by the FRP. Therefore, the core is subjected to a
three-dimensional compressive state of stress in which the performance of the concrete core is
significantly influenced by the confining pressure [1–5].

Many researchers studied the behavior of FRP-confined concrete and proposed a variety of
confinement models for the ultimate condition of confined concrete under uniaxial compression
loadings [6,7]. The majority of FRP confinement models are design-oriented and were developed
using a regression analysis [8–12]. There have also been several analysis-oriented models developed
based on the mechanics of confinement and strain compatibility between concrete and the FRP
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wrap [13–15]. Recently, a new category of models has been proposed based on soft computing
methods, such as artificial neural networks, generic algorithms, and fuzzy logic. Models in this
category can handle complex databases containing a large number of independent variables, identify
the sensitivity of input parameters, and provide mathematical solutions between dependent and
independent variables [16]. Pham and Hadi [16] proposed the utilization of neural networks to
compute the strain and compressive strength of FRP-confined columns, and the results show agreement
between proposed neural network models and experimental data. Also, there are several studies
related to design-oriented and analysis-oriented models [9,17–29].

Lim et al. [30] proposed a new model for evaluating the ultimate condition of FRP-confined
concrete using genetic programming (GP). The model was the first to establish the ultimate axial strain
and hoop rupture strain expressions for FRP-confined concrete on the basis of evolutionary algorithms.
The results showed that the predictions from the suggested model aligned with a database compiled by
the authors. The proposed models provided improved predictions compared to the existing artificial
intelligence models. The model proved that more accurate results can be achieved in explaining and
formulating the ultimate condition of FRP-confined concrete. The model assessment presented in that
study clearly illustrated the importance of the size of the test databases and the selected test parameters
used in the development of artificial intelligence models on their overall performance.

This paper studies the capability of four soft computing techniques for predicting the ultimate
strength and strain of FRP-confined concrete cylindrical specimens. The computing techniques include
radial basis neural network (RBNN), adaptive neuro fuzzy inference system (ANFIS) with subtractive
clustering (ANFIS-SC), ANFIS with fuzzy c-means clustering (ANFIS-FCM), and M5 model tree (M5Tree).

2. Overview of Soft Computing Approaches

2.1. Radial Basis Function Neural Network

Artificial neural networks (ANNs) are inspired by biological neural networks. ANNs include
a set of processing components, called neurons, which operate in parallel processes and transmit
information to other neurons, similar to the functioning of a biological brain. ANNs are an efficient
method for modeling complex input-output relationships and can learn relationships directly from the
data being modeled [31]. The nonlinearity within a radial basis function (RBF) network can be selected
from a few classic nonlinear functions. The hidden layer carries out a fixed nonlinear transformation
with no adjustable variables, and it maps the input onto a new layer. The output layer then performs a
linear combination on this new layer, and the only adjustable variables are the weights of this linear
combiner [32]. A general RBF network is schematically illustrated in Figure 1.
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The radial basis function neural network (RBFN) model, which includes an input, an output
and a single hidden layer, was developed by Powell [33] and Broomhead and Lowe [34]. In this model,
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the number of input and output nodes is similar to that of multi-layer perceptron (MLP) neural
networks, and was selected using the nature of real input and output parameters. However, the rate of
learning in RBFN is much faster than the MLP method. The output of RBFN can be calculated with the
following equation:

Y =
p

∑
p=1

Wp θ
(
‖X− Xp‖

)
(1)

In the equation, Wp is the weight connecting the output nodes and hidden nodes, θ represents the
radial basis function, X and Y are the input and output variables, XP indicates the center of each hidden
node which is dependent on the input data, and ‖X− Xp‖ represents the Euclidean metric between
hidden and input nodes. Each group of input nodes which has identical information as the input is
indicated by one hidden node, and the transformation related to any node within the hidden layer is
named a Gaussian function [35]. More detailed information about RBNN theory can be obtained from
Haykin [36].

2.2. Adaptive Neuro Fuzzy Inference System

ANFIS is a combined intelligent system including ideas from neural networks and fuzzy control,
combining the advantages of both. Fuzzy logic is a superset of typical logic that has been improved to
operate with uncertain data and the theory of partial truth [37,38]. The most important disadvantage
of fuzzy logic is the lack of a systematic approach to choosing membership function variables and
designing the fuzzy rules. On the other hand, ANN has the ability to learn its structure from the
input-output sets.

