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Abstract: A steer-by-wire (SbW) system, also known as a next-generation steering system, is one
of the core elements of autonomous driving technology. Navigating a SbW system road vehicle in
varying driving conditions requires an adaptive and robust control scheme to effectively compensate
for the uncertain parameter variations and external disturbances. Therefore, this article proposed
an adaptive global fast sliding mode control (AGFSMC) for SbW system vehicles with unknown
steering parameters. First, the cooperative adaptive sliding mode observer (ASMO) and Kalman filter
(KF) are established to simultaneously estimate the vehicle states and cornering stiffness coefficients.
Second, based on the best set of estimated dynamics, the AGFSMC is designed to stabilize the impact
of nonlinear tire-road disturbance forces and at the same time to estimate the uncertain SbW system
parameters. Due to the robust nature of the proposed scheme, it can not only handle the tire–road
variation, but also intelligently adapts to the different driving conditions and ensures that the tracking
error and the sliding surface converge asymptotically to zero in a finite time. Finally, simulation
results and comparative study with other control techniques validate the excellent performance of
the proposed scheme.

Keywords: adaptive global fast sliding mode (AGFSM); adaptive sliding mode observer (ASMO);
Kalman filter (KF); Steer-by-Wire (SbW)

1. Introduction

The automobile industry is immensely working to transform conventional road vehicles into
partial/full autonomous vehicles. SAE International and NHTSA have classified six levels of driving
autonomy from “no automation” to “full automation” [1,2]. In particular, from the lane-keeping
assistance system [3] to fully automated maneuvering [4–6], Steer-by-Wire (SbW) technology is
playing a fundamental role in advanced driving assistance systems [7]. Nissan introduced the first
commercialized SbW system in 2013 with the Infiniti Q50 vehicle [8,9]. The SbW system delivers better
overall steering performance with comfort, reduces power consumption, provides active steering
control, and significantly improves the passenger safety. Compared with a conventional steering
system, the SbW system has replaced the mechanical shaft between the steering wheel and front
wheels with two actuators, controllers, and sensors. The first actuator steers the front wheels and the
second actuator provides steering feel feedback to the driver, obtained from the road and tire dynamics.
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Over the last decade, many researchers have proposed a number of control techniques to
compensate for the system parameter variation, change in road conditions, and external disturbances
for obtaining the robust performance of the SbW system. In [10,11], sliding mode based control
schemes are proposed for a partially known SbW system with unknown lumped uncertainties to track
the reference signal. However, it is hard to classify the wide range of nominal parameters under the
sideslip, and the robust performance may not be guaranteed over different road conditions. In [12–16],
the upper bound sliding mode control (SMC) technique is proposed for the bounded unknown SbW
system parameters and uncertain dynamics. However, the process of obtaining these proper bounds
is not evident. In [17–20] proportional-derivative (PD) control is proposed to follow the driver’s
steering wheel signal closely. However, under uncertain dynamics, it is difficult to achieve satisfactory
performance with a conventional control scheme. In [21] cornering stiffness and chassis side slip
angle are estimated to calculate the self-aligning torque. The authors used the proportion of estimated
torque as a feedback to the driver for artificial steering feel. In [22] three suboptimal sliding mode
techniques are evaluated for yaw-rate tracking problem in over-actuated vehicles. In [23,24], adaptive
control is implemented for path tracking via SbW system and the authors estimated the sliding gains
by considering the known steering parameters and cornering coefficients. However, they did not
use any mechanism to stop the estimation. Consequently, the controller could lead to saturation by
estimating too large a sliding gain. In [25,26] the authors proposed a hyperbolic tangent function
with adaptive SMC based schemes to counter the effect of self-aligning torque. In [27] the frictional
torque and self-aligning torque are replaced by a second-order polynomial function that acts as an
external disturbance over the SbW system. The authors proposed an adaptive terminal SMC (ATSMC)
to estimate the upper bounds of parameters and disturbance.

Apart from the control design, a robust estimation methodology is also needed for the SbW
system to estimate the vehicle states, uncertain parameters, and tire–road conditions for eliminating
the effect of external disturbances from the controller. For instance, in recent years Kalman filter (KF)
and nonlinear observers have gained much more attention from researchers; for example, in [28] a
dual extended KF is used to estimate vehicle states and road friction. In [29] the authors estimated five
DOF vehicle states and inertial parameters, such as overloaded vehicle’s additional mass, respective
yaw moment of inertia, and its longitudinal position using the dual unscented KF by considering the
constant road–tire friction over a flat road. In [30–32] a fixed gain based full-state nonlinear observer is
designed to estimate the longitudinal, lateral, and yaw velocities of the vehicle. However, for good
estimation performance the observer gains must be tuned to a wide range of driving conditions.
In order to reduce the burden of gain tuning from a-nonlinear observer [33], employed linear matrix
inequality based convex optimization to obtain the gains of reduced order observer for estimating
vehicle velocities. In [34] the authors implemented an adaptive gain based sliding mode observer to
estimate the battery’s charging level and health in electric vehicles.

In this paper first, we have established the adaptive sliding mode observer (ASMO) and the
Kalman filter (KF) to simultaneously estimate the vehicle states and cornering stiffness coefficients
by using the yaw rate and the strap down [35] lateral acceleration signals. Then, based on the
simultaneously estimated dynamics, the two-fold adaptive global fast sliding mode control (AGFSMC)
is designed for SbW system vehicles, considering that the steering parameters are unknown. In the
first fold, estimated dynamics-based control (EDC) is utilized to stabilize the impact of self-aligning
torque and frictional torque. In the second fold, the AGFSMC is developed to estimate the uncertain
SbW parameters and eliminate the effect of residual disturbance left out from the EDC. The adaptation
capability of the proposed scheme not only intelligently handles the tire–road environmental changes,
but also adapts the system parameters and sliding gains according to the different driving conditions.

Finally, for avoiding overestimations of parameters and gains, discontinuous projection
mapping [36] is incorporated to stop the estimation and adaptive mechanism as the tracking error
converges to the designed dead zone bounds [37]. In the simulated results section, the comparative
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study will show the effectiveness of the proposed AGFSMC scheme, which ensures that the tracking
error and sliding surface converge asymptotically to zero in a finite time.