Jang [39] introduced ANFIS as a universal approximation which can estimate any real continued
function on a compact data set with the desired precision [40,41]. In terms of function, ANFIS can be
considered as equivalent to fuzzy inference systems, and the ANFIS system used can be considered as
comparable to the Sugeno first-order fuzzy model [42]. A simple example is presented below, in which
a fuzzy inference system was assumed with two inputs of x and y and one output of z. For this
example, the typical rule set of a first-order Sugeno fuzzy model, which possess two simple fuzzy
If-Then rules, is as follows:

Rule 1 : IF x is A1, y is B1 and z is C1 THEN f1 = p1x + q1y + r1z + t1 (2)

Rule 2 : IF x is A2, y is B2 and z is C2THEN f2 = p2x + q2y + r2z + t2 (3)

In the rule set, p1, q1, r1 and p2, q2, r2 are the variables of the THEN-part of the first-order Sugeno
fuzzy model.

The ANFIS system uses a hybrid-learning algorithm to update parameters [43]. This algorithm is
composed of two methods: the least squares approach and the gradient descent method. The function
of the gradient descent approach is to adjust the variables of premise non-linear membership function,
and the function of least squares method is to determine the resultant linear variables {pi, qi, ri}.
The learning process of this system has two steps. The first step includes the identification of consequent
variables by the least squares method, while the prior variables are assumed to be fixed for the running
cycle by the training set. After that, the error signals will spread backwards. In this part, the function
of the gradient descent method includes updating the premise variables by minimizing the cost
function, while the resultant variables stay fixed. Jang [39] presented the details of this algorithm and
mathematical foundations of the hybrid learning algorithm.

In the present paper, two different ANFIS methods, including ANFIS with subtractive clustering
(ANFIS-SC) and ANFIS with fuzzy c-means clustering (ANFIS-FCM),are utilized as modeling
techniques. Subtractive clustering (SC) is an extension of the mountain clustering method suggested
by Yager and Filev [44]. In this method, the data are clustered by evaluating the potential of data in
the specification space. FCM is the modified K-means algorithm; it has some restrictions and may not
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operate properly with large data sets. FCM minimizes within cluster variance and the classification of
data using the clustering algorithm [45]. FCM works by minimizing the squared error function.

2.3. M5 Model Tree

Quinlan [46] explained the M5Tree, which includes a regression function at the terminal nodes.
In fact, the M5 algorithm employs the idea of splitting the parameter space into subspaces and building
a local linear regression model in each. The splitting follows the concept used in building a decision
tree (see Figure 2).
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The divide-and-conquer method is usually utilized to construct these types of tree-based models.
Constructing a model tree entails two distinct steps. The first step includes a splitting criterion for
the creation of a decision tree. In the M5Tree approach, this criterion is dependent on the standard
deviation of the class values and then obtaining the decrement that can be expected in this error.
The standard deviation reduction (SDR) can be calculated with the following equation:

SDR = sd(T)−∑
|Ti|
T

sd(Ti) (4)

In the equation, T indicates a set of instances that achieves the node, Ti is the subset of instances
that have the ith result of the potential set, and sd is the standard deviation. The disarticulating
proceeding causes the data in parent nodes to have more standard deviation compared to child nodes
so that these data are purer. Once all the feasible splits are assessed, M5 selects the one that provides
the maximum value for the expected error decrease. This grouping usually leads to a tree-like structure
that should be trimmed by substituting a sub-tree, for example, with a leaf. In the next step, this tree
growth must be trimmed and the sub-trees replaced with regression functions. In this method, the
variable space is divided into several areas (subspaces), and a linear regression model is created for
each of them. Quinlan [46] provides further details on M5Tree.

3. Results

In this study, four different soft computing techniques, i.e., RBNN, ANFIS-SC, ANFIS-FCM and
M5 Tree, are employed for predicting strength ( f ′cc/ f ′co) and strain (εcc/εco). For the model simulations,
a MATLAB neural network and fuzzy tool boxes are used, and 519 experimental data are adopted
from Sadeghian and Fam [48,49]. Figure 3 shows the usual test setup for confined cylinders. Also,
the statistical analyses of the input data employed in this study are summarized in Table 1. The data
are used to develop models for ultimate strength and strain based on the strain ratio (ρε) and the
confinement stiffness ratio (ρK) inputs, which are defined as follows [48]:
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fl = ρKρε f ′co =
2E f εh,rupt

D
(5)

ρK =
2E f t

( f ′co/εco)D
(6)

ρε =
εh,rup

εco
(7)
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Table 1. Statistics for the experimental data.

D
(mm)

t
(mm)

f′co
(MPa)

f′cc
(MPa)

εco
(%)

εcc
(%)

εh,rup
(%) ρε

Ef
(GPa) ρK

Min. value 51.00 0.09 19.70 31.40 0.20 0.23 0.10 0.29 10.50 0.01
Max. value 406.00 7.26 188.20 372.20 0.35 6.20 4.98 23.03 662.50 0.68

Average 158.46 0.89 46.52 83.88 0.24 1.68 1.12 4.80 183.09 0.07
Standard deviation 52.74 1.06 27.05 42.18 0.03 1.05 0.53 2.44 124.73 0.07

In the equations, f ′co is the unconfined concrete strength, εco is the corresponding axial strain of
f ′co, Ef is the elastic modulus of the FRP wrap in the hoop direction, t is the total thickness of the FRP
wrap, εh,rup is the actual hoop rupture strain of the FRP wrap, and D is the diameter of the concrete
core. The confinement ratio (fl/ f ′co) is a frequently used parameter in existing confinement models,
which is equal to the product of ρK and ρε. Several equations have been proposed for estimating the
strain and strength of FRP-confined concrete cylinders which depend on ρK and ρε [9,48]. According
to Teng et al. [11], instead of the more approximate value of 0.002 for εco, it is assumed as follows:

εco = 9.37× 10−4 4
√

f ′co , f ′co in MPa (8)

The data set is randomly grouped into two subsets; the first data set is adopted for training, and
the second data set (20% of the whole database) is adopted for the testing stage. Before application of
the RBNN, the training values of input and output are normalized between 0.2 and 0.8 as follows:

b1
xi − xmin

xmax − xmin
+ b2 (9)
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In the equation, xmax and xmin are the maximum and minimum values of the training data. Here
values of 0.6 and 0.2 are respectively assigned for b1 and b2, and the input data are normalized within
a range of 0.2 to 0.8, as recommended in Cigizoglu [51]. According to that study, input parameters
ranging from 0.2 to 0.8 allow the artificial neural network the flexibility to appraise beyond the
training range.

The applied models are compared with the mean absolute relative error (MARE), root mean
square error (RMSE) and determination coefficient (R2). The definitions of statistical parameters are
given as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Xoi − Xei)
2 (10)

MARE =
1
N

N

∑
i=1

|Xoi − Xei|
Xoi

× 100 (11)

where N, Xoi and Xei are the number of samples, and the observed and estimated values, respectively.

3.1. Ultimate Strength Prediction

Testing and training results for the prediction of strength of the RBNN, ANFIS-SC, ANFIS-FCM
and M5Tree models are listed in Table 2. The control parameter values of the optimal models are also
provided in the second column. Different numbers of parameters and structures were tried for each
method and the optimal ones were selected. Gaussian membership functions are used in ANFIS-SC
and ANFIS-FCM models. The RBNN, ANFIS-SC and ANFIS-FCM methods can be easily obtained
and applied by using new RBNN, genfis2 and genfis3 tools in MATLAB command windows. For the
M5Tree method, code which is available for free online (http://www.cs.rtu.lv/jekabsons/regression.
html) is used.

Table 2. Statistical performance of RBNN, ANFIS-SC, ANFIS-FCM and M5Tree models in strength
predictions.