The rest of the paper is structured as follows: In Sections 2 and 3, vehicle dynamics modeling
and SbW system modeling with external disturbance are discussed. In Section 4, the ASMO and KF
are established to estimate the vehicle states and parameters. In Section 5, the AGFSMC scheme is
developed for the SbW system and the convergence analysis with bounded conditions is discussed
in detail. Section 6 describes the simulation results and findings to validate the proposed scheme,
followed by the last section that concludes the paper.

2. Vehicle Dynamics Modeling

Figure 1 illustrates the simplest bicycle model of a vehicle, which has a central front wheel and
a central rear wheel, in place of two front and two rear wheels. The vehicle has two degrees of freedom,
represented by the lateral motion y and the yaw angle ψ. According to Figure 1, the dynamics along
the y axis and yaw axis are described as [38,39]:

m
( ..

y + Vx
.
ψ
)
= Fy f cos δ f w + Fx f sin δ f w + Fyr (1)

Iz
..
ψ = l f

(
Fy f cos δ f w + Fx f sin δ f w

)
− lrFyr, (2)

where
..
y,

.
ψ, and

..
ψ. are the acceleration with respect to the y axis motion, yaw rate, and yaw acceleration,

respectively. l f and lr represent the distance of front and rear axles from the center of gravity,
respectively. m and Iz are the mass of vehicle and the moment of inertia along the yaw axis, respectively.
Vx denotes the longitudinal vehicle velocity at the center of gravity. Fx f and Fxr are the longitudinal
forces of the front and rear wheels, respectively. Fy f and Fyr are the lateral frictional forces of front and
rear wheels, respectively, as shown in Figure 1.
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In order to simplify the model, it is assumed that longitudinal forces Fx f , Fxr are equal to zero
and by using the small angle approximation, i.e., cos δ f w ≈ 1, the simplified dynamics can be modeled
as follows:

m
( ..

y + Vx
.
ψ
)
= Fy f + Fyr (3)

Iz
..
ψ = l f Fy f − lrFyr. (4)

For small slip angles, the lateral frictional forces are proportional to slip-angle α f and αr at the
front and rear wheels, respectively. Therefore, lateral forces are defined as:

Fy f = 2C f .α f (5)

Fyr = 2Cr.αr, (6)

where

α f = δ f w −
Vy + l f

.
ψ

Vx
(7)
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αr = −
Vy − l f

.
ψ

Vx
, (8)

where C f and Cr are the front and rear tires’ cornering stiffness coefficients. δ f w denotes the steering
angle of front wheels, which is considered the same for both front wheels, and factor 2 accounts for
two front and two rear wheels, respectively.

By using the small angle approximation Vy =
.
y [38], Equations (7) and (8) can be written as:

α f = δ f w −
.
y + l f

.
ψ

Vx
(9)

αr = −
.
y− l f

.
ψ

Vx
. (10)

Substituting Equations (5), (6), (9) and (10) into Equations (3) and (4), the state space model is
represented as:

.
x = Ax + Bδ f w, (11)

where
x =

[ .
y

.
ψ
]T

A =

 −2
(C f +Cr

mVx

)
−
(

Vx + 2
( l f C f−lrCr

mVx

))
−2
( l f C f−lrCr

IzVx

)
−2
(

l2
f C f +l2

r Cr

IzVx

)
, B =

 2C f
m

2l f C f
Iz

.
(12)

3. Steer-by-Wire System Modeling

Figure 2 depicts the standard model of SbW system for road vehicles. As shown, the steering
wheel angle sensor is used to detect the driver’s reference angle and the feedback motor is used to
provide the artificial steering feel.

Appl. Sci. 2017, 7, 738  4 of 27 

where  and  are the front and rear tires’ cornering stiffness coefficients.  denotes the 
steering angle of front wheels, which is considered the same for both front wheels, and factor 2 
accounts for two front and two rear wheels, respectively. 

By using the small angle approximation =  [38], Equations (7) and (8) can be written as: = − +
 (9) 

= − − . (10) 

Substituting Equations (5), (6), (9) and (10) into Equations (3) and (4), the state space model is 
represented as: = + , (11) 

where =  

= −2 + − + 2 −
−2 − −2 + , = 22 . (12) 

3. Steer-by-Wire System Modeling 

Figure 2 depicts the standard model of SbW system for road vehicles. As shown, the steering 
wheel angle sensor is used to detect the driver’s reference angle and the feedback motor is used to 
provide the artificial steering feel. 

 
Figure 2. Steer-by-wire model. 

Similarly, the front wheel angle is detected by the pinion angle sensor. Based on the error 
between the reference angle and the front wheel angle, the control signal is provided to the front 
wheel steering motor to closely steer the front wheels according to the driver’s reference angle. 

The equivalent second-order dynamics of the front wheels’ steering motor is expressed as 
follows [10,15]: + + + = , (13) 

Steering wheel
angle sensor

Steering wheel

Steering feel
Feedback motor

Pinion angle 
sensor

Front wheel
steering motor Controller

Figure 2. Steer-by-wire model.

Similarly, the front wheel angle is detected by the pinion angle sensor. Based on the error between
the reference angle and the front wheel angle, the control signal is provided to the front wheel steering
motor to closely steer the front wheels according to the driver’s reference angle.
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The equivalent second-order dynamics of the front wheels’ steering motor is expressed as
follows [10,15]:

Jeq
..
δ f w + Beq

.
δ f w + τF + τa = ku, (13)

where Jeq and Beq are the equivalent moment of inertia and the equivalent damping of the SbW system,
respectively. u is the front wheels’ steering motor control input and k is the steering ratio between the
steering wheel angle and the front wheels’ angle, given by δ f w = δsw/k.

It is known that many modern road vehicles use the variable steering ratio. Therefore, dividing
both sides of Equation (13) by k eliminates the impact of the variable steering ratio from the proposed
control scheme without compromising the steering performance. Thus, the dynamics of SbW system
can be written as:

Jek
..
δ f w + Bek

.
δ f w + τFk + τak = u, (14)

where

Jek =
Jeq

k
=

J f w

k
+ J f mk (15)

Bek =
Beq

k
=

B f w

k
+ B f mk (16)

τFk =
τF
k

(17)

τak =
τa

k
, (18)

where J f w and J f m are the moment of inertia of the front wheels and the front wheel steering motor,
respectively. B f w and Bsm are the damping factors of the front wheels and the front wheel steering
motor, respectively.