Method Control
Parameters

Training Test

RMSE MARE R2 RMSE MARE R2

RBNN 0.8,15 0.32 11.6 0.880 0.27 10.5 0.899
ANFIS-SC 0.1 0.31 11.1 0.891 0.32 11.3 0.879

ANFIS-FCM 10 0.30 11.0 0.896 0.27 10.7 0.903
M5Tree 0.26 8.25 0.921 0.43 14.3 0.739

In the table, 0.8 and 15 indicate the spread value and the number of hidden layer neuron of the
RBNN model, respectively, while 0.1 and 10 show the radii and cluster number of the ANFIS-SC
and ANFIS-FCM models. A radii value of 0.1 in ANFIS-FCM corresponds to 15 clusters. This means
that the ANFIS-FCM has fewer membership functions and parameters (10 Gaussian membership
function each have 2 parameters, or 20 parameters in total) than those of ANFIS-SC. Table 2 implies
that RBNN and ANFIS-FCM have almost the same accuracy, and they both are more efficient than
the ANFIS-SC and M5Ttree models with respect to RMSE, MARE and R2. It is interesting that the
M5Tree approximated training data very well whereas its test results are worse than those of the other
models. This implies that this method cannot adequately learn the investigated phenomenon. Different
statistical indices were obtained for each of the methods. The main reason for this may be the fact that
each method has different assumptions in developing models and their behaviors with the used data
are distinct from each other. The rule base of the optimal ANFIS-FCM model is given in Table 3.

http://www.cs.rtu.lv/jekabsons/regression.html
http://www.cs.rtu.lv/jekabsons/regression.html
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Table 3. Rule base of the optimal ANFIS-FCM in modeling strength.

1. If (strain-ratio is in1cluster1) and (confinement-stiffness-ratio is in2cluster1) then (Strength is out1cluster1)
2. If (strain-ratio is in1cluster2) and (confinement-stiffness-ratio is in2cluster2) then (Strength is out1cluster2)
3. If (strain-ratio is in1cluster3) and (confinement-stiffness-ratio is in2cluster3) then (Strength is out1cluster3)
4. If (strain-ratio is in1cluster4) and (confinement-stiffness-ratio is in2cluster4) then (Strength is out1cluster4)
5. If (strain-ratio is in1cluster5) and (confinement-stiffness-ratio is in2cluster5) then (Strength is out1cluster5)
6. If (strain-ratio is in1cluster6) and (confinement-stiffness-ratio is in2cluster6) then (Strength is out1cluster6)
7. If (strain-ratio is in1cluster7) and (confinement-stiffness-ratio is in2cluster7) then (Strength is out1cluster7)
8. If (strain-ratio is in1cluster8) and (confinement-stiffness-ratio is in2cluster8) then (Strength is out1cluster8)
9. If (strain-ratio is in1cluster9) and (confinement-stiffness-ratio is in2cluster9) then (Strength is out1cluster9)
10. If (strain-ratio is in1cluster10) and (confinement-stiffness-ratio is in2cluster10) then (Strength is out1cluster10)

Table 3 demonstrates that the model has 10 clusters and one rule for each of them. Figure 4 illustrates
the strength estimates of the applied models in the forms of time variation and scatterplot.
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Figure 4. Strength estimates of the RBNN, ANFIS-SC, ANFIS-FCM and M5Tree models (dimensionless:
f ′cc/ f ′co ).

From the figure, it is apparent that the RBNN and ANFIS-FCM models have less scattered
assessments than other models, and the M5Tree model gave the most scattered estimates. This reveals
that the investigated phenomenon is nonlinear, and therefore linear M5Tree cannot adequately simulate
strength behavior. The variation of strength versus strain ratio and confinement stiffness ratio for
the optimal ANFIS-FCM model is illustrated in Figure 5, in which it is clear that strength takes its
maximum value when the strain ratio is also at its maximum.

The linear behavior for a confinement-stiffness-ratio greater than 0.3 is observed in Figure 5.
This is because of the exponent of the confinement-stiffness-ratio in equations is usually 0.7; therefore,
values greater than 0.30.7 behave linearly.
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3.2. Ultimate Strains Prediction

Strain predictions for the RMSE, MARE and R2 values of the applied models are compared in
Table 4.

Table 4. Statistical performance of RBNN, ANFIS-SC, ANFIS-FCM and M5Tree models in strain predictions.