When the vehicle is turning, the steering system experiences torque that tends to resist the
attempted turn, known as self-aligning torque τa. It can be seen from Figure 3 that the resultant lateral
force developed by the tire manifests the self-aligning torque. The lateral force is acting behind the
tire center on the ground plane and tries to align the wheel plane with the direction of wheel travel.
Therefore, the total self-aligning torque is given by [14]:

τa = Fy f
(
tp + tm

)
, (19)

where tp is the pneumatic trail (the distance between the application point of lateral force Fy f to the
center of tire), tm is the mechanical trail, also known as the caster offset, which is the distance between
the tire center and the point where the steering axis intersects with the ground plane.
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By substituting Equations (5) and (9) into Equation (19), τa can be written as:

τa = 2C f

(
δ f w −

.
y + l f

.
ψ

Vx

)(
tp + tm

)
. (20)

Moreover, τF is the coulomb frictional torque acting on SbW system, expressed as [23]:

τF = Fz f µtpsign
( .

δ f w

)
(21)

Fz f =
mglr

l f + lr
, (22)

where Fz f is the normal load on front axle, µ is the coeffient of friction, mg is the vehicle’s weight without
any external load, and sign() signum function is used to identify the direction of the frictional torque.

The stability of the SbW system mainly depends on the road and environmental conditions.
The uncertain road surface such as dry, wet, or icy can produce considerable variations in the tire
cornering stiffness coefficients C f , Cr, which can adversely affect the controller performance. Therefore,
to estimate the vehicle states and the uncertain parameter variation, the cooperative ASMO and KF are
designed in the next section.

4. ASMO and KF

In this section, we will first design the ASMO for yaw rate
.
ψ and lateral velocity

.
y, and then

use the KF parameter estimator to estimate the tire cornering stiffness coefficients under varying
road conditions.

In order to design the observer, a few assumptions are made, such as: the yaw rate
.
ψ is directly

measurable from yaw rate sensor; and the vehicle’s longitudinal velocity is obtained from Vx = reω,
where re is the effective tire radius and ω is the averaged free wheels angular speed measured from
the wheel encoders. Moreover, it is considered that there is no effect of gravitation acceleration g on
the lateral acceleration ay, such that the ay measurement model is defined as [29]:

ay,sensor =
..
y + Vx

.
ψ. (23)

Therefore, the lateral velocity can be obtained from a strapdown algorithm [35] as follows:

.
y(t) =

.
y(t− 1) +

∫
(ay,sensor −Vx

.
ψ)dt, (24)

where
.
y(t− 1) is the prior lateral velocity.

The conventional sliding mode observer (SMO) for vehicle states (Equation (11)) can be
designed as:

..
ŷ = −A11

.
ŷ− A12

.
ψ̂ + B1δ f w + L1sign

( .
y−

.
ŷ
)

(25)

..
ψ̂ = −A21

.
ŷ− A22

.
ψ̂ + B2δ f w + L2sign

( .
ψ−

.
ψ̂
)

, (26)

where A11, A12, B1, and B2 are the elements of Equation (12) with nominal m0 and Iz0; L1 and L2 are
the observer gains, which must satisfy the following conditions, such that:

L1 > max(|A11e1|+ |A12e2|) (27)

L2 > max(|A12e1|+ |A22e2|), (28)

where e1 =
.
y−

.
ŷ and e2 =

.
ψ−

.
ψ̂.
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The road surface variation is a critical factor for tuning the observer gains L1 and L2 during
the design process. Any inappropriate selection of L1 and L2 will significantly reduce the SMO
performance, resulting in a possible deviation of state estimation from the original trajectory.

Due to the aforementioned fact, an adaptive gain based sliding mode observer [34] is proposed,
which improves the estimation performance by adapting the observer gains according to tire road
conditions. Therefore, Equations (25) and (26) are changed to new forms, as follows:

..
ŷ = −A11

.
ŷ− A12

.
ψ̂ + B1δ f w + L̂1(t)sign(e1) (29)

..
ψ̂ = −A21

.
ŷ− A22

.
ψ̂ + B2δ f w + L̂2(t)sign(e2), (30)

where the ASMO gain adaptation law for i = 1, 2 is expressed as:

.
L̂i(t) =

{
ρi|ei|, |ei| > εi

0, otherwise
, (31)

where L̂i(t) > 0, is strictly positive time varying adaptive ASMO gain. ρi is a positive scalar used
to adjust the adaption speed. εi � 1 are small positive constants used to activate the adaptation
mechanism with the condition defined in Equation (31); therefore, as the error converges to the bound
|ei| ≤ εi in finite time, L̂i(t) will stop increasing.

For convergence proof, the Lyapunov function of ASMO for lateral velocity is defined as:

V1 =
1
2

e2
1 +

1
2ρ1

L̃1, (32)

where L̃1 = L̂1 − L1 is the adaptive gain convergence error.
The derivative of V1, with the consideration that

.
L1 = 0, is obtained as follows:

.
V1 = e1

.
e1 +

1
ρ1

L̃1

.
L̂1

= e1[−A11e1 − A12e2 − L̂1sign(e1)] +
1
ρ1

L̃1

.
L̂1

≤ e1[−A11e1 − A12e2]− L̂1|e1|+ (L̂1 − L1)|e1|
≤ e1[−A11e1 − A12e2]− L1|e1|.

(33)

Thus, by considering Equation (27):
.

V1 ≤ 0. (34)

Similarly, the Lyapunov function V2 for yaw rate convergence error e2 and adaptive gain
convergence error L̃2 = L̂2 − L2 can be written as:

V2 =
1
2

e2
2 +

1
2ρ2

L̃2. (35)

The time derivative of Equation (35) will asymptotically converge to zero,
.

V2 ≤ 0, by considering
.
L2 = 0 and L2 > max(|a12e1|+ |a22e2|).

Remark 1. In the practical implementation, the direct strapdown of lateral acceleration may incorporate the
small continuous noise to the lateral velocity that can diverge the ASMO estimation over time. Therefore, to deal
with the issue, a lateral velocity-based damping term [40] is added to cancel out the incremental noise. Now
Equation (24) can be written as:

.
y(t) =

.
y(t− 1)(1− σ) +

∫
(ay,sensor −Vx

.
ψ)dt, (36)
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where σ > 0 is an adjustable small damping parameter.

Remark 2. The designed ASMO may encounter high-frequency chattering due to the discontinuous signum
function sign(); therefore, it is replaced by the continuous function ei/(|ei|+ εi), such that Equations (29) and
(30) are rewritten as:

..
ŷ = −A11

.
ŷ− A12

.
ψ̂ + B1δ f w + L̂1(t)

e1

|e1|+ ε1
(37)

..
ψ̂ = −A21

.
ŷ− A22

.
ψ̂ + B2δ f w + L̂2(t)

e2

|e2|+ ε2
. (38)

The estimation performance of the ASMO for lateral velocity and yaw rate primarily depends
upon the knowledge of tire cornering stiffness coefficients C f and Cr, which are unknown in practice
and cannot be measured directly from the onboard vehicle sensors. Therefore, a Kalman filter (KF) [41]
is proposed in cooperation with ASMO to estimate these stiffness coefficients under different tire–road
conditions. Once the KF estimates a sufficient set of tire cornering stiffness coefficients, the parameter
estimation can be switched off.

The KF algorithm [41] for tire cornering stiffness estimation is given in Table 1.

Table 1. Kalman filter algorithm.

1. Initialize ŵ0, P0:

ŵ0 = E[w(0)]
P0 = E[(w(0)− ŵ0)(w(0)− ŵ0)

T ]

2. Time Update:

ŵ−t = ŵt−1
P−t = Pt−1 + Q

3. Measurement Update:

Kt = P−t HT(HP−t HT + R
)−1

ŵt = ŵ−t + Kt
(
zt − Hŵ−t

)
Pt = (I − Kt H)P−t

P denotes the estimate error covariance, Q is the process noise covariance, and R = r2
s is the

measurement noise covariance, whereas rs represents the sensor’s zero-mean white noise.
The tire cornering coefficients vector w and the measurement z, consisting of the lateral

acceleration ay, are defined as:

w =
[
C f Cr

]T
, z = Hw, (39)

where
z = ay

H =

[
− 2

m0

(
.
ŷ+l f

.
ψ̂

Vx
− δ f w

)
− 2

m0

(
.
ŷ−l f

.
ψ̂

Vx

)]
.

(40)

It is to be noted that the tire cornering stiffness coefficient’s vector w is considered as constant,
therefore, the time derivative of w is zero, (

.
w = 0). Then, w and z can be written in Euler’s discretized

form as:
w(k) = w(k− 1) + v(k) (41)

z(k) = Hw(k) + r(k), (42)

where v and r are the zero mean process noise and measurement noise, respectively.
In order to improve the estimation performance and the convergence accuracy of KF, the difference

e3 = zt − Hŵ−t , known as residual, is utilized to switch off the KF estimator. Therefore, on the basis of
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e3, a bounded condition is selected, such that when e3 reaches the specified bound |e3|≤ ε3 , the KF
will stop the estimation process and thereafter the estimated parameters will become constant until e3

exceeds the specified condition. ε3 (ε3 > 0) is the small positive constant.
Thus, the estimated tire cornering stiffness-based ASMO for Equations (37) and (38) is revised as:

..
ŷ = −A11(ŵt−1)

.
ŷ− A12(ŵt−1)

.
ψ̂ + B1(ŵt−1)δ f w + L̂1(t)

e1

|e1|+ ε1
(43)

..
ψ̂ = −A21(ŵt−1)

.
ŷ− A22(ŵt−1)

.
ψ̂ + B2(ŵt−1)δ f w + L̂2(t)

e2

|e2|+ ε2
. (44)

5. AGFSMC Control Design

In this section, the estimated dynamics-based adaptive global fast sliding mode control (AGFSMC)
is designed in two steps to estimate the uncertain steering parameters and eliminate the effect of
varying tire–road disturbance forces, so that the front wheels asymptotically track the driver’s reference
command in finite time.

The tracking error eθ between the front wheel angle δ f w and the scaled reference hand wheel
angle δd is defined as:

eθ(t) = δ f w(t)−
δsw(t)

k
= δ f w(t)− δd(t). (45)

The combination of linear sliding surface and the terminal sliding surface is known as the global
fast terminal sliding surface, s, which is defined as [42]:

s =
.
eθ + λ1(eθ)

q/p + λ2eθ , (46)

where λ1 and λ2 (λ1, λ2 > 0), are strictly positive constants, and q and p, are positive odd numbers,
such that q < p.

Thus, the time derivative of s is obtained as:

.
s =

..
eθ + λ1

q
p
(eθ)

(
q
p−1) .

eθ + λ2
.
eθ . (47)

.
s can be written as:

.
s =

..
δ f w −

..
δr, (48)

where
..
δr is expressed as:

..
δr =

..
δd −

(
λ1

q
p
(eθ)

(
q
p−1)

+ λ2

)
.
eθ . (49)

Thus, for stabilizing the SbW system (Equation (14)) and exponentially converging the tracking
error (Equation (45)) to zero, the two-step closed loop control law u for the SbW system is designed as:

u = uE + uA, (50)

where, in the first step, the estimated dynamics based control (EDC) uE, is designed to counter the
tire–road disturbance acting on the SbW system as follows:

uE = −sign(s)(|ξτak|+|ξτFk|), (51)

where ξτak, is the estimated self-aligning torque, which is computed from the best set of estimated
vehicle states and front wheel cornering stiffness provided by the ASMO and KF. ξτFk is the nominal
frictional torque obtained from the nominal set of vehicle parameters, such as mass, nominal coefficient
of friction, and the geometry of the vehicle.
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Both |ξτak| and |ξτFk| are expressed as:

|ξτak| =
2Ĉ f

ko

(
tpo + tm

)∣∣∣∣∣∣
δ f w −

.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣ (52)

|ξτFk| =
m0glr(

l f + lr
)

k0

µotpo

∣∣∣sign
( .