Method Control
Parameters

Training Test

RMSE MARE R2 RMSE MARE R2

RBNN 0.640 2.43 29.9 0.767 2.51 31.6 0.752
ANFIS-SC 0.1 2.31 29.4 0.790 2.47 30.5 0.766
ANFIS-FCM 6 2.33 31.3 0.786 2.57 31.9 0.742

M5Tree 1.90 21.8 0.858 2.72 33.3 0.711

This tables shows that the ANFIS-SC models outperform other models. Here also RBNN and
ANFIS-FCM have similar accuracy, and they are slightly worse than the ANFIS-SC model. A radii
value of 0.1 in ANFIS-SC corresponds to 13 clusters. Similar to the previous application, here too
ANFIS-SC has many more membership functions and parameters compared to ANFIS-FCM. Table 5
gives the rule base of the optimal ANFIS-SC model. The estimated results of the optimal RBNN,
ANFIS-FCM and ANFIS-SC models are shown in Figure 6.

This figure shows that the estimates of the ANFIS-SC model are closer to the corresponding
measured values, especially for high strain values. The variation of strength versus strain ratio and
confinement stiffness ratio for the optimal ANFIS-SC model is shown in Figure 7. It is clear from the
figure that strain takes its maximum value when the strain ratio and confinement stiffness ratio are
both at their maximum values. The linear relationship between strain and strain ratio is clearly seen in
the range of confinement-stiffness-ratio between 0.4 and 0.6.

The effects of strain ratio and the confinement stiffness ratio inputs on strength and strain
were also investigated using the ANFIS-SC method because it has less control parameters than
RBNN. For the RBNN models, the optimal radii and hidden node numbers should be determined
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whereas, in obtaining ANFIS-SC model, the radii value which indicates the number of clusters is only
distinguished. The simulation results of the ANFIS-SC models are reported in Table 6.

Table 5. Rule base of the optimal ANFIS-SC in modeling strain.

1. If (strain-ratio is in1cluster1) and (confinement-stiffness-ratio is in2cluster1) then (Strength is out1cluster1)
2. If (strain-ratio is in1cluster2) and (confinement-stiffness-ratio is in2cluster2) then (Strength is out1cluster2)
3. If (strain-ratio is in1cluster3) and (confinement-stiffness-ratio is in2cluster3) then (Strength is out1cluster3)
4. If (strain-ratio is in1cluster4) and (confinement-stiffness-ratio is in2cluster4) then (Strength is out1cluster4)
5. If (strain-ratio is in1cluster5) and (confinement-stiffness-ratio is in2cluster5) then (Strength is out1cluster5)
6. If (strain-ratio is in1cluster6) and (confinement-stiffness-ratio is in2cluster6) then (Strength is out1cluster6)
7. If (strain-ratio is in1cluster7) and (confinement-stiffness-ratio is in2cluster7) then (Strength is out1cluster7)
8. If (strain-ratio is in1cluster8) and (confinement-stiffness-ratio is in2cluster8) then (Strength is out1cluster8)
9. If (strain-ratio is in1cluster9) and (confinement-stiffness-ratio is in2cluster9) then (Strength is out1cluster9)

10. If (strain-ratio is in1cluster10) and (confinement-stiffness-ratio is in2cluster10) then (Strength is out1cluster10)
11. If (strain-ratio is in1cluster11) and (confinement-stiffness-ratio is in2cluster11) then (Strength is out1cluster11)
12. If (strain-ratio is in1cluster12) and (confinement-stiffness-ratio is in2cluster12) then (Strength is out1cluster12)
13. If (strain-ratio is in1cluster13) and (confinement-stiffness-ratio is in2cluster13) then (Strength is out1cluster13)
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Figure 6. Strain estimates of the RBNN, ANFIS-SC, ANFIS-FCM and M5Tree models (dimensionless:
εcc/εco).

Table 6. Effect of strain ratio (ρε) and the confinement stiffness ratio (ρK) inputs on strength and strain
with respect to ANFIS-SC.

Inputs Control
Parameters

Training Test

RMSE MARE R2 RMSE MARE R2

Strength

ρε 0.1 0.852 32.8 0.249 0.804 32.8 0.054
ρK 0.1 0.646 21.3 0.512 0.648 25.1 0.445

Strain

ρε 0.2 4.081 63.6 0.343 4.406 59.2 0.244
ρK 0.1 4.453 71.8 0.218 4.330 63.2 0.265
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Figure 7. Variation of strain versus strain ratio and confinement stiffness ratio for the optimal
ANFIS-SC model.