δ f w

)∣∣∣, (53)

where
.
ŷ,

.
ψ̂, and Ĉ f are the observed vehicle states and the front wheel’s estimated cornering stiffness, as

worked out in the previous section, respectively. µo, tpo, m0, and ko are the nominal system parameters.
Second, to tackle the residual disturbance left by the EDC and estimate the uncertain steering

parameters, the adaptive global fast sliding mode control (AGFSMC) uA is designed as follows:

uA = −sign(s)

|y|â + T̂
∣∣∣∣∣∣

.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣+ β̂1|u(t− 1)|

− β2s, (54)

where â(t) is the estimated parameter’s vector and |y| is the signal feedback vector; they are defined
as follows:

â =
[

Ĵek B̂ek F̂ T̂
]T

(55)

|y| = [|
..
δr||

.
δ f w||sign(

.
δ f w)||δ f w|]. (56)

Moreover, β̂1 and β2, (β̂1, β2 > 0) are the fixed and adaptive gains used to control the convergence
speed of AGFSMC, respectively, and |u(t− 1)| is the prior control input obtained at the time step t− 1.

Therefore, the adaptation laws for updating the â(t) and β̂1 are designed as:

.
â = Γ|yT ||s| (57)

.
β̂1 = |s||u(t− 1)|, (58)

where Γ(Γ > 0) is the diagonal positive definite gain matrix used to tune the parameter adaptation
speed. Figure 4 shows the framework of the proposed AGFSMC scheme.
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Convergence Proof

The Lyapunov function candidate is defined as:
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V3 =
1
2

Jeks2 +
1
2

ãTΓ−1 ã +
1
2

β̃1
2, (59)

where ã(t) = â(t) − a is the parameter estimation error, β̃1(t) = β̂1(t) − β1 is the adaptive gain
convergence error, and Γ−1 is the inverse of gain matrix.

The time derivative of Lyapunov function V3 in terms of the SbW system (Equation (14)) and the
control input (Equation (50)), with the considerations that

.
a = 0,

.
β1 = 0, are obtained as follows:

.
V3 = sJek

.
s +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w − τFk − τak + u] +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w − τFk − τak − sign(s)(|ξτFk|

+|ξτak|) + uA] +
.
â

T
Γ−1 ã + β̃1

.
β̂1

= s[−Jek
..
δr − Bek

.
δ f w + uA]− (sτFk + |s||ξτFk|)

−(sτFk + |s||ξτak|) +
.
â

T
Γ−1 ã + β̃1

.
β̂1

≤ s[−Jek
..
δr − Bek

.
δ f w + uA]− |s|(|ξτFk| − |τFk|)

−|s|(|ξτak| − |τak|) +
.
â

T
Γ−1 ã + β̃1

.
β̂1.

(60)

It is considered that |ξτFk| < τFk and |ξτaFk| < τak, such that:

|ξτFk| − |τFk| = −F|sign(
.
δ f w)| (61)

|ξτak| − |τak| = −T
(∣∣∣δ f w

∣∣∣+ ∣∣∣∣∣
.
y + l f

.
ψ

Vx

∣∣∣∣∣
)

, (62)

where F and T are the uncertain residual parameters of frictional torque and self-aligning
torque, respectively.

Substituting Equations (61), (63) and AGFSMC uA (Equation (54)) into (Equation (60)), then the
inequality is written as:

.
V3 ≤ s[−Jek

..
δr − Bek

.
δ f w − sign(s){ Ĵek|

..
δr|+ B̂ek|

.
δ f w|

+T̂ |δ f w|+ T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣+ β̂1|u(t− 1)|} − β2s]

+|s|F |sign(
.
δ f w)|+ |s|T |δ f w|+ |s|T

∣∣∣∣ .
y+l f

.
ψ

Vx

∣∣∣∣
+

.
â

T
Γ−1 ã + β̃1

.
β̂1

= −(|s| Ĵek|
..
δr|+ sJek

..
δr)− (|s|B̂ek|

.
δ f w|+ sBek

.
δ f w)

−(|s|F̂ |sign(
.
δ f w)| − s|F |sign(

.
δ f w)|)

−(|s|T̂ |δ f w| − |s|T |δ f w|) + |s|T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣− |s|T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣
−|s|β̂1|u(t− 1)| − β2s2 +

.
â

T
Γ−1 ã + β̃1

.
β̂1

= −|s||
..
δr| J̃ek − |s||

.
δ f w|B̃ek − |s||sign(

.
δ f w)|F̃ − |s||δ f w|T̃

−|s|
(
T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣− T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣
)
− |s|β̂1|u(t− 1)| − β2s2

+
.
â

T
Γ−1 ã + β̃1

.
β̂1

= −|s||y|ã +
.
â

T
Γ−1 ã− |s|

(
T̂
∣∣∣∣∣

.
ŷ+l f

.
ψ̂

Vx

∣∣∣∣∣− T
∣∣∣∣ .

y+l f
.
ψ

Vx

∣∣∣∣
)

−|s|β̂1|u(t− 1)|+ (β̂1 − β1)
.
β̂1 − β2s2.

(63)
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With the adaptation laws of
.
â (Equation (57)) and

.
β̂1 (Equation (58)), substituting into Equation

(63) satisfies:
.

V3 ≤ −|s|

T̂
∣∣∣∣∣∣

.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣− T
∣∣∣∣∣

.
y + l f

.
ψ

Vx

∣∣∣∣∣
− |s|β1|u(t− 1)| − β2s2 (64)

The convergence proof shows that the proposed AGFSMC is stable and the inequality
(Equation (64)) ensures that the global fast terminal sliding surface variable exponentially converges to
zero (s = 0) in the finite time.