This table indicates that the effect of ρK is more significant than ρε in strength and strain.
The relative RMSE differences between ρK and ρε based ANFIS-SC models are 19.4% and 1.7% for
strength and strain, respectively.

It should be noted that providing explicit formulation for the RBNN, ANFIS-SC and ANFIS-FCM
is impossible because they are black-box models. However, the regression tree of the optimal M5Tree
models for the strain and strength modeling are provided in Appendix A.

4. Conclusions

In this paper, the ultimate strength and strain of cylindrical concrete specimens confined with
FRP composites were studied using four soft computational methods. The optimal RBNN, ANFIS-SC,
ANFIS-FCM and M5Tree models obtained by trying different control parameters were compared with
respect to RMSE, MARE and R2 statistics. RBNN and ANFIS-FCM provided almost the same level
of accuracy, and they performed better than the other models in estimating strength of FRP-confined
concrete cylindrical specimens by using the inputs of strain ratio and the confinement stiffness ratio.
In estimating strain of FRPs, however, the ANFIS-SC model performed slightly better than the RBNN
and ANFIS-FCM models. Among the applied models, the M5Tree model was the least accurate at
estimating strength and strain of FRPs. The effects of strain ratio and the confinement stiffness ratio
inputs on strength and strain were also examined using ANFIS-SC, and the confinement stiffness ratio
was found to be more significant than strain ratio in strength and strain.
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Appendix A. Regression Tree of the Optimal M5Tree Models for the Strain and
Strength Modeling

Table A1. Regression tree obtained from M5Tree for strength modeling.

if x2 <= 0.065174 else if x2 <= 0.034551 else if x1 <= 6.6355

if x2 <= 0.0255
if x2 <= 0.033937 if x2 <= 0.15871

if x1 <= 2.9025 y = 1.71921529875 (4) if x1 <= 3.3762
if x1 <= 2.505 else if x2 <= 0.071835

y = 1.108064681 (10) y = 1.92418515966667 (6) y = 1.55785802183333 (6)
else else if x2 <= 0.037414 else if x1 <= 2.6111

y = 0.891721241833333 (6) y = 1.45295335707692 (13) y = 1.8102727921 (20)
else if x2 <= 0.021267 else if x2 <= 0.044137 else

if x2 <= 0.010372 y = 1.73181401571429 (14) y = 1.57794946244278
+4.99230783389806*x2 (11)

y = 1.483590448 (4) else if x2 <= 0.045434 else if x2 <= 0.092595
else if x2 <= 0.015328 y = 1.41987727225 (4) if x2 <= 0.06805

y = 1.13560753725 (12) else if x2 <= 0.066642
else if x2 <= 0.018965 y = 1.587916394 (4) y = 2.34944086616667 (6)

y = 1.25916023821429 (14) else if x1 <= 3.7759 else
else y = 1.64059121775 (4) y = 2.7420408164 (5)
y = 1.1897478106 (5) else if x2 <= 0.056561 else if x2 <= 0.074024

else if x1 <= 6.5213 if x2 <= 0.04728 y = 1.9024165688 (5)
if x1 <= 4.9928 y = 1.7582115855 (4) else

y = 1.26759138458333 (12) else if x2 <= 0.050345 y = 2.10530567306667 (15)
else y = 2.23252585925 (4) else if x1 <= 3.9987

y = 1.3995581252 (5) else y = 5.07504348861174
-23.5904126567999*x2 (11)

else if x1 <= 7.387 y = -4.7981786875333
+124.346272222065*x2 (9)

else if x2 <= 0.10281

y = 1.654221567 (4) else y = 2.9481859308 (5)
else y = 2.72437967584461 −

0.199395562322418*x1 (13)
else

y = 1.4358405485 (4) else if x2 <= 0.049162 y = 2.70621362185714 (7)

else if x1 <= 7.0025
if x2 <= 0.037766 else if x1 <= 2.9764

if x1 <= 3.4344 if x1 <= 8.8613 y = 2.767153359 (19)
if x2 <= 0.029531 if x2 <= 0.033956 else if x2 <= 0.22102
y = 1.16075967033333 (6) y = 1.7132418315 (12) y = 3.47170636066667 (9)
else if x1 <= 1.3994 else else