Remark 3. The signum function sign(s) incorporates the chattering and discontinuity in the proposed
controller. Therefore, to eliminate the chattering phenomenon the signum function is replaced by the boundary
layer saturation function sat(·) such that Equations (51) and (53) are re-written as:

uE = −sat(s)(|ξτak|+|ξτFk|) (65)

uA = −sat(s)

|y|â + T̂
∣∣∣∣∣∣

.
ŷ + l f

.
ψ̂

Vx

∣∣∣∣∣∣+ β̂1|u(t− 1)|

− β2s. (66)

The boundary layer saturation function is defined as:

sat(s) =

{
s
φ |s| < φ

sign(s) otherwise
, (67)

where φ > 0 represents the boundary layer thickness. Due to the boundary layer, the closed-loop error cannot
converge to zero. However, a carefully selected value of φ would lead the error to a user-specified bounded region.

Remark 4. In order to avoid overestimation of â and β̂1, which can lead the control input u(t) to saturation,
Equations (57) and (58) can be re-written for the permissible bounds of eθ using the discontinuous projection
mapping [36] as follows:

.
â =

{
0 if |eθ | ≤ ε4

Γ|y|T |s| otherwise
(68)

.
β̂1 =

{
0 if |eθ | ≤ ε5

|s||u(t− 1)| otherwise
, (69)

where ε4 and ε5 are defined as dead zone bounds [27] in terms of tracking error. Therefore, when the tracking
error converges to the respective dead zone bound, the adaption mechanism will be switched off and after that â
and β̂1 become constant.

6. Simulation Results

In this section, the estimation accuracy of vehicle states and cornering stiffness coefficients, and
the control input performance of the proposed AGFSMC scheme for SbW system road vehicles, are
validated over the three different maneuvering tests, in compression with adaptive sliding mode
control (ASMC) and adaptive fast sliding mode control (ATSMC).

The first test (test 1) is sinusoidal maneuvering with varying tire–road conditions—snowy for
the first 30 s and a dry asphalt road for the next 30 s—with the selected coefficient of friction as
µt<30 = 0.45, µt≥30 = 0.85 and the tire cornering stiffness coefficients for the front and rear wheels
as C f (t<30) = 4000, C f (t≥30) = 8000, Cr(t<30) = 5000, Cr(t≥30) = 10, 000, respectively. The second test
(test 2) is known as circular maneuvering, conducted over a dry asphalt road. Moreover, a high speed
cornering test (test 3) is also introduced to further evaluate the robustness of the proposed scheme.
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It is worth noting that the first two tests are carried out at longitudinal speed Vx = 10 m/s and the
third test at Vx = 20 m/s with the same sampling rate of ∆T = 0.001 s. Furthermore, the vehicle and
SbW system parameters are listed in Table 2.

Table 2. Vehicle and SbW system parameters.

Parameter Value (s)

m (kg) 1270
Iz
(
kg·m2) 1537

l f , lr (m) 1.015, 1.895
Jek 0.28
Bek 0.88
k 18

tm, tp (m) 0.023, 0.016

The parameters for the proposed cooperative ASMO and KF estimator with the termination
bounds are selected as: L̂1(0) = L̂2(0) = 8, ρ1 = ρ2 = 10, σ = 0.001, ε1 = ε2 = 0.005, ε3 =

0.01, m0 = 1150 kg, Iz0 = 1430 kg·m2, ŵ0 = [100 100]T , P0 = 10000 × I2x2, Q =
(
1× 10−6)I2×2,

and rs = 0.001.
In addition, the parameters for the designed AGFSMC scheme with dead zone bounds are chosen

as: λ1 = λ2 = 12, p = 7, q = 5, φ = 0.8, β2 = 4, tpo = tm = 0.016 m, µo = 0.6, ko = 16, Γ = I4×4,
ε4 = ε5 = 0.002, and the initial conditions are considered as â(0) = β̂1(0) = 0.

To compare the performance of the proposed AGFSMC scheme with the adaptive sliding mode
control (ASMC), as designed in [25], we used the following equations:

u = 1
k (Je0(λ

.
e +

..
δd) + Be0

.
δ f w + ξ f 0sign(

.
δ f w) + vs + Ksat(s) + ρ̂τtanh(δ f w))

K = 0.1(Je0(λ|
.

e|+|
..
δd|) + Be0|

.
δ f w|+ ξ f 0)

.
ρ̂τ = µ v

Je0
+ µ

.
stanh(δ f w),

(70)

where the tracking error e = δd − δ f w and the sliding surface s =
.
e + λe with

.
s = (sk − sk−1)/∆t

are defined in Equation (71). The saturation function sat(·) is also taken to be the same as Equation
(67) with boundary layer thickness φ = 0.8. Moreover, the nominal SbW system parameters Je0 = 3,
Be0k = 12, ξ f 0 = 100, k = 18, and the control parameters λ = 12, v = 72, µ = 450 are selected
according to the methodology defined in [25].

For performance comparison with ATSMC, as designed as [27], the calculations are given
as follows:

u = −sat(s)
[

â1

(
..
δd

)
+ b̂1

∣∣∣ .
δ f w

∣∣∣+ ĉ0 + ĉ1

∣∣∣δ f w

∣∣∣+ ĉ2

∣∣∣ .
δ f w

∣∣∣+ λâ q
p (e)

(
q
p−1)∣∣ .

e
∣∣]− ρ̂

2 s

−k1sign(s)− k2s
.
ĉ0 = η1|s|(1− σĉ0)

.
ĉ1 = η2|s|

∣∣∣δ f w

∣∣∣(1− σĉ1)
.
ĉ2 = η3|s|

∣∣∣ .
δ f w

∣∣∣(1− σĉ2)
.
â1 =

(
η4|s|

(
..
δd

)
+ η4|s|λ q

p (e)
(

q
p−1)∣∣ .

e
∣∣)(1− σâ1)

.
b̂1 = η5|s|

∣∣∣ .
δ f w

∣∣∣(1− σb̂1

)
,

.
ρ̂ = η6

s2

2 (1− σρ̂),

(71)

where λ, p, q, sat(s), and φ have the same values as those defined in AGFSMC. Moreover, the control
parameters and adjustable parameters for adaptive laws are selected according to [27] as follows:

η1 = 4, η2 = η3 = η4 = η5 = η6 = 2, k1 = 0.001, k2 = 4,
..
δd = 2 and ρ = 0.001, resptectively.
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6.1. Sinusoidal Maneuvering Test (Test 1)

The reference steering wheel angle is generated by:

δd = 0.4 sin(0.5πt)rad. (72)

Figure 5 shows the simultaneously estimated lateral velocity, yaw rate, and cornering stiffness
coefficients. It is observed that the cooperative ASMO and KF scheme intelligently cope with the
tire–road variations and estimate the vehicle states and cornering stiffness coefficients by self-tuning
the gains according to the driving environment. Figure 5c shows that the estimated Ĉ f , Ĉr have not
only converged to the neighborhood of the actual values in both dry and snowy conditions, but also
become constant after the condition e3 reached a specified termination bound.
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Figure 5. Estimation results of vehicle states and cornering stiffness coefficients in test 1: (a) Estimated
lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients.