y = 1.179568198 (4) y = 1.89220380857143 (7) y = 4.1398758346 (5)
else if x2 <= 0.059018 else else if x2 <= 0.13591

y = 1.39728594933333 (24) y = 2.15360432216667 (6) if x2 <= 0.068264
else else y = 2.72699884416667 (6)
y = 1.59811338542857 (7) y = 2.21282843818182 (11) else if x2 <= 0.1031

else if x2 <= 0.04595 else if x1 <= 7.8378 y = 3.65529982828571 (7)
if x2 <= 0.033094 y = 2.3919454476 (5) else

if x1 <= 5.5058 else y = 4.204802991 (4)
y = 1.323997823 (12) y = 2.915657196 (7) else
else y = 1.45436334578442

+23.9129270980071*x2 (10)
y = 1.56201983057143 (7)
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Table A2. Regression tree obtained from M5Tree for strain modeling.

if x1 <= 6.2548 else else

if x2 <= 0.06311
y = 4.69127474228571 (7) y = 6.0040160536 (5)

if x1 <= 3.6413 else else if x2 <= 0.20919
if x2 <= 0.020455 y = 6.3533113762 (5) y = 2.39097472537744

+2.19876304626978*x1 (10)
if x1 <= 1.8874 else if x1 <= 5.6305 else
y = 1.1440491595 (6) if x1 <= 4.5915 y = 14.51223043 (8)
else if x2 <= 0.038697 else if x2 <= 0.05346
y = 1.68687631466667 (9) y = 5.82153494575 (4) if x2 <= 0.022672

else if x1 <= 2.6807 else if x2 <= 0.055755 y = 3.41272976260672
+0.218464713423608*x1 (22)

if x1 <= 2.2516 y = 7.6093721018 (5) else if x1 <= 8.8613
if x1 <= 1.7107 else if x2 <= 0.033956
y = 1.78844272172727 (11) y = 6.4901269452 (5) y = 11.8427843384812

-146.164747121597*x2 (20)
else else else if x2 <= 0.035225
y = 3.15371412385714 (7) y = 6.42120672495833 (24) y = 12.096092072 (5)

else else else if x2 <= 0.041997
y = 1.764552396 (6) y = 8.64814412742857 (7) if x1 <= 7.2822

else if x2 <= 0.047075
else if x1 <= 2.8545

y = 5.2413583345 (4)

if x2 <= 0.035327 if x2 <= 0.14161 else
if x1 <= 3.4003 if x1 <= 0.94068 y = 8.69478460875 (4)

y = 2.8827251381 (10) y = 1.6541689808 (5) else
else else if x2 <= 0.12452 y = 10.7816929114 (10)

y = 4.1709103866 (5) if x2 <= 0.091846 else
else y = 3.8282330848 (10) y = −4.15948380355076

+1.79907971888928*x1 (8)
y = 3.072717053875 (8) else

else if x2 <= 0.14656
else y = 5.62676665785714 (7) if x1 <= 7.7892

y = 4.18276414975 (12) else if x2 <= 0.067874
else if x2 <= 0.021073 y = 3.269071034 (4) y = 11.774363725 (6)

if x2 <= 0.018742 else else
y = 2.46492040855556 (9) y = 7.55286884866667 (21) y = 15.9303924215 (8)
else else if x2 <= 0.14818 else
y = 3.35411568575 (4) if x2 <= 0.092595 y = 17.838992625 (18)

else if x1 <= 4.0509 if x1 <= 4.2573 else
if x2 <= 0.054126 if x1 <= 3.429 y = 24.3989610371429 (7)

y = 4.0987042836 (15) y = 7.9752687216 (5) else if x2 <= 0.11185
else else y = 10.2661860479091 (11)

y = 6.1883060684 (5) y = 10.9299345495055
-67.7789156702637*x2 (13)

else if x1 <= 4.1077

else if x2 <= 0.033258 else if x1 <= 5.2858 y = 6.97833482855556 (9)
if x1 <= 5.6609 if x1 <= 4.3562 else
if x2 <= 0.024021 y = 7.779023415 (4) y = 9.9430306388 (5)

y = 6.21866667766667 (6) else
else if x2 <= 0.029178 y = 9.292927947 (10)

y = 2.6673381094 (5)
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