Figure 6 represents the tracking response and the control input performance of the AGFSMC
scheme against the varying tire–road disturbance forces. We can see from Figure 6b that the proposed
methodology effectively eliminates the impact of self-aligning torque (Equation (20)) and Coulomb
frictional torque (Equation (21)) from the SbW system and ensures that the front wheels are precisely
tracking the reference steering angle with a steady state tracking error of 0.002 rad. It is noted that
at the beginning of sinusoidal maneuvering, after 3 s, the tracking error reached the peak value of
0.01 rad. This is because we started all the parameter estimations from very low values, such as
ŵ0 = [100 100]T , â(0) = β̂1(0) = 0. Therefore, right after the peak error, all the estimated parameters
converged to the sufficient estimation set. As a result, the peak tracking error also converged to the
steady-state dead zone region.

Moreover, Figure 7 shows the estimated SbW system parameters and the sliding gain adaptation
profile. It is observed that the estimated SbW system parameters did not converge to the listed actual
constants, but due to the adaptive capability of the proposed control scheme, all parameters as well
as the sliding gain are adaptively adjusted in time for both driving conditions, which ensure the
closed-loop stability of the SbW system. Hence, the outstanding steering performance of the SbW
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system vehicle is achieved against the nonlinear tire–road disturbance forces and the uncertain SbW
system parameters.
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Figure 6. Control performance of the proposed AGFSMC scheme in test 1: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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Figure 7. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 1: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.

Figure 8 demonstrates that the steering performance of the ASMC scheme is not as good as that
of the proposed AGFSMC scheme. This is because the hyperbolic tangent function used in ASMC is
unable to replicate the actual self-aligning torque acting on the SbW system. Also, the adaptation law
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cannot estimate the appropriate equivalent coefficient of self-aligning torque to compensate for the
varying tire–road conditions. Consequently, the overall tracking error is much higher, particularly in
the dry asphalt road condition: the tracking error peaks to the steady-state value of 0.06 rad, which is
almost 30 times higher than in the proposed scheme. Although the ASMC scheme has the information
of nominal parameters and utilized the saturation function, it incorporates high-frequency chattering
during the first 3 s of the simulation, where the reference angle is set to zero.
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Figure 8. Control performance of adaptive sliding mode controller in test 1: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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Figure 9 shows that the overall tracking response of ATSMC is better than the ASMC under the
varying driving conditions, while both schemes cannot outperform the proposed AGFSMC. It can be
seen that the control input overshoots the allowable control limit, which causes irregular spikes in
the tracking error. We noticed two reasons for that: (1) The designed adaptation law for estimating
the control parameter â1 does not include a provision to maintain the positive estimation; and (2)
the ATSMC does not possess any mechanism to bound or stop the parameter adaptation process for
avoiding overestimations, as compared to the one proposed in AGFSMC. Therefore, the tracking error
is consistently converging to a smaller region with spikes due to the large and continuous parameter
estimation, which may lead the controller to saturation state.
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Figure 9. Control performance of adaptive terminal sliding mode control in test 1: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

6.2. Circular Maneuvering Test (Test 2)

The circular maneuvering test is carried out over the dry asphalt road for 25 s with these selected
tire–road parameters: C f = 8000, Cr = 10000, and u = 0.85.

Figures 10–12 portray the promising results of the proposed AGFSMC scheme in all aspects
during test 2. We can see the fine estimation of vehicle states and cornering coefficients in Figure 10.
The estimated cornering coefficients takes less than a second to converge to the sufficient estimation
set over the dry asphalt, such as, Ĉ f

∼= 7250, Ĉr ∼= 9050, and becomes constant after e3 satisfies the
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selected ε3 bound. Thus, Figure 11 exhibits the excellent tracking response of the front wheels with an
observed peak tracking error of 0.008 rad, which eventually converged to the ε4 bound after the rapid
adjustment of all adaptive parameters Ĵek, B̂ek, F̂ , T̂ , and β̂1 to certain constants, as shown in Figure 12.
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Figure 10. Estimation results of vehicle states and cornering stiffness coefficients in test 2: (a) Estimated
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Figure 11. Control performance of the proposed AGFSMC scheme in test 2: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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Figure 12. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 2: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.

In contrast to the proposed scheme, the ASMC shows the worst tracking performance throughout
test 2. It can be seen from Figure 13 that the tracking error is unable to obtain any steady state bound
and reached a peak value of 0.076 rad, which is almost 9.5 times higher than in the proposed AGFSMC
scheme. Moreover, the adaptation law also shows inconsistent behavior in the last 7 s of this test,
where the estimated coefficient of self-aligning torque rapidly drops to a highly negative value. As a
result, neither tracking error nor sliding surface converged to the steady state boundary at a finite time
in the Lyapunov’s sense.
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Figure 13. Control performance of adaptive sliding mode controller in test 2: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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On the other hand, the ATSMC performed slightly better than the ASMC in terms of tracking
response and also managed to converge the tracking error to the steady state bound during test 2.
The peak tracking error observed under the ATSMC scheme is 0.067 rad as shown in Figure 14, which is
marginally less than the ASMC but almost 8.35 times higher than the proposed scheme. Moreover, the
abrupt shift in â1 parameter estimation and the multiple control input overshoots are again observed
in this test.Appl. Sci. 2017, 7, 738  21 of 27 
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Figure 14. Control performance of adaptive terminal sliding mode control in test 2: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

6.3. High Speed Cornering Test (Test 3)

In order to further evaluate the estimation accuracy, tracking response, and control input
performance of the proposed AGFSMC scheme, a high-speed cornering test is performed on a dry
asphalt road for 45 s.

As expected, Figures 15–17 clearly indicate the remarkable performance of the proposed scheme
against the parametric uncertainties and tire–road disturbance. The cooperative ASMO and KF also
maintain the robustness and provide adequate estimated dynamics to stabilize the effect of self-aligning
torque and frictional torque at high speed. The peak tracking error observed during test 3 under the
AGFSMC scheme is 0.0095 rad, which is almost eight times lower than ASMC (0.076 rad), and four
times lower than ATSMC (0.04 rad). Compared to other control schemes, Figure 18 shows that the
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tracking error under ASMC was again unable to attain any steady state bound and also incorporates
high-frequency chattering at constant steering angle inputs. The ATSMC shows a decent performance
regarding the tracking error convergence as compared to ASMC. However, the sudden parameter
estimation shift with control overshoot still exists in this test, as shown in Figure 19.Appl. Sci. 2017, 7, 738  22 of 27 
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Figure 15. Estimation results of vehicle states and cornering stiffness coefficients in test 3:  
(a) Estimated lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients. 
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Figure 16. Control performance of the proposed AGFSMC scheme in test 3: (a) Tracking performance; 
(b) Tracking error; (c) Control input torque. 
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Figure 15. Estimation results of vehicle states and cornering stiffness coefficients in test 3: (a) Estimated
lateral velocity; (b) Estimated yaw rate; (c) Estimated cornering stiffness coefficients.
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Figure 16. Control performance of the proposed AGFSMC scheme in test 3: (a) Tracking performance;
(b) Tracking error; (c) Control input torque.
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Figure 17. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 3: (a–d)
Estimated SbW system parameters; (e) Estimated sliding gain.

Appl. Sci. 2017, 7, 738  23 of 27 

(a) (b)

(c) (d)

(e)

Figure 17. Estimated SbW system parameters and sliding gain with AGFSMC scheme in test 3:  
(a–d) Estimated SbW system parameters; (e) Estimated sliding gain. 

(a) (b)

(c) (d)

Figure 18. Control performance of adaptive sliding mode controller in test 3: (a) Tracking 
performance; (b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-
aligning torque. 

S
te

er
in

g 
an

gl
e 

(r
ad

)

T
ra

ck
in

g 
er

ro
r 

(r
ad

)

C
on

tr
ol

 in
pu

t (
N

m
)

Figure 18. Control performance of adaptive sliding mode controller in test 3: (a) Tracking performance;
(b) Tracking error; (c) Control input torque; (d) Estimated equivalent coefficient of self-aligning torque.
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Figure 19. Control performance of adaptive terminal sliding mode control in test 3: (a) Tracking
performance; (b) Tracking error; (c) Control input torque; (d) Estimated parameters.

7. Conclusions

In this paper, we have developed an AGFSMC scheme for SbW system road vehicles with
unknown steering parameters. It has been demonstrated that the cooperative ASMO and KF
intelligently cope with tire–road variations and simultaneously provide the best set of estimated
vehicle states and cornering stiffness coefficients. Thereafter, the estimated dynamics-based AGFSMC
is designed to adapt to the unknown SbW system parameters and eliminate the effect of tire–road
disturbance forces. The proposed global fast terminal sliding surface guarantees the precise tracking
of front wheels and ensures the asymptotic convergence of tracking error. Finally, the comparative
study results are analyzed as follows:

• The adaptive features of cooperative ASMO and KF showed strong robustness against varying
driving conditions in all three maneuvering tests, and estimated the sufficient dynamics to
stabilize the impact of tire–road frictional torque and self-aligning torque.

• The proposed AGFSMC is proven to attain a smaller peak tracking error and faster convergence
of steady-state error to smaller bounds in comparison with ASMC and ATSMC over all
three maneuvers.

• The discontinuous projection mapping along with designed dead zones, also effectively managed
to restrict the estimation drift problem.
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Thus, the comparative study validates the remarkable steering performance of the proposed
AGFSMC scheme, carried out over three different driving maneuvers. For our forthcoming work, we
will investigate the dynamic behavior of nonlinear self-aligning torque and Coulomb frictional torque
in extreme maneuvering conditions. In addition, we are also investigating the adaptive second-order
sliding mode control for SbW system road vehicles to improve the estimation accuracy of dynamic
tire–road disturbance forces under varying driving conditions.
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Abbreviations

The following abbreviations are used in this article:

Vx, Vy,
.
ψ Vehicle’s velocities and yaw rate

..
y,

..
ψ Vehicle’s lateral and yaw acceleration

m, Iz Vehicle’s mass and mass moment of inertia
Fy f , Fyr Lateral force at front and rear wheel
Fx f , Fxr Longitudinal force at front and rear wheel
C f , Cr Cornering coefficient of front and rear wheel
α f , αr Sideslip angle of front and rear wheel
J f w, J f m, Jeq Moment of inertia of front wheels, actuator, and equivalent SbW system
B f w, B f m, Beq Viscous damping of front wheels, actuator, and equivalent SbW system
l f , lr Distance of front and rear axles from center of gravity
tp, tm Pneumatic and mechanical trail
τF, τa Tire–road frictional torque and self-aligning torque
µ Tire–road coefficient of dry friction
Fz f Vertical load on front axle
k Steering ratio
.
ŷ,

.
ψ̂ ASMO estimated vehicle states

L̂1, L̂2 ASMO adaptive gains
ρ1, ρ2 ASMO adaptation law speed adjustment parameters
Ĉ f , Ĉr KF estimated cornering coefficients
e1, e2, e3 ASMO and KF estimation errors
ε1, ε2, ε3 ASMO and KF termination bounds
δ f w Front wheel angle
δd Reference angle
eθ Tracking error
s Sliding surface
λ1, λ2, q, p GFTSM surface parameters
Ĵek, B̂ek, F̂ , T̂ , β̂1, β2 AGFSM estimated and fast convergence parameters
ε4, ε5 AGFSM adaptation law dead zone bounds
u AGFSM control input
